簡易檢索 / 詳目顯示

研究生: 林柏伸
Lin, Po-Shen
論文名稱: 粉煤及稻稈純氧混燒特性之模擬與分析
Simulation and Analysis of Pulverized Coal and Straw Oxy-Co-Firing
指導教授: 吳明勳
Wu, Ming-Hsun
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 131
中文關鍵詞: 純氧燃煤生質能混燒純氧混燒
外文關鍵詞: Oxy-coal combustion, Biomass co-firing, Oxy-co-firing
相關次數: 點閱:83下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究之目的為利用數值模擬技術探討純氧燃煤與粉煤及稻稈純氧混燒之燃燒特性。文中利用化學平衡考慮純氧燃煤與粉煤/稻稈於純氧混燒之平衡特性;三維模擬首先以一簡化燃燒器探討純氧燃煤特性,於粉煤/稻稈混燒模擬中亦進一步考慮了燃燒器之設計幾何。首先透過化學平衡,計算平衡溫度與產物組成,解析純氧燃煤與粉煤/稻稈純氧混燒於平衡狀態下之行為。於純氧燃煤操作下,氧氣濃度提升至30.5 %時可獲得與空氣燃煤一致的平衡溫度,此時需將65 %以上之導回作為氧化劑之稀釋氣體。純氧燃煤可將CO2排放濃度大幅由15.7 % (空氣燃煤)提升至94.4 %以上,並大幅降低NOx濃度,有利於二氧化碳之捕捉與封存。此外,由於混燒稻稈燃料的加入使燃料組成大幅變動,粉煤/稻稈混燒將使NOx生成量增加並減少SOx排放。
    本研究亦透過三維反應流場穩態模擬,解析純氧燃煤與粉煤/稻稈純氧混燒時之反應流場及排放特性。純氧燃煤模式下近燃燒器處渦度、揮發份生成和粉煤燃盡率低於空氣燃煤模式。過剩氧百分比不足與渦流比過低時將導致燃燒爐內混合效率降低,使煙道氣CO含量遽增並降低粉煤燃盡率。NO濃度隨過剩氧、渦流比以及混燒比提高而增加,粉煤粒徑大小則不影響NO之排放濃度。於粉煤/稻稈純氧混燒條件下,平均粒徑較大之稻稈燃料完全揮發所需之時間與距離較長,使爐內低溫揮發區延伸,且其將穿越揮發份燃燒之高溫區後進行揮發反應,促使爐內NO局部濃度增加,但對於出口濃度影響不甚顯著。不同混燒比操作下,其影響NO與SO2排放濃度之主要為粉煤與稻桿混合燃料組成及其輸料率,增加稻稈混燒比將提高NO並降低SO2之生成。

    The characteristics of oxy-coal combustion and oxy-co-firing of pulverized coal and straw are studied using chemical equilibrium calculation and three-dimensional computational fluid dynamic simulations. The chemical equilibrium analysis shows that the temperature of oxy-firing is comparable to air-firing by enhancing O2 concentration to 30 %. Over 65% of flue gas has to be recirculated under this operating condition. With the higher O2 concentration in the oxidizer, the overall flow rate is reduced. The concentration of CO2 is increased from 15.7 % for air-firing to 94.4 % for oxy-firing, and the flue gas contains much lower NOx concentration due to the reduction of thermal NOx. Furthermore, oxy-co-firing of pulverized coal can result in higher NOx and lower SOx emission due to the variation of the composition of fuel blends.
    Three-dimensional reacting flow simulations have been further carried out in this study. The results shows that the coal burnout out and vorticity in the vicinity of burner is lower for oxy-firing than that for air-firing. Lower excess oxygen and swirl ratio will result in worse coal burnout and higher CO concentration. For pulverized coal/straw oxy-co-firing, larger mean particle size leads to the devolatilization of straw dust in much slower rate. Increasing straw content in the fuel blends would result in higher NO and lower SO2 concentrations in the flue gas.

    摘要 i Abstract ii 致謝 iii 圖目錄 iv 表目錄 x 目錄 xi 符號說明 xiii 第1章 緒論 1 1-1 前言 1 1-2 文獻回顧 2 1-3 研究目的 9 1-4 本文架構 11 第2章 研究方法 12 2-1 粉煤與稻稈混燒之化學平衡分析 12 2-2 純氧燃燒三維反應流場模擬方法 15 2-2-1 純氧燃煤特性模擬方法 19 2-2-2 粉煤/稻稈純氧混燒特性模擬方法 31 第3章 以化學平衡分析探討粉煤及稻稈純氧燃燒特性 41 3-1 氧氣濃度之影響 42 3-2 過剩氧百分比之影響 48 3-3 煙道氣迴流方式之影響 52 3-4 氧氣純度之影響 56 3-5 煤炭與稻稈生質能混燒之特性 58 3-6 熟石灰(Ca(OH)2)之二氧化碳吸收能力之探討 62 3-7 小結 65 第4章 純氧燃煤特性三維模擬分析 66 4-1 過剩氧百分比之影響 66 4-2 渦流比之影響 76 4-3 粒徑大小之影響 84 4-4 小結 91 第5章 粉煤/稻稈純氧混燒特性三維模擬分析 93 5-1 混燒稻稈粒徑分佈之影響 93 5-2 混燒比之影響 101 5-3 小結 110 第6章 總結 111 6-1 結論 111 6-2 未來展望 113 參考文獻 114 附錄A 純氧燃煤化學平衡分析程式 122 A-1 使用標準煙道氣時之化學平衡分析程式 122 A-2 使用迴流煙道氣時之化學平衡分析程式 125 附錄B 常見煤種及其結構參數[94] 130 附錄C 燃燒器設計 131

    [1] 政府科技發展策略規劃報告,玖、能源領域(民國93年版), 行政院國家科學委員會, 民國91年1月.
    [2] International Energy Outlook , EIA, April 1997.
    [3] 能源政策白皮書(民國87年版), 經濟部能源委員會, 民國87年12月.
    [4] Chen, L., Yong, S.Z., and Ghoniem, A.F. (2012), Oxy-Fuel Combustion of Pulverized Coal: Characterization, Fundamentals, Stabilization and CFD Modeling, Progress in Energy and Combustion Science 38, 156-214.
    [5] Jensen, A.D., Toftegaard, M.B., Brix, J., Jensen, P.A., and Glarborg, P. (2010), Oxy-Fuel Combustion of Solid Fuels, Progress in Energy and Combustion Science 36, 581-625.
    [6] Wall, T., Liu, Y.H., Spero, C., Elliott, L., Khare, S., Rathnam, R., Zeenathal, F., Moghtaderi, B., Buhre, B., Sheng, C.D., Gupta, R., Yamada, T., Makino, K., and Yu, J.L. (2009), An Overview on Oxyfuel Coal Combustion- State of the Art Research and Technology Development, Chemical Engineering Research & Design 87, 1003-1016.
    [7] Buhre, B.J.P., Elliott, L.K., Sheng, C.D., Gupta, R.P., and Wall, T.F. (2005), Oxy-Fuel Combustion Technology for Coal-Fired Power Generation, Progress in Energy and Combustion Science 31, 283-307.
    [8] Holtmeyer, M.L., Kumfer, B.M., and Axelbaum, R.L. (2012), Effects of Biomass Particle Size during Cofiring under Air-Fired and Oxyfuel Conditions, Applied Energy 93, 606-613.
    [9] Skeen, S.A., Kumfer, B.M., and Axelbaum, R.L. (2010), Nitric Oxide Emissions during Coal and Coal/Biomass Combustion under Air-Fired and Oxy-fuel Conditions, Energy & Fuels 24, 4144-4152.
    [10] Riaza, J., Gil, M.V., Alvarez, L., Pevida, C., Pis, J.J., and Rubiera, F. (2012), Oxy-Fuel Combustion of Coal and Biomass Blends, Energy 41, 429-435.
    [11] Valero, A., Romeo, L.M., Diez, L.I., and Perez, A., Oxy-Co-Firing: A Negative CO2 Emission Process, The 8th international conference on greenhouse gas control technologies (GHGT-8), Trondheim, Norway, Jun 19-22, 2006.
    [12] Okazaki, K. and Kiga, T., The Future of R&D Requirements for Oxyfuel Combustion -Activities in Japan-, IEAGHG OCC2, Australia, Sep 13-15, 2011.
    [13]Oxy-Fuel Demonstration Project. Available: http://www.mcilvainecompany.com/Decision_Tree/subscriber/CO2DescriptionTextLinks/BabcockWilcoxOxyDemo.pdf
    [14]DOE/NETL Carbon Dioxide Capture and Storage RD&D Roadmap. Available: http://www.osservatorioccs.org/documents/DOENETL%20CCS%20Roadmap%2010.pdf
    [15]Lacq Industrial CCS Project. Available: http://www.worldenergy.org/documents/congresspapers/370.pdf
    [16] The OXYCFB300 Compostilla Project. Available: http://compostillaproject.eu/en
    [17] The Romanian CCS Demo Project. Available: http://www.minind.ro/invest/new/Electric_Energy_Sector/SC_Complexul_Energetic_Turceni_SA/CCS_Demo_Project.pdf
    [18] Callide Oxyfuel Project. Available: http://www.callideoxyfuel.com/
    [19] International CCS Technology Survey. Available: http://ekstranett.innovasjonnorge.no/Felles_fs/CVCTeamNorway/Dokumenter/Surveillance%20of%20CCS%20projects%20and%20initatives%20Issue%205.pdf
    [20] Vattenfall CCS Project. Available: http://www.vattenfall.com/en/ccs/pilot-plant.htm
    [21] Feed Back from the Lacq Industrial CCS Project. Available: http://www.worldenergy.org/documents/congresspapers/370.pdf
    [22]FutureGen 2.0 Project. Available: http://www.futuregenalliance.org/futuregen-2-0-project/
    [23] Cieutat, D., Molinero, I.S., Tsiava, R., Recourt, P., Aimard, N., and Prebende, C. (2009), The Oxy-Combustion Burner Development for the CO2 Pilot at Lacq, Energy Procedia, 519-526.
    [24] Harris, R. (2009). Coolimmba Power Carbon Capture and Storage Project. Available: http://www.cmewa.com/UserDir/Documents/Environment%20Publications/Richard%20Harris.pdf
    [25] Kim, J.S., Choi, J., Kim, Y., and Kim, S.C., Oxy-Combustion Research Activities in Korea- An Overview to the Youngdong 100MWe Oxy-Combustion Power Station Project Demostration. Available: http://www.ieaghg.org/docs/oxyfuel/3rd%20Mtg/07-04%20J.S.%20Kim%20(KIST).pdf
    [26] Kim, S.C., Status of Oxy-Fuel Combustion Project in Korea, The APEC Clean Fossil Energy Technical and Policy Seminar, Incheon, Korea, Oct 12-14, 2009.
    [27]Saysset, S., Rigollet, C., Gitton, J., and Dreux, R., Operational CO2 Sequestration Projects at Gaz de France, 23th World Gas Conference¬, Amsterdam, Netherlands, Jun 5-9, 2006.
    [28] Snyder, S., Anderson, L., Keith, D., Sendall, K., and Youzwa, P. (2008), Canada's Fossil Energy Future- The Way Forward on Carbon Capture and Storage. Available: http://www.energy.alberta.ca/Org/pdfs/Fossil_energy_e.pdf
    [29]Stobbs, B., The Saskatchewan Advantage, 3rd International Conference on Clean Coal Technologies for our Future, Cagliari, Sardinia, May 15-17, 2007.
    [30]Stromberg, L., Lindgren, G., Anheden, M., Simonsson, N., and Kopcke, M. Valltenfall's 30MWth Oxyfuel Pilot Plant Project. Available: http://www.vattenfall.com/en/ccs/file/Vattenfalls_30_MWth_Oxyfuel_P_8472522.pdf
    [31] Wall, T., (2010). Coal Based Oxy-Fuel Technology -Progress to Deployment. Available: http://www.newcastle.edu.au/Resources/Projects/Asia%20Pacific%20Partnership%20Oxy-fuel%20Working%20Group/14%20Wall%20Progress%20to%20deployment%20for%20China%20course.pdf
    [32] Yamada, T., Current Status of the Callide A Oxy-Fuel Demonstration Project, The Clean Coal Day in Japan, Tokyo, Sep 5-6, 2006.
    [33]Croiset, E., Thambimuthu, K.V., and Palmer, A. (2000), Coal Combustion in O2/CO2 Mixtures Compared with Air, Canadian Journal of Chemical Engineering 78, 402-407.
    [34] Croiset, E. and Thambimuthu, K.V. (2001), NOx and SO2 Emissions from O2/CO2 Recycle Coal Combustion, Fuel 80, 2117-2121.
    [35] Santoro, L., Vaccaro, S., Aldi, A., and Cioffi, R. (1997), Fly Ashes Reactivity in Relation to Coal Combustion under Flue Gas Recycling Conditions, Thermochimica Acta 296, 67-74.
    [36] Kiga, T., Takano, S., Kimura, N., Omata, K., Okawa, M., Mori, T., and Kato, M. (1997), Characteristics of Pulverized-Coal Combustion in the System of Oxygen Recycled Flue Gas Combustion, Energy Conversion and Management 38, S129-S134.
    [37] Yossefi, D., Ashcroft S. J., Hacohen J., Belmont M.R., and Thorpe I. (1995), Combustion of Methane and Ethane with CO2 Replacing N2 as a Diluent - Modeling of Combined Effects of Detailed Chemical-Kinetics and Thermal-Properties on the Early Stages of Combustion, Fuel 74, 1061-1071.
    [38] Kimura, N., Omata, K., Kiga, T., Takano, S., and Shikisima, S. (1995), The Characteristics of Pulverized Coal Combustion in O2/CO2 Mixtures for CO2 Recovery, Energy Conversion and Management 36, 805-808.
    [39] Liu, Y.H., Geier, M., Molina, A., and Shaddix, C.R. (2011), Pulverized Coal Stream Ignition Delay under Conventional and Oxy-Fuel Combustion Conditions, International Journal of Greenhouse Gas Control 5, S36-S46.
    [40] Li, C.Z., Qiao, Y., Zhang, L.A., Binner, E., and Xu, M.H. (2010),An Investigation of the Causes of the Difference in Coal Particle Ignition Temperature between Combustion in Air and in O2/CO2, Fuel 89, 3381-3387.
    [41] Gil, M.V., Riaza, J., Alvarez, L., Pevida, C., Pis, J.J., and Rubiera, F. (2012), Oxy-Fuel Combustion Kinetics and Morphology of Coal Chars Obtained in N2 and CO2 Atmospheres in An Entrained Flow Reactor, Applied Energy 91, 67-74.
    [42] Li, Y.H., Radovic, L.R., Lu, G.Q., and Rudolph, V. (1999), A New Kinetic Model for the NO-Carbon Reaction, Chemical Engineering Science 54, 4125-4136.
    [43] Liu, H., Zailani, R., and Gibbs, B.A. (2005), Pulverized Coal Combustion in Air and in O2/CO2 Mixtures with NOx Recycle, Fuel 84, 2109-2115.
    [44]Liu, H., Zailani, R., and Gibbs, B.M. (2005), Comparisons of Pulverized Coal Combustion in Air and in Mixtures of O2/CO2, Fuel 84, 833-840.
    [45]Spinti, J.P. and Pershing, D.W. (2003), The Fate of Char-N at Pulverized Coal Conditions, Combustion and Flame 135, 299-313.
    [46]Furimsky, E. (2000), Characterization of Trace Element Emissions from Coal Combustion by Equilibrium Calculations, Fuel Processing Technology 63, 29-44.
    [47] Furimsky, E. and Zheng, L.G. (2003), Quantification of Chlorine and Alkali Emissions from Fluid Bed Combustion of Coal by Equilibrium Calculations, Fuel Processing Technology 81, 7-21.
    [48]Zheng, L.G. and Furimsky, E. (2003), Assessment of Coal Combustion in O2+CO2 by Equilibrium Calculations, Fuel Processing Technology 81, 23-34.
    [49] Vascellari, M. and Cau, G., Numerical Simulation of Pulverized Coal Oxy-Combustion With Exhaust Gas Recirculation, 4th International Conference on Clean Coal Tecnologies (CCT2009), Dresden, Germany, May 18-21, 2009.
    [50]Zhou, W., Zhao, C.S., Duan, L.B., Liu, D.Y., and Chen, X.P. (2011), CFD Modeling of Oxy-Coal Combustion in Circulating Fluidized Bed, International Journal of Greenhouse Gas Control 5, 1489-1497.
    [51]Geier, M., Shaddix, C.R., Davis, K.A., and Shim, H.S. (2012), On the Use of Single-Film Models to Describe the Oxy-Fuel Combustion of Pulverized Coal Char, Applied Energy 93, 675-679.
    [52]Baxter, L. (2005), Biomass-Coal Co-Combustion: Opportunity for Affordable Renewable Energy, Fuel 84, 1295-1302.
    [53] Hansen, L.A., Nielsen, H.P., Frandsen, F.J., Johansen K.D., Horlyck, S., and Karlsson, A. (2000), Influence of Deposit Formation on Corrosion at A Straw-Fired Boiler, Fuel Processing Technology 64, 189-209.
    [54] Hansen, P.F.B., Andersen, K.H., Hansen, K.W., Overgaard, P., Rasmussen, I., Frandsen, F.J., Hansen, L.A., and Johansen, K.D. (1998), Co-firing Straw and Coal in A 150-MWe Utility Boiler: In Situ Measurements, Fuel Processing Technology 54, 207-225.
    [55]Pedersen, L.S., Nielsen, H.P., Kiil, S., Hansen, L.A., Johanesn, K.D., Kildsig, F., Christensen, J., and Jespersen, P. (1996), Full-Scale Co-Firing of Straw and Coal, Fuel 75, 1584-1590.
    [56]Demirbas, A. (2005), Potential Applications of Renewable Energy Sources, Biomass Combustion Problems in Boiler Power Systems and Combustion Related Environmental Issues, Progress in Energy and Combustion Science 31, 171-192.
    [57]Lu, G., Yan, Y., Cornwell, S., Whitehouse, M. and Riley, G. (2008), Impact of Co-Firing Coal and Biomass on Flame Characteristics and Stability, Fuel 87, 1133-1140.
    [58]Biagini, E., Lippi, F., Petarca, L., and Tognotti, L. (2002), Devolatilization Rate of Biomasses and Coal-Biomass Blends: An Experimental Investigation, Fuel 81, 1041-1050.
    [59]Yuzbasi, N.S. and Selcuk, N. (2011), Air and Oxy-Fuel Combustion Characteristics of Biomass/Lignite Blends in TGA-FTIR, Fuel Processing Technology 92, 1101-1108.
    [60] Gani, A., Morishita, K., Nishikawa, K., and Naruse, I. (2005), Characteristics of Co-Combustion of Low-Rank Coal with Biomass, Energy & Fuels 19, 1652-1659.
    [61]Arias, B., Pevida, C., Rubiera, F., and Pis, J.J. (2008), Effect of Biomass Blending on Coal Ignition and Burnout during Oxy-Fuel Combustion, Fuel 87, 2753-2759.
    [62] Ericsson, K. (2007), Cofiring - A Stratrgy for Bioenegy in Poland?, Energy 32, 1838-1847.
    [63]Sondreal, E.A., Benson, S.A., Hurley, J.P., Mann, M.D., Pavlish, J.H., Swanson, M.L., Weber G.F., and Zygarlicke C.J. (2001), Review of Advances in Combustion Technology and Biomass Co-Firing, Fuel Processing Technology 71, 7-38.
    [64]Briens, C., Piskorz, J., and Berruti, F. (2008), Biomass Valorization for Fuel and Chemicals Production - A Review, International Journal of Chemical Reactor Engineering 6, R2.
    [65] Robinson, A.L., Junker, H., and Baxter, L. (2002), Pilot-Scale Investigation of The Influence of Coal-Biomass Cofiring on Ash Deposition, Energy & Fuels 16, 343-355.
    [66] McBride, B.J. and Gordon, M.S. (1996), Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. II. User's Manual and Program Description. Available: http://www.grc.nasa.gov/WWW/CEAWeb/
    [67]McBride, B.J. and Gordon, M.S. (1996), Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications. I. Analysis. Available: http://www.grc.nasa.gov/WWW/CEAWeb/
    [68] STAR-CD (2008), Methodology CD-adapco.
    [69]Migdal, D. and Agosta, V.D. (1967), A Source Flow Model for Continuum Gas-Particle Flow, Journal of Applied Mechanics 34, 860-865.
    [70] Yakhot, V. and Orszag, S.A. (1986), Renormalization Group Analysis of Turbulence. I. Basic Theory, J. Scientfic Computing 1, 1-51.
    [71]Yakhot, V., Orszag, S.A., Thangam, S., Gatski, T.B., and Speziale, C.G. (1992), Development of Turbulence Models for Shear Flows by A Double Expansion Technique, Phys Fluid A-Fluid 4, 1510-1520.
    [72]Rodi, W., Influence of Buoyancy and Rotation on Equations for the Turbulent Length Scale, The Symposium on Turbulent Shear Flows, London, England, 1979.
    [73] Launder, B.E. and Spalding, D.B. (1974), The Numerical Computation of Turbulent Flows, Computer Methods in Applied Mechanics and Engineering 3, 269-289.
    [74] Kobayashi, H., Howard, J.B., and Sarofim, A.F. (1977), Coal Devolatilization at High Temperatures, Symposium (International) on Combustion 16, 411-425.
    [75] Magnuseen, B.F., On the Structure of Turbulence and A Generalised Eddy Dissipation Concept for Chemical Reaction in Turbulent Flow, AIAA Aerospace Meeting, 1981.
    [76] Baulch, D.L., Drysdall, D.D., Horne, D.G., and Lloyd, A.C., Evaluated Kinetic Data for High Temperature Reactions: Butterworth, 1973.
    [77] de Soete, G.G. (1975), Overall Reaction Rates of NO and N2 Formation from Fuel Nitrogen, Symposium (International) on Combustion 15, 1093-1102.
    [78]Pershing, D.W. and Wendt, J.O.L. (1997), Pulverized Coal Combustion: The Influence of Flame Temperature and Coal Composition on Thermal and Fuel NOx, Symposium (International) on Combustion 16, 389-399.
    [79]de Soete, G.G. (1990), Heterogemeous N2O and NO Formation from Bound Nitrogen Atoms during Coal Char Combustion, Symposium (International) on Combustion, 1257-1264.
    [80]Field, M.A., Gill, D.W., Morgan, B.B., and Hawksley, P.G.W. (1967), Combustion of Pulverissed Coal. Leatherhead, The British Coal Utilization Research Association, England, 1967.
    [81] Lockwood, F.C. and Shah, N.G. (1981), A New Radiation Solution Method for Incorporation in General Combustion Prediction Procedures, Symposium (International) on Combustion 18, 1405-1414.
    [82] Patankar, S.V. and Spalding, D.B. (1972), A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flows, International Journal of Heat and Mass Transfer 15, 1787-1806.
    [83] Schmidt, D.P., Rutland, C.J., and Corradini, M.L. (1997), A Numerical Study of Cavitating Flow through Various Nozzle Shapes, SAE Technical Paper 971597.
    [84] Hirsch, C., Numerical Computation of Internal and External Flows- Vol. II: Computational Methods for Inviscid and Viscous Flows. John Wiley & Sons, New York, 1960
    [85] Leschziner,M.A. (1980), Practical Evaluation of Three Finite Difference Schemes for The Computation of Steady-State Recirculating Flows, Computer Methods in Applied Mechanics and Engineering 23, 293-312.
    [86] Lai, K.Y.M., Numerical Analysis of Fluid Transport Phenomea, PhD Thesis, University of London, 1983.
    [87] Anthony, D.B., Howard, J.B., Hottel, H.C., and Meissner, H.P. (1975), Rapid Devolatilization of Pulverized Coal, Symposium (International) on Combustion 15, 1303-1317.
    [88] Kurose, R., Makino, H., and Suzuki, A. (2004), Numerical Analysis of Pulverized Coal Combustion Characteristics using Advanced Low-NOx Burner, Fuel 83, 693-703.
    [89] van der Lans, R.P., Pedersen, L.T., Jensen, A., Glarborg, P., and Johansen, K.D. (2000), Modelling and Experiments of Straw combustion in A Grate Furnace, Biomass & Bioenergy 19, 199-208.
    [90] Zhou, H., Jensen, A.D., Glarborg, P., Jensen, P.A., and Kavaliauskas, A. (2005), Numerical Modeling of Straw Combustion in A Fixed Bed, Fuel 84, 389-403.
    [91] Fletcher, T.H., Kerstein, A.R., Pugmire, R.J., and Grant, D.M. (1990), Chemical Percolation Model for Devolatilization. 2. Temperature and Heating Rate Effects on Product Yields, Energy & Fuels 4, 54-60.
    [92] Fletcher, T.H., Kerstein, A.R., Pugmire, R.J., Solum, M.S., and Grant, D.M. (1992), Chemical Percolation Model for Devolatilization. 3. Direct Use of 13C NMR Data to Predict Effects of Coal Type, Energy & Fuels 6, 414-431.
    [93] Solum, M.S., Pugmire, R.J., and Grant, D.M. (1989), 13C Solid-State NMR of Argonne Premium Coals, Energy & Fuels 3, 187-193.
    [94] Fletcher, T.H., Kerstein, A.R., Pugmire, R.J., Solum, M.S., and Grant, D.M. (1992), A Chemical Percolation Model for Devolatilization: Summary, Sandia Technical Report Sand 92-8207.
    [95] Grant, D.M., Pugmire, R.J., Fletcher, T.H., and Kerstein, A.R. (1989), Chemical-Model of Coal Devolatilization Using Percolation Lattice Statistics, Energy & Fuels 3, 175-186.
    [96] Genetti, D. An Advanced Model of Coal Devolatilization Based on Chemical Structure, M.S. Thesis (Chemical Engineering), Brigham Young University, Provo, UT, 1999.
    [97] Genetti, D. and Fletcher, T.H. (1997), Predicting 13C NMR Measurements of Chemical Structure of Coal Based on Elemental Composition and Volatile Matter Content, ACS Division of Fuel Chemistrt 41 (1), 194-198.
    [98] Genetti, D., Fletcher, T.H., and Pugmire, R.J. (1999), Development and Application of A Correlation of 13C NMR Chemical Structural Analyses of Coal Based on Elemental Composition and Volatile Matter Content, Energy & Fuels 13, 60-68.
    [99] Yin, C.E., Kaer, S.K., Rosendahl, L., and Hvid, S.L. (2010), Co-Firing Straw with Coal in A Swirl-Stabilized Dual-Feed Burner: Modelling and Experimental Validation, Bioresource Technology 101, 4169-4178.
    [100] Chen, S.L., Heap, M.P., Pershing, D.W., and Martin, G.B. (1982), Fate of Coal Nitrogen during Combustion, Fuel 61, 1218-1224.
    [101] Arenillas, A., Backreedy, R.I., Jones, J.M., Pis, J.J., Pourkashanian, A., Rubiera, F., and Williams, A. (2002), Modelling of NO Formation in The Combustion of Coal Blends, Fuel 81, 627-636.
    [102] Zhou, J., Masutani, S.M., Ishimura, D.M., Turn, S.Q., and Kinoshita, C.M., Simulation of Fuel-Bound Nitrogen Evolution in Biomass Gasification, Energy Conversion EngineeringCconference, 1997.
    [103] Chui, E.H. and Raithby, G.D. (1993), Computation of Radiant-Heat Transfer on a Nonorthogonal Mesh Using the Finite-Volume Method, Numerical Heat Transfer Part B-Fundamentals 23, 269-288.
    [104] Andersson, K., Johansson, R., and Johnsson, F. (2011), Thermal Radiation in Oxy-Fuel Flames, International Journal of Greenhouse Gas Control 5, S58-S65.
    [105] Pickett, T.M., Jackson, R.E., and Tree, D.R. (1999), LDA Measurements in A Pulverized Coal Flame at Three Swirl Ratios, Combustion Science and Technology 143, 79-107.
    [106] Kim, H.T. and Chun, W. (1998), Particle Size Effect on the Pollutant Formation in Pulverized Coal Combustion, Environmental Energy Resources 3, 21-29.

    下載圖示 校內:2013-08-28公開
    校外:2013-08-28公開
    QR CODE