| 研究生: |
林保展 Pao-Chan, Lin |
|---|---|
| 論文名稱: |
鋼筋自然鏽蝕與混凝土握裹強度之關係 The Relationship between Steel Bar’s Natural Corrosion and Concrete Bond Strength |
| 指導教授: |
陳純森
Chen, Chwen-Sen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 建築學系碩士在職專班 Department of Architecture (on the job class) |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 180 |
| 中文關鍵詞: | 鏽蝕速率 、鋼筋鏽蝕 、握裹力 |
| 外文關鍵詞: | Rusted steel bar, bond strength, corrosion rate |
| 相關次數: | 點閱:63 下載:10 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘 要
台灣地區四周環海屬海洋型氣候,施工中之建築物如因故停工,造成鋼筋鏽蝕問題是工地經常發生的問題。當停工因素排除後,鋼筋是否必須除鏽?將來打混凝土後才不致於影響結構物之強度;有部分工程單位認為,鋼筋鏽蝕到某種程度,反而有助於握裹力的增強,但有部分單位持相反意見,為確實了解問題所在,因此在高雄地區選擇六個地點將鋼筋曝露八個月,測試每個月腐蝕速率;同時每兩個月將鏽蝕鋼筋取樣,製作試體以100噸萬能試驗機測試其握裹力,研究1、高雄地區鋼筋腐蝕速率及腐蝕等級。2、鋼筋鏽蝕後與握裹強度之關係,共計試驗4次結果獲得以下結論:
壹、以單次試驗結果檢討鏽蝕鋼筋(#6)與新出廠鋼筋握裹力差異性:
(1)鋼筋曝露2個月,鏽蝕表面積為20%,由6個曝露地點取樣製作試體試驗結果,握裹力介於45.82KN~52.12 KN之間,皆比新出廠鋼筋握裹力37.51KN高。
(2)鋼筋曝露4個月,鏽蝕表面積為45~65%之間,6個地點取樣製作試體試驗結果,握裹力有5個介於36.60KN~47.90 KN之間,較新出廠鋼筋握裹力33.90KN高;有1個(29.80KN)較新出廠鋼筋握裹力低。
(3)鋼筋曝露6個月,鏽蝕表面積為75~90%之間,6個地點取樣製作試體試驗結果,握裹力有4個介於23.12KN~29.14KN之間,較新出廠鋼筋握裹力22.66KN高;有2個(18.3KN、22.24KN)較新出廠鋼筋握裹力低。
(4)鋼筋曝露8個月,鏽蝕表面積為90~100%之間,試驗結果握裹力有4個介於40.00KN~51.20KN之間,較新出廠鋼筋握裹力(39.40KN)高;有2個(34.30KN、37.50KN)較新出廠鋼筋握裹力低。
貳、以全部試驗結果檢討鏽蝕鋼筋(#6)與新出廠鋼筋握裹力差異性:
經第2、4、6、8個月鏽蝕鋼筋試驗共計24個;新出廠4個,握裹力試驗結果其中有19個試體比新出廠平均值還高,占總數79%,又有5個試體比新出廠平均值低占總數21%。
參、#3鋼筋試驗結果,由於直徑較小,公差比例較高,試驗值不穩定,試驗數據僅供參考。
Taiwan is surrounded by the sea and belongs to the marine climate. The rusted steel bar, which results from the suspension of construction, is a frequent-occurred problem at a construction site. After the suspension is solved, in order not to affect the strength of the structure after pouring the concrete, it becomes an issue whether the rust has to be removed or not. Some organizations believe that when the steel bar has rusted to some certain extent, it is helpful to increase the bond strength instead. However, other organizations hold the opposite opinion. In order to factually understand what the problem is, six locations in Kaohsiung were selected to place the steel bar in the fields for eight months to examine the corrosion rate of every month. Meanwhile, the rusted steel bar was sampled every two months to test its bond strength by the 100 ton’s Universal Testing Machine. Study 1: The corrosion rate and grade of the steel bar in Kaohsiung district. Study 2: The relationship between the rusted steel bar and bond strength. Total four tests were done and the following conclusions were reached:
1. Based on each test result, review the differentiation of bond strength between the rusted steel bar (#6) and the newly-manufactured one.
(1) The rusted surface area of the steel bar placed in the field for two months is 20%. The specimens were sampled from six field locations. The test result shows that the bond strengths are between 45.82KN to 52.12 KN, which are all higher than 37.51KN of the newly-manufactured one.
(2) The rusted surface area of the steel bar placed in the field for four months is between 45 to 65%. The specimens were sampled from six field locations. The test result shows that five of the specimens’ bond strengths are between 36.60KN to 47.90 KN, which are higher than 33.90KN of the newly-manufactured one. One of the specimens’ bond strength (29.80KN) is lower than the newly-manufactured one.
(3) The rusted surface area of the steel bar placed in the field for six months is between 75 to 90%. The specimens were sampled from six field locations. The test result shows that four of the specimens’ bond strengths are between 23.12KN to 29.14KN, which are higher than 22.66KN of the newly-manufactured one. Two of the specimens’ bond strengths (18.3KN and 22.24KN) are lower than the newly-manufactured one.
(4) The rusted surface area of the steel bar placed in the field for eight months is between 90 to 100%. The specimens were sampled from six field locations. The test result shows that four of the specimens’ bond strengths are between 40.00KN to 51.20KN, which are higher than 39.40KN of the newly-manufactured one. Two of the specimens’ bond strengths (34.30KN and 37.50KN) are lower than the newly-manufactured one.
2. Based on all the test results, review the differentiation of bond strength between the rusted steel bar (#6) and the newly-manufactured one.
There are total 24 tests for 2-, 4-, 6-, and 8-month rusted steel bar and 4 tests for newly-manufactured ones. The average value of 19 specimens’ bond strengths is higher than the newly-manufactured ones, which took 79% of total specimens. The average value of the rest 5 specimens’ bond strengths is lower than the newly-manufactured ones, which took 21% of total specimens.
3. The data of test results of #3 steel bar are for reference only because of the unstable test values resulting from the smaller diameters and the higher arithmetical ratios.
1. 經濟部中央標準局,根據鋼筋混凝土握裹力比較混凝土性能試驗法,CNS總號11152, 1984.12.20。
2. 經濟部中央標準局,鋼筋混凝土用鋼筋,CNS總號,2005.2.5。
3. 交通部公路總局第三區養護公程處-公路景觀澎湖跨海大橋簡介 http//www.thbou4.gov.tw/
4. 陳純森,鋼結構工程實務,科技圖書股份有限公司,2004.02。
5. 林東豊,鋼結構施工法,大中國圖書公司,1990.10
6. 環保署,核四廠第一、二號機發電計畫環境影響評估,2002.1。
7. Sidney Mindess , J. Francis Young ,1981, “Concrete”, Prentice-Hall, N.J.
8. P. Kumar Mehta , 1986, ” Concrete ” , Prentice-Hall , N.J.
9. 許學殷,混凝土中鋼筋腐蝕對握裹強度之影響,國立雲林科技大學營建工程研究所碩士論文,蔡佐良教授指導,2000。
10. J.N. Enevoldsen , C.M. Hansson , “Binding fo Chloride in Mortar Containing Admixed or Penetrated Chlorides, 1994 ,” Cement and Concrete Research , Vol.24 , No.8 , pp.1525-1533.
11. Arya , N.R. Buenfeld and J.B. Newman,1990, “Factors Influencing Chloride-Binding ,”Cement and Concrete Research , Vol.20, No.2 , pp291-300.
12.施建志,1995,”從各案及腐蝕機理談「海砂屋」鑑定,”海砂屋防範及善後策略研習會論文集。
13.Hausmann D.A. , Nov.1967, “Steel Corrosion in Concrete How Dose It Occur?, “ Materials Protection , pp. 19-23 .
14.Metha, P.K. , 1988, “Durability of Concrete Expose to Marine Environment ,A Fresh Look” , ACI sp109-1.
15.黃兆龍 , 1978,“海域結構物之腐蝕研究-澎湖跨海大橋初步診斷” , 台灣省交通處港灣技術研究所,台中。
16.黃兆龍,1994, “混凝土中氯離子含量檢測技術” , 詹氏書局。
17.Ykimasa Goto , 1986 ,“Cracks Formed in Concrete Around Deformed Tension Bars. ”, ACI Journal, Proceedings, Vol.68, No.4, pp.244-251.
18.Kemp.E.L. , January-February, 1986, “Bond in Reinforced Concrete:Behavior and Design Criteria”, ACI Journal, Tittle No.83-7, pp.50-57.
19.ACI Committee 408 , November-December 1991,”State-of-the-Art-Report:Bond under cyclic Loads”, ACI Materials Journal , Vol.88, No.6, pp.408.2 R-1-408.2R-4.
20.Lutz L.A., and Gergely, D. , 1976 , “Mechanics fo Bond and Slip of Deformed Bars in Concrete ,”ACI Journal , Proceeding , Vol.64, No.11, pp.711-721.
21.黃兆龍、董榮進、李清俊、郭昭宏、釋俊仁, 1989, “混凝土中鋼筋腐蝕行為研究,” 第四屆技術及職業教育研討會, pp.1313-1318。
22.Treece R.A. and Jirsa, J.O. , 1989, “Bond Stress of Epoxy-Coated Reinforcing Bars” , ACI Materials Journal , Vol.86, No.2, pp.167-174.
23.張建智、黃然、業為忠及楊仲家,Nov.4-6,1994,“PU塗料塗封鋼筋對鋼筋混凝土握裹行為影響之研究,第二屆結構工程研討會暨國科會工程處結構工程專題研究成果研討會論文集(一), pp.110-118 NTOU, Taiwan, R.O.C.
24.Abrishami H.H. and Mitchell D. , 1992, “Simulation of Uniform Bond Stress”, ACI Materials Journal, Vol.89, No.2, pp.161-168.
25.Ezeldin A.S. and Baloguru P.N.,1989, “Bond Behavior of Normal and High-Strength Fiber Reinforced Concrete”, ACI Materials Journal, Vol.86, No.5, pp.515-524.
26.Edwards A.D., and Yannopoulos P.J. , Mar, 1979, “ Local Bond-Stress to Slip Relationships for Hot Rolled Detormed Bars and Mild Steel Plain Bars”, ACI Journal, Proceeding, Vol.76, No.3, pp.405-420.
27.Hwang S.J., Lee Y.Y. and Lee C.S. , May-June 1994 , ”Effect of Silica Fume on the Splice Strength of Deformed Bars of High-Performace Concrete ,” ACI Structural Journal, Vol.91, No.3, pp.294-303.
28.經濟部中央標準局,混凝土圓柱體抗強度檢驗法,CNS總號1232,2002.12.9。
29.施健泰,建築RC架構之補強實驗研究,國立成功大學土木工程研究所碩士論文,
邱耀正教授指導,2002.6。
30.黃兆龍、張大鵬、王和源、邱英嘉,鋼筋混凝土腐蝕對握裹力影響之研究,防蝕工程,第七卷第三期第45~51頁,1993.09。
31.沈永年、王和源、林仁益、郭文田,混凝土技術,全華科技圖書公司,2004.03。
32.林維明,鋼筋混凝土腐蝕(上),現代營建,第92期第23~31頁,1987.08。
33.林維明,鋼筋混凝土腐蝕(中),現代營建,第93期第23~32頁,1987.09。
34.林維明,鋼筋混凝土腐蝕(下),現代營建,第94期第14~21頁,1987.10。
35.林維明,混凝土結構物的鋼筋發生腐蝕之機理,現代營建,第126期第53-62頁,1990.06。
36.台灣營建研究院,熔接鋼網技術手冊,1999.02。