| 研究生: |
薛揚霖 Syue, Yang-Lin |
|---|---|
| 論文名稱: |
冷銣原子階梯躍遷中的電磁誘發透明研究 Electromagnetically induced transparency in cascade transitions of cold rubidium atoms |
| 指導教授: |
陳泳帆
Chen, Yong-Fan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 45 |
| 中文關鍵詞: | 冷銣原子 、階梯躍遷電磁誘發透明 、通訊波段光子 |
| 外文關鍵詞: | Cold Rubidium Atom, Cascade-type Electromagnetically Induced Transparency, Telecom Photon |
| 相關次數: | 點閱:78 下載:9 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們的實驗首先將室溫銣原子加熱至約攝氏60度,並利用反向對打的雷射光成功看
到了吸收譜線,並進一步完成了銣原子躍遷能階|5P1/2⟩ ↔ |6S1/2⟩ (波長1324 奈米)
的鎖頻系統,並討論相關的細節與參數。冷銣原子的實驗上,我們會先利用Λ 型
EIT 系統確認當天的原子密度,之後再進行階梯型EIT 的掃頻實驗,並與理論曲線
做比對。
First, we heat up rubidium cell from room temperature to sixty degrees Celsius, and
successfully observe the absorption spectrum by lunching two contrasting lasers and furthermore, accomplish the laser frequency stabilizing system in rubidium atom transition |5P1/2⟩↔|6S1/2⟩ (wave length 1324 nm). After that, discuss some experimental details and parameters. In the cold rubidium atom experiment, After we examine the OD for the day by Λ type EIT system, then implement frequency sweep experiment of cascade type EIT, and compare with theoretical curve.
[1] H. H¨affner, C. F. Roos, and R. Blatt. Quantum computing with trapped ions. Physics Reports, 469:155-203, 2008.
[2] Frank et al. Arute. Quantum supremacy using a programmable superconducting process. Nature, 574:505-510, 2019.
[3] Michael G. Raymer and Kartik Srinivasan. Manipulating the color and shape of single photons. Physics Today, 65, 11:32, 2012.
[4] H. J. Kimble. The quantum internet. Nature, 453:1023-1030, 2008.
[5] S. Tanzilli, W. Tittel, M. Halder, O. Ailbert, P. Baldi, N. Gisin, and H. Zbinden. A
photonic quantum information interface. Rev. Mod. Phys., 453:Nature, 2005.
[6] R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B.
Kennedy, and A. Kuzmich. Long-lived quantum memory. Nature Physics, 5:100-104, 2009.
[7] Yoshiaki Tamura, Hirotaka Sakuma, Keisei Morita, Masato Suzuki, Yoshinori Yamamoto, Kensaku Shimada, Yuya Honma, Kazuyuki Sohma, Takashi Fujii, and Takemi Hasegawa. Lowest-ever 0.1419-bd/km loss optical fiber. In Optical Fiber Communication Conference Postdeadline Papers, page Th5D.1, 2017.
[8] Prem Kumar. Quantum frequency conversion. Opt. Lett., 15:1476-1478, Dec. 1990.
[9] Nicolas Maring, Dario Lago-Rivera, Andreas Lenhard, Georg Heinze, and Hugues de Riedmattern. Quantum frequency conversion of memory-compatible single photons from 606nm to the telecom c-band. Optica, 5(5):507-513, May. 2018.
[10] Marius A. Albota and Franco N. C. Wong. Efficient single-photon counting at 1.55 μm by means of frequency upconversion. Opt. Lett., 29(13):1449-1451, Jul. 2004.
[11] C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer. Translation of quantum states by four-wave mixing in fibers. Opt. Express, 13(22):9131-9142, Oct. 2005.
[12] S. E. Harris, J. E. Field, and A. Imamo˘glu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64:1107-1110, Mar. 1990.
[13] Jz-Yuan Juo, Jia-Kang Lin, Chin-Yao Cheng, Zi-Yu Liu, Ite A. Yu, and Yong-Fan Chen. Demonstration of saptial-light-modulation-based four-wave mixing in cold atoms. Phys. Rev. A, 97:053815, May. 2018.
[14] Zi-Yu Liu, Jian-Ting Xiao, Jia-Kang Lin, Jun-Jie Wu, Jz-Yuan Juo, Chin-Yao Cheng, and Yong-Fan Chen. High-efficiency backward four-wave mixing by quantum interference. Scientific Reports, 15796, 2017.
[15] Chin-Yao Cheng, Zi-Yu Liu, Pi-Sheng Hu, Tsai-Ni Wang, Chung-Yu Chien, Jia-Kang Lin, Jz-Yuan Juo, Jiun-Shiuan Shiu, Ite A. Yu, Ying-Cheng Chen, and Yong-Fan Chen. Efficient frequency conversion based on resonant four-wave mixing. Opt. Lett., 46:681-684, 2021.
[16] A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A.
B. Kennedy. A quantum memory with telecom-wavelength conversion. Nature Physics, 6:894-899, 2010.
[17] T. Chaneli`ere, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman,
and A. Kuzmich. Quantum Telecommunication Based on Atomic Cascade Transitions. Phys. Rev. Lett., 96, 093604, 2006.
[18] H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim. Double resonance optical pumping
spectrum and its application for frequency stabilization of a laser diode. Appl. Phys.
Lett., 85, 3965, 2004.
[19] Marc Breton, Normand Cyr, Pierre Tremblay, Michel Tˆetu, R. Boucher. Frequency Locking of a 1324 nm DFB Laser to an Optically Pumped Rubidium Vapor. IEEE Transactions on Instrumentation and Measurement, 42, 2, Apr. 1993.
[20] Han Seb Moon. Frequency stabilization of a 1.3 μm laser diode using double resonance optical pumping in the 5P3/2–6S1/2 transition of Rb atoms. Appl. Opt., 47, 8, Mar. 2008.
[21] Han Seb Moon, Lim Lee, Jung Bog Kim. Double-resonance optical pumping of Rb atoms. J. Opt. Soc. Am. B, 24, 9, Sep. 2007.
[22] R. Boucher, M. Breton, N. Cyr, and M. Tˆetu. Dither-Free Absolute Frequency Locking of a 1.3 μm DFB Laser on Rb. IEEE Photonics Technology Letters, 4, 4, Apr. 1992.
[23] Steven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A.Ashkin. Threedimensional viscous confinement and colling of atoms by resonance radiation pressure. Phys. Rev. Lett., 55:48-51, 1985.
[24] Wolfgang Ketterle, Kendall B. Davis, Michael A. Joffe, Alex Martin, and David E.
Pritchard. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett.,70:2253-2256, 1993.