簡易檢索 / 詳目顯示

研究生: 薛揚霖
Syue, Yang-Lin
論文名稱: 冷銣原子階梯躍遷中的電磁誘發透明研究
Electromagnetically induced transparency in cascade transitions of cold rubidium atoms
指導教授: 陳泳帆
Chen, Yong-Fan
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 45
中文關鍵詞: 冷銣原子階梯躍遷電磁誘發透明通訊波段光子
外文關鍵詞: Cold Rubidium Atom, Cascade-type Electromagnetically Induced Transparency, Telecom Photon
相關次數: 點閱:78下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們的實驗首先將室溫銣原子加熱至約攝氏60度,並利用反向對打的雷射光成功看
    到了吸收譜線,並進一步完成了銣原子躍遷能階|5P1/2⟩ ↔ |6S1/2⟩ (波長1324 奈米)
    的鎖頻系統,並討論相關的細節與參數。冷銣原子的實驗上,我們會先利用Λ 型
    EIT 系統確認當天的原子密度,之後再進行階梯型EIT 的掃頻實驗,並與理論曲線
    做比對。

    First, we heat up rubidium cell from room temperature to sixty degrees Celsius, and
    successfully observe the absorption spectrum by lunching two contrasting lasers and furthermore, accomplish the laser frequency stabilizing system in rubidium atom transition |5P1/2⟩↔|6S1/2⟩ (wave length 1324 nm). After that, discuss some experimental details and parameters. In the cold rubidium atom experiment, After we examine the OD for the day by Λ type EIT system, then implement frequency sweep experiment of cascade type EIT, and compare with theoretical curve.

    摘要i 英文延伸摘要ii 誌謝viii 目錄ix 表格xi 圖片xii 第1 章. 緒論1 1.1 簡介 1 1.2 動機 2 第2 章. 基本理論 3 2.1 光學布拉赫方程式(Optical-Bloch Equation) 3 2.2 馬克士威-薛丁格方程式(Maxwell-Shrodinger Equation) 4 2.3 二能階系統 6 2.4 Λ 型電磁波引發透明 11 2.4.1. 穩態解析解 11 2.4.2. 暫態解 15 2.5 階梯型電磁波引發透明 16 2.5.1. 穩態解析解 16 2.5.2. 暫態解 19 第3 章. 實驗架設 20 3.1 冷原子系統 20 3.1.1. 磁光陷阱(Magneto Optical Trap) 20 3.1.2. 暗區磁光陷阱 23 3.2 雷射穩頻系統 24 3.2.1. 飽和吸收微分光譜 24 3.2.2. 1324 奈米雷射穩頻系統 25 3.3 Λ 型系統 30 3.3.1. 能階選擇 30 3.3.2. 實驗架設 32 3.3.3. 時序設計 33 3.4 階梯型系統 34 3.4.1. 能階選擇 34 3.4.2. 實驗架設 36 3.4.3. 時序設計 37 第4 章. 結果與討論38 4.1 Λ 型電磁波引發透明 38 4.2 階梯型電磁波引發透明 40 第5 章. 結論與未來展望 43 參考文獻 44

    [1] H. H¨affner, C. F. Roos, and R. Blatt. Quantum computing with trapped ions. Physics Reports, 469:155-203, 2008.
    [2] Frank et al. Arute. Quantum supremacy using a programmable superconducting process. Nature, 574:505-510, 2019.
    [3] Michael G. Raymer and Kartik Srinivasan. Manipulating the color and shape of single photons. Physics Today, 65, 11:32, 2012.
    [4] H. J. Kimble. The quantum internet. Nature, 453:1023-1030, 2008.
    [5] S. Tanzilli, W. Tittel, M. Halder, O. Ailbert, P. Baldi, N. Gisin, and H. Zbinden. A
    photonic quantum information interface. Rev. Mod. Phys., 453:Nature, 2005.
    [6] R. Zhao, Y. O. Dudin, S. D. Jenkins, C. J. Campbell, D. N. Matsukevich, T. A. B.
    Kennedy, and A. Kuzmich. Long-lived quantum memory. Nature Physics, 5:100-104, 2009.
    [7] Yoshiaki Tamura, Hirotaka Sakuma, Keisei Morita, Masato Suzuki, Yoshinori Yamamoto, Kensaku Shimada, Yuya Honma, Kazuyuki Sohma, Takashi Fujii, and Takemi Hasegawa. Lowest-ever 0.1419-bd/km loss optical fiber. In Optical Fiber Communication Conference Postdeadline Papers, page Th5D.1, 2017.
    [8] Prem Kumar. Quantum frequency conversion. Opt. Lett., 15:1476-1478, Dec. 1990.
    [9] Nicolas Maring, Dario Lago-Rivera, Andreas Lenhard, Georg Heinze, and Hugues de Riedmattern. Quantum frequency conversion of memory-compatible single photons from 606nm to the telecom c-band. Optica, 5(5):507-513, May. 2018.
    [10] Marius A. Albota and Franco N. C. Wong. Efficient single-photon counting at 1.55 μm by means of frequency upconversion. Opt. Lett., 29(13):1449-1451, Jul. 2004.
    [11] C. J. McKinstrie, J. D. Harvey, S. Radic, and M. G. Raymer. Translation of quantum states by four-wave mixing in fibers. Opt. Express, 13(22):9131-9142, Oct. 2005.
    [12] S. E. Harris, J. E. Field, and A. Imamo˘glu. Nonlinear optical processes using electromagnetically induced transparency. Phys. Rev. Lett., 64:1107-1110, Mar. 1990.
    [13] Jz-Yuan Juo, Jia-Kang Lin, Chin-Yao Cheng, Zi-Yu Liu, Ite A. Yu, and Yong-Fan Chen. Demonstration of saptial-light-modulation-based four-wave mixing in cold atoms. Phys. Rev. A, 97:053815, May. 2018.
    [14] Zi-Yu Liu, Jian-Ting Xiao, Jia-Kang Lin, Jun-Jie Wu, Jz-Yuan Juo, Chin-Yao Cheng, and Yong-Fan Chen. High-efficiency backward four-wave mixing by quantum interference. Scientific Reports, 15796, 2017.
    [15] Chin-Yao Cheng, Zi-Yu Liu, Pi-Sheng Hu, Tsai-Ni Wang, Chung-Yu Chien, Jia-Kang Lin, Jz-Yuan Juo, Jiun-Shiuan Shiu, Ite A. Yu, Ying-Cheng Chen, and Yong-Fan Chen. Efficient frequency conversion based on resonant four-wave mixing. Opt. Lett., 46:681-684, 2021.
    [16] A. G. Radnaev, Y. O. Dudin, R. Zhao, H. H. Jen, S. D. Jenkins, A. Kuzmich, and T. A.
    B. Kennedy. A quantum memory with telecom-wavelength conversion. Nature Physics, 6:894-899, 2010.
    [17] T. Chaneli`ere, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman,
    and A. Kuzmich. Quantum Telecommunication Based on Atomic Cascade Transitions. Phys. Rev. Lett., 96, 093604, 2006.
    [18] H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim. Double resonance optical pumping
    spectrum and its application for frequency stabilization of a laser diode. Appl. Phys.
    Lett., 85, 3965, 2004.
    [19] Marc Breton, Normand Cyr, Pierre Tremblay, Michel Tˆetu, R. Boucher. Frequency Locking of a 1324 nm DFB Laser to an Optically Pumped Rubidium Vapor. IEEE Transactions on Instrumentation and Measurement, 42, 2, Apr. 1993.
    [20] Han Seb Moon. Frequency stabilization of a 1.3 μm laser diode using double resonance optical pumping in the 5P3/2–6S1/2 transition of Rb atoms. Appl. Opt., 47, 8, Mar. 2008.
    [21] Han Seb Moon, Lim Lee, Jung Bog Kim. Double-resonance optical pumping of Rb atoms. J. Opt. Soc. Am. B, 24, 9, Sep. 2007.
    [22] R. Boucher, M. Breton, N. Cyr, and M. Tˆetu. Dither-Free Absolute Frequency Locking of a 1.3 μm DFB Laser on Rb. IEEE Photonics Technology Letters, 4, 4, Apr. 1992.
    [23] Steven Chu, L. Hollberg, J. E. Bjorkholm, Alex Cable, and A.Ashkin. Threedimensional viscous confinement and colling of atoms by resonance radiation pressure. Phys. Rev. Lett., 55:48-51, 1985.
    [24] Wolfgang Ketterle, Kendall B. Davis, Michael A. Joffe, Alex Martin, and David E.
    Pritchard. High densities of cold atoms in a dark spontaneous-force optical trap. Phys. Rev. Lett.,70:2253-2256, 1993.

    下載圖示 校內:立即公開
    校外:2025-08-22公開
    QR CODE