| 研究生: |
林佳慶 Lin, Jia-Ching |
|---|---|
| 論文名稱: |
利用水熱法成長氧化鋅奈米錐及其應用於提升氮化鎵發光二極體光輸出之研究 Light Output Improvement of GaN-Based Light-Emitting Diodes Using Hydrothermally Grown ZnO Nanotapers |
| 指導教授: |
王水進
Wang, Shui-Jinn |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 發光二極體 、水熱法 、氧化鋅 |
| 外文關鍵詞: | Light-Emitting Diodes, Hydrothermal method, ZnO |
| 相關次數: | 點閱:64 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究旨在利用水熱法(Hydrothermal Method)成長氧化鋅奈米錐(ZnO-nanotapers)於氮化鎵發光二極體(LED)表面,提供表面粗化及折射係數漸變結構,提升氮化鎵LED之發光效率。
本論文研究架構主要分為兩個部分,第一部分偏重於理論模擬分析,係透過光學模擬軟體(TracePro)以分析氧化鋅奈米錐於總長度及直徑對發光二極體表面之光析出效率影響。由模擬光學顯示,氧化鋅奈米錐於長度0.5 m及直徑為100 nm 的結構,與傳統奈米線結構相比,可獲得光析出效率較大幅改之改善。第二部分中則集中於實驗研究,我們利用水熱法製備氧化鋅奈米錐於GaN-基LED表面。此一製程技術與傳統者最大差別在於成長氧化鋅奈米錐的製程溫度為200 oC,提高製程溫度可大幅降低成長氧化鋅奈米錐結構之時間。於物性分析方面,氧化鋅奈米錐結構的表面、晶體結構、成分及於GaN-基LED光電特性分析係分別利用掃描式電子顯微鏡(SEM)、穿透式電子顯微鏡(TEM)、能量散射光譜儀(EDS)與積分球進行。
實驗結果顯示,具有氧化鋅奈米錐表面粗化及折射係數漸變結構之GaN-基LED結構於注入電流350 mA時,與傳統GaN-基LED結構相較,其光析出效率增加36.15%。此證實本研究結構如所預期,確實可藉由氧化鋅奈米錐之表面粗化、折射係數調變與更進一步提升光析出效率。
In this thesis, the improvement in light output power of light emitting diodes (LEDs) is studied. The preparation of the ZnO nanotapers (ZnO-NTs) using hydrothermal growth method and their applications in LED is demonstrated. Effects of ZnO-NTs on light output improvement of GaN-LEDs are investigated theoretically and experimentally. Experimental results of light output improvement of GaN-LEDs are reported and discussed.
There are two parts comprised in the present thesis. The first part focuses on the simulation and design of ZnO-NTs for GaN-LEDs. An optical simulation software, TracePro, is used to simulate the size effects of ZnO-NTs (with different lengths, diameters, and densities) on the light output efficiency of GaN-LEDs. An optimum design for ZnO-NT’s with a length of 0.5μm and a diameter of 100 nm has been obtained.
The second part of the present study aims at the preparation of ZnO-NTs atop GaN-LEDs using of the hydrothermal growth (HTG) method. In the study, a much higher temperature of about 200 oC was used for the HTG process to reduce the processing time. Material analysis including surface morphology of ZnO-NTs, crystal structure and composition, and photoelectrical properties of the prepared LEDs are examined and results are presented and discussed. In this study, the fabrication and effectiveness of ZnO-NTs arrays atop LEDs to improve Lop has been demonstrated. The prepared ZnO-NTs show an average transmittance above 88% in the 454-466 nm wavelength range. Through the use of ZnO-NTs, a considerable improvement in Lop of LED by 36.15% at 350 mA as compared to regular VLED has been obtained.
[1] http://www.mem.com.tw/article_content.asp?sn=0908210014
[2] http://www.dcn.com.tw/dcn_ecom/p_trace/950402-950415/01-70.htm
[3] 天下雜誌第423期。
[4] 工業材料雜誌 No. 220。
[5] http://www.moneydj.com/kmdj/wiki/wikiviewer.aspx?keyid=2c2ef994-4cac-4cd5-8637-818a058f4730
[6] D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, H. Y. Kuo, W. C. Lee, and P. R. Wang, "Enhanced performance of vertical GaN-based LEDs with highly reflective p-ohmic contact and periodic indium-zinc oxide nano-wells", IEEE Photonics Technol. Lett., vol. 22, pp. 338-340, 2010.
[7] W. C. Lee, K. M. Uang, D. M. Kuo, J. C. Chou, T. M. Chen, H. Y. Kuo, and S. J. Wang, "Use of highly reflective ohmic contact and surface KrF laser roughening to improve light output of vertical GaN-based light-emitting diodes", IEEE Photonics Technol. Lett., pp. 141-142, 2008.
[8] D. M. Kuo, S. J. Wang, K. M. Uang, T. M. Chen, W. C. Tsai, W. I Hsu, W. C. Lee, P. R. Wang and C. R. Tseng, "The preparation of SiO2 nanotubes with controllable inner/outer diameter and length using hydrothermally grown ZnO nanowires as templates", Jpn. J. Appl. Phys., vol. 49, pp. 04DN10, 2010.
[9] C. H. Kuo, C. H. Kuo, H. C. Feng, C. W. Kuo, C. M. Chen, L. W. Wu and G. C. Chi, "Nitride-based near-ultraviolet light emitting diodes with meshed p-GaN", IEEE Photonics Technol. Lett., vol. 90, pp. 142115-142118, 2007.
[10] M. A. Tsai, P. Y., C. L. Chao, C. H. Chiu, H. C. Kuo, S. H. Lin, J. J. Huang, T. C. Lu and S. C. Wang, "Efficiency enhancement and beam shaping of GaN-InGaN vertical-injection light-emitting diodes via high-aspect-ratio nanorod arrays", IEEE Photonics Technol. Lett., vol. 21, pp. 257-259, 2009.
[11] R. Windisch, C. Rooman, S. Meinlschmidt, P. Kiesel, D. Zipperer, G. H. Dohler, B. Dutta, M. Kuijk, "Impact of texture-enhanced transmission of high-efficiency surface-textured light-emitting diodes", App. Phys. Lett., vol. 79, pp. 2315-2317, 2001.
[12] H. W. Huang, C. H. Lin, C. C. Yu, B. D. Lee, C. H. Chiu, C. F. Lai, H. C. Kuo, K. M. Leung, T. C. Lu and S. C. Wang, "Enhanced light output from a nitride-based power chip of green light-emitting diodes with nano-rough surface using nanoimprint lithography", Nanotechnology, vol. 19, pp. 185301-185305, 2008.
[13] S. J. Chang, C. F. Shen, W. S. Chen, C. T. Kuo, T. K. Ko, S. C. Shei and J. K. Sheu, "Nitride-based light emitting diodes with indium tin oxide electrode patterned by imprint lithography", App. Phys. Lett., vol. 91, pp. 013504-01306, 2007.
[14] H. W. Huang, J. T. Chu, C. C. Kao, T. H. Hseuh, T. C. Lu, H. C. Kuo, S. C. Wang and C. C. Yu, "Enhanced light output of an InGaN/GaN light emitting diode with a nano-roughened p-GaN surface", Nanotechnology, vol. 16, pp. 1844-1849, 2005.
[15] C. H. Hou, S. Z. Tseng, C. H. Chan, T. J. Chen, H. T. Chien, F. L. Hsiao, H. K. Chiu, C. C. Lee, Y. L. Tsai and C. C. Chen, "Output power enhancement of light-emitting diodes via two-dimensional hole arrays generated by a monolayer of microspheres", App. Phys. Lett., vol. 95, pp. 133105-133108, 2009.
[16] H. K. Cho, J. Jang, J. H. Choi, J. Choi, J. Kim, J. S. Lee, B. Lee, Y. H. Choe, K. D. Lee, S. H. Kim, K. Lee, S. K. Kim and Y. H. Lee , "Light extraction enhancement from nano-imprinted photonic crystal GaN-based blue light-emitting diodes", Opt. Express, vol. 14, no. 19, pp. 8654-8660, 2006.
[17] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi and Q. H. Park, "Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns", App. Phys. Lett., vol. 87, pp. 203508-203510, 2005.
[18] H. K. Cho, S. K. Kim, D. K. Bae, B. C. Kang, J. S. Lee and Y. H. Lee, "Laser liftoff GaN thin-film photonic crystal GaN-based light-emitting diodes", IEEE Photonics Technol. Lett., vol. 20, pp. 2096-2098, 2008.
[19] J. J. Chen, Y. K. Su, C. L. Lin, S. M. Chen, W. L. Li and C. C. Kao, "Enhanced output power of GaN-based LEDs with nano-patterned sapphire substrates", IEEE Photonics Technol. Lett., vol. 20, pp. 1193-1195, 2005.
[20] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li and C. C. Kao, "GaN-based light-emitting diodes grown on photonic crystal-patterned sapphire substrates by nano-sphere lithography", Jpn. J. Appl. Phys., vol. 47, no. 8, pp. 6706-6708, 2008.
[21] C. C. Hua, H. C. Hung, T. S. Ze, C. T. Jen, C. H. Ta, H. F. Li, L. C. Chieh, T. Y. Linq and C. C. Chanq, "Improved output power of GaN-based light-emitting diodes grown on a nano-patterned sapphire substrate", App. Phys. Lett., vol. 95, pp. 011110-011112, 2009.
[22] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars and S. Nakamura, "Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening", App. Phys. Lett., vol. 84, pp. 855-857, 2004.
[23] 郭浩中,賴芳儀,郭守義,"LED原理與應用",五南圖書出版公司,2009。
[24] A. Zukauskas, M. S. Shur and R. Caska, "Introduction to solid state lighting", Wiley, New York, 2002.
[25] S. M. Pan, R. C. Tu, Y. M. Fan, R. C. Yeh and J. T. Hsu, "Improvement of InGaN–GaN light-emitting diodes with surface-textured indium–tin–oxide transparent ohmic contacts", IEEE Photonics Technol. Lett., vol. 15, pp. 649-651, 2003.
[26] D. H. Kim, C. O. Cho, Y. G. Roh, H. Jeon, Y. S. Park, J. Cho, J. S. Im, C. Sone, Y. Park, W. J. Choi, Q. H. Park, "Enhanced light extraction from GaN-based light-emitting diodes with holographically generated two-dimensional photonic crystal patterns", App. Phys. Lett., vol. 87, pp. 203508-203510, 2005.
[27] W. C. Lee, S. J. Wang, K. M. Uang, T. M. Chen, D. M. Kuo, P. R. Wang and P. H. Wang, "Enhanced Light Output of GaN-Based Vertical-Structured Light-Emitting Diodes With Two-Step Surface Roughening Using KrF Laser and Chemical Wet Etching", IEEE Photonics Technol. Lett., vol. 22, pp. 1318-1320, 2010.
[28] M. Y. Hsieh, C. Y. Wang, L. Y. Chen, T. P. Lin, M. Y. Ke, Y. W. Cheng, Y. C. Yu, C. P. Chen, D. M. Yeh, C. F. Lu, C. F. Huang, C. C. Yang and J. J. Huang, "Improvement of external extraction efficiency in GaN-based LEDs by SiO2 nanosphere lithography", IEEE Photonics Technol. Lett., vol. 29, pp. 658-660, 2008.
[29] M. K. Lee, C. L. Ho and P. C. Chen, "Light extraction efficiency enhancement of GaN blue LED by liquid-phase-deposited ZnO rods", IEEE Photonics Technol. Lett., vol. 20, pp. 252-254, 2008.
[30] Peardon’s handbook of crystallographic data, 4795.
[31] K. J. Kima and Y. R. Park, "Large and abrupt optical band gap variation in in-doped ZnO", App. Phys. Lett., vol. 78, pp. 475-477, 2001.
[32] Z. K. Tang, G. K. L. Wong and P. Yu, "Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystallite thin films", App. Phys. Lett., vol. 72, no. 25, pp. 3270-3272, 1998.
[33] C. Soci, A. Zhang, B. Xiang, S. A. Dayeh, D. P. R. Aplin, J. Park, X. Y. Bao,Y. H. Lo and D. Wang, "ZnO nanowire UV photodetectors with high internal gain", Nano Lett., vol. 7, no. 4, pp. 1003-1009, 2007.
[34] H. Ohta, M. Orita and M. Hirano, "Fabrication and characterization of ultraviolet-emitting diodes composed of transparent p-n heterojunction, p-SrCu2O2 and n-ZnO", J. Appl. Phys., vol. 89, pp. 5720-5725, 2001.
[35] R. S. Wagner and W. C. Ellis, "Vapor-liquid-solid mechanism of single crystal growth", App. Phys. Lett., vol. 4, no. 5, pp. 89-94, 1964.
[36] Y. Wu and P. Yang, "Direct observation of vapor-liquid-solid nanowire growth", Am. Chem. Soc., vol. 123, pp. 3165-3166, 2001.
[37] Q. H. Li, Y. X. Liang, Q. Wan and T. H. Wang, "Oxygen sensing characteristics of individual ZnO nanowire transistors", App. Phys. Lett., vol. 85, no. 26, pp. 6389-6391, 2004.
[38] Y. W. Zhu, H. Z. Zhang, X. C. Sun, S. Q. Feng, J. Xu, Q. Zhao, B. Xiang, R. M. Wang and D. P. Yu, "Efficient field emission from ZnO nanoneedle arrays", App. Phys. Lett., vol. 83, no. 1, pp. 144-146, 2003.
[39] Y. Y. Xi, Y. F. Hsu, A. B. Djurisic, A. M. C. Ng, W. K. Chan, H. L. Tam, and K. W. Cheah, "NiO/ZnO light emitting diodes by solution based growth", Appl. Phsy. Lett., vol. 92, pp. 113505-113507, 2008.
[40] M. K. Lee, C. L. Ho and C. H. Fan, "Enhancement of light extraction efficiency of gallium nitride flip-chip light-emitting diode with silion oxide hemispherical microlens on its back", IEEE Photonics Technol. Lett., vol. 20, pp. 1293-1295, 2008.
[41] K. Tsukuma and T. Akiyama and Imai, "Liquid phase deposition film of tin oxide", J. Non-Cryst. Solids, vol. 210, pp. 48-54, 1997.
[42] Y. X. Zhang, G. H. Li , Y. X. Jin, Y. Zhang, J. Zhang and L. D. Zhang, "Hydrothermal synthesis and photoluminescence of TiO2 nanowires", Chem. Phys. Lett., vol. 365, pp. 300-304, 2002.
[43] S. Li, H. Zhang and Y. Ji, D. Yang, "CuO nanodendrites synthesized by a novel hydrothermal route", Nanotechnology, vol. 15, pp. 1428-1432, 2004.
[44] L. Spanhel and M. A. Anderson, "Semiconductor clusters in the sol-gel process: quantized aggregation, gelation and crystal growth in concentrated zinc oxide colloids", J. Am. Chem. Soc., vol. 113, no. 8, pp. 2826-2833, 1991.
[45] L. Vayssieres, K. Keis, S. E. Lindquist and A. Hagfeldt, "Purpose-built anisotropic metal oxide material: 3D highly oriented microrod array of ZnO", J. Phys. Chem. B., vol. 105, no. 17, pp. 3350-3352, 2001.
[46] L. Vayssieres, N. Beermann, S. E. Lindquist, A. Hagfeldt, "Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: application to iron(III) oxides", Chem. Mater., vol. 13, no. 2, pp. 233-235, 2001.
[47] Z. R. Tian, J. A. Voigt, J. Liu, B. Mckenzie and M. J. Mcdermott, "Biomimetic arrays of oriented helical ZnO nanorods and columns", J. Am. Chem. Soc., vol. 124, no. 44, pp. 12954-12955, 2002.
[48] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally and P. Yang, "Low-temperature wafer-scale production of ZnO nanowire arrays", Angew. Makromol. Chem., vol. 42, pp. 3031-3034, 2003.
[49] Q. Li, V. Kumar, Y. Li, H. Zhang, T. J. Marks and R. P. H. Chang, "Fabrication of ZnO nanorods and nanotubes in aqueous solution", Chem. Mater., vol. 17, no. 5, pp. 1001-1006, 2005.
[50] K. Govender, David S. Boyle, P. B. Kenway and P. O’Brien, "Understanding the factors that govern deposition and morphology of thin film of ZnO from aqueous solution", J. Mater. Chem., vol. 14, pp. 2575-2591, 2004.
[51] R. W. Nosker and P. Mark, "Polar surfaces of wurtzite and zincblende lattices", Surf. Sci., vol. 19, pp. 291-317, 1970.
[52] C. H. Hung and W. T. Whang, "Low-temperature solution approach toward highly aligned ZnO nanotip arrays", J. Cryst. Growth, vol. 268, pp. 242-248, 2004.
[53] J. Liu, X. Huang, Y. Li, X. Ji, Z. Li, X. He and F. Sun, "Vertically Aligned 1D ZnO Nanostructures on Bulk Alloy Substrates: Direct Solution Synthesis, Photoluminescence and Field Emission", J. Phys. Chem. C, vol. 111, no. 13, pp. 4990-4997, 2007.
[54] R. Wahab, Y. S. Kim and H. S. Shin, "Effect of Refluxing Time on the Morphology of Pencil like Zinc Oxide Nanostructures Prepared by Solution Method", Met. Mater. Int., vol. 16, no. 5, pp. 767-772, 2010.
[55] Q Ahsanulhaq, A Umar and Y B Hahn1, "Growth of aligned ZnO nanorods and nanopencils on ZnO/Si in aqueous solution: growth mechanism and structural and optical properties", Nanotechnology, vol. 18, pp. 115603-115609, 2007.
[56] http://www.lambdares.com/
校內:2022-12-31公開