| 研究生: |
吳邦立 Wu, Ban-Li |
|---|---|
| 論文名稱: |
新穎式非致冷微輻射遠紅外線感測器之研製與低頻雜訊分析 Fabrication of a novel uncooled infrared microbolometer and low-frequency-noise analysis |
| 指導教授: |
方炎坤
Fang, Yean-Kuen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 微電子工程研究所 Institute of Microelectronics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 遠紅外線 、非晶矽 、快速熱退火 、閃爍雜訊 、功率頻譜密度 |
| 外文關鍵詞: | far infrared radiant, amorphous silicon, post treatment annealing, flicker noise, power spectral density |
| 相關次數: | 點閱:117 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以非致冷式遠紅外線感測器研製及低頻雜訊分析為主要的研究。元件設計以較先進非晶矽(α - Si)作為感測層及利用微機電製程使其具有懸浮結構。懸浮結構可提高非晶矽感測層的絕熱效果,以增進元件感測能力。
非晶矽除了對於遠紅外光線較敏感外,其製程也簡單,可低溫製作以降低成本。其又是CMOS後段製程(post process)常用材料之一,具有相容的標準製程,因此可大幅降低元件的生產成本,提升產品的競爭性。此兩者使其成為製作微輻感測器的最大優勢。然而,非晶矽原子間的晶格網絡呈無序排列,使其具不穩定性。且部分原子含有懸空鍵(dangling bond),容易造成雜訊,這些都是其致命的缺點。以往相關的研究雖多,但大多不是針對作為熱敏阻型紅外線感測材料的研究。因此,本篇就此非晶矽應用於遠紅外線熱敏阻型感測器之材料進行詳細而完整的分析研究,研究重點包含:
1.利用光罩設計製作不同結構的非晶矽微輻射遠紅外線感測元件:
本論文製作不同尺寸的懸浮結構,並利用反射層、吸收層與共振腔等結構優化其元件對遠紅外線的吸收率,探討過程中對於薄膜殘餘應力的控制與殘留犧牲層於懸浮結構造成的翹曲現象與懸浮結構塌陷等問題。
2.N型重雜質摻雜非晶矽(α - Si)薄膜製程與特性量測:
吾人使用高密度電漿化學氣相沉積系統(HDPCVD)沉積熱敏阻薄膜,並萃取其感測層的電阻溫度係數與阻值,根據文獻顯示不同製程參數的非晶矽薄膜之電阻溫度係數及阻值皆會有明顯的差異,亦決定著後續讀取電路(ROIC)的設計,針對不同退火條件下非晶矽薄膜的影響進行物性及電性之量測與分析。
3.設計不同結構與調變不同退火之元件低頻量測與分析:
非致冷的紅外線感測元件相當注重低頻雜訊對熱敏阻訊號的變化,根據文獻顯示非晶矽具有相當大的閃爍雜訊,亦是元件最主要的雜訊來源。因此本論文將調變退火溫度,進行低頻雜訊的相關研究,以探討其金屬催化、氫離子擴散與晶界效應等問題。
In this work, we propose a unique resonator structure which compatible with Si-based CMOS process to fabricate an amorphous silicon (α-Si) microbolometer for far infrared radiant (FIR) detecting applications. The α-Si is selected as sensing element for its high sensitivity to far infrared and low temperature deposition process. Besides, the process is comparable to the conventional VLSI technology, and thus can be merged into CMOS process to prepare a low cost integrated sensing system. We measured the devices characteristics and analyze the low-frequency-noise (PSD). We found the resistivity of bulk α-Si film and temperature coefficient of resistance (TCR) should tradeoff to get lower resistance α-Si pixel with higher TCR. In addition, the device sensitivity is also affected by its structure and α-Si sensing layer post treatment annealing process. For example, the device with double leg structure in both metal contact and α-Si sensing layer can gain ~3%/K of TCR, and lower than 1.63×10-8 of flicker noise at 25 Hz.
[1] J. L. Miller, "Principles of Infrared Technology," Springier US, 1994.
[2] B. Meyer and T. Hoelter, "Uncooled radiometric camera performance," Infrared Detectors and Focal Plane Arrays V, vol. 3379, pp. 69-78, 1998.
[3] R. S. Balcerak, "Uncooled infrared sensors: rapid growth and future perspective," 2000, pp. 36-39.
[4] P. W. Kruse, R. Dodson, S. Anderson, L. Kantor, M. Knipfer, T. J. McManus, et al., "Infrared imager employing a 160 x 120 pixel uncooled bolometer array," 1998, pp. 572-577.
[5] P. E. Howard, C. J. Han, J. E. Clarke, J. C. Stevens, P. Ely, and E. T. Fitzgibbons, "Advances in microbolometer focal plane technology at Boeing," Infrared Detectors and Focal Plane Arrays V, vol. 3379, pp. 47-57, 1998.
[6] C. J. Alicandro and R. W. DeMarco, "1024 x 768 XGA Uncooled Camera Core achieves new levels of performance in a small package," Infrared Technology and Applications Xxxvii, vol. 8012, 2011.
[7] C. Li, G. D. Skidmore, and C. J. Han, "Uncooled VOx Infrared Sensor Development and Application," Infrared Technology and Applications Xxxvii, vol. 8012, 2011.
[8] P. E. Howard, J. E. Clarke, W. J. Parrish, and J. T. Woolaway Ii, "Advanced high-performance 320x240 VOx microbolometer uncooled IR focal plane," 1999, pp. 131-136.
[9] F. Forsberg, N. Roxhed, A. C. Fischer, B. Samel, P. Ericsson, N. Hoivik, et al., "Very large scale heterogeneous integration (VLSHI) and wafer-level vacuum packaging for infrared bolometer focal plane arrays," Infrared Physics & Technology, vol. 60, pp. 251-259, 9// 2013.
[10] C. G. Burkett and K. Daryabeigi, "Cryogenic Blackbody Radiation Calibration Source," Proceedings of the 38th International Instrumentation Symposium, vol. 38, pp. 273-285, 1992.
[11] I. Burger and R. Grimm, "Blackbody radiator with nine cavities as calibration element for a radiation thermometer," Temperature '98, vol. 1379, pp. 211-216, 1998.
[12] G. D. Skidmore, C. J. Han, and C. Li, "Uncooled Microbolometers at DRS and Elsewhere Through 2013," Image Sensing Technologies: Materials, Devices, Systems, and Applications, vol. 9100, 2014.
[13] J.-L. Tissot, F. Rothan, C. Vedel, M. Vilain, and J.-J. Yon, "LETI/LIR's amorphous silicon uncooled microbolometer development," 1998, pp. 139-144.
[14] C. W. Hur, N. Y. Ko, Y. S. Park, J. S. Youk, and H. S. Shin, "Characteristics of photodiode using a Schottky barrier," Proceedings of the Third International Symposium on Magnetic Industry (ISMI'04) & First International Symposium on Physics and IT Industry (ISITI'04), pp. 174-176, 2005.
[15] K. D. Patel, B. P. Modi, and R. Srivastava, "Barrier height and Fermi level pinning at Schottky interfaces," Physics of Semiconductor Devices, Vols 1 and 2, vol. 3316, pp. 1225-1228, 1998.
[16] M. Akinaga and L. Rinderer, "Thin film growth of high-T-c superconductor by infrared-ray irradiation," Physica C, vol. 282, pp. 635-636, Aug 1997.
[17] A. Rogalski, "Fundaments of Infrared Detection" vol. second edition: Taylor and Francis Group, LLC, 2011.
[18] T. Ishikawa, M. Ueno, K. Endo, Y. Nakaki, H. Hata, T. Sone, et al., "Low-cost 320x240 uncooled IRFPA using a conventional silicon IC process," 1999, pp. 556-564.
[19] R. K. McEwen and P. A. Manning, "European uncooled thermal imaging sensors," Infrared Technology and Applications Xxv, vol. 3698, pp. 322-337, 1999.
[20] A. Dave, Z. Celik-Butler, and D. P. Butler, "Micromachined infrared sensors with device-level encapsulation," Infrared Technology and Applications XXXI, Pts 1 and 2, vol. 5783, pp. 460-469, 2005.
[21] F. Niklaus, C. Vieider, and H. Jakobsen, "MEMS-Based uncooled infrared bolometer Arrays - A review," Mems/Moems Technologies and Applications Iii, vol. 6836, 2008.
[22] R. S. Saxena, R. K. Bhan, C. R. Jalwania, and K. Khurana, "Effect of Excessive Bias Heating on a Titanium Microbolometer Infrared Detector," Ieee Sensors Journal, vol. 8, pp. 1801-1804, Nov-Dec 2008.
[23] K. Y. Myung-Ho Kwon, Yong-Su Park, Young-Ho Kim and Han Chung, "Investigations of reactively sputtered TiO2-δ films for microbolometer applications," presented at the Electro-Optical and Infrared Systems, 2008.
[24] Y. Jin, H. A. Basantani, A. Ozcelik, T. N. Jackson, and M. W. Horn, "High Resistivity and High TCR Vanadium Oxide Thin Films For Infrared Imaging Prepared by Bias Target Ion Beam Deposition," Infrared Technology and Applications Xxxix, vol. 8704, 2013.
[25] F. Niklaus, C. Jansson, A. Decharat, J. E. Kallhammer, H. Pettersson, and G. Stemme, "Uncooled infrared bolometer arrays operating in a low to medium vacuum atmosphere: Performance model and tradeoffs," Infrared Technology and Applications Xxxiii, vol. 6542, 2007.
[26] J. L. Heath, G. T. Kincaid, J. T. Woolaway, W. J. Parrish, D. Lohrmann, G. Newsome, et al., "160 x 128 uncooled FPA performance review," Infrared Technology and Applications Xxv, vol. 3698, pp. 256-263, 1999.
[27] P. W. Kruse, "Can the 300K radiating background noise limit be attained by uncooled thermal imagers?," Infrared Technology and Applications Xxx, vol. 5406, pp. 437-446, 2004.
[28] B. Szentpáli, "Noise Limitations of Miniature Thermistors and Bolometers" in Noise Limitations of Miniature Thermistors and Bolometers, Prof. Unil Perera (Ed.), Ed., ed, 2012.
[29] M.-S. Lee and S. F. Bent, "Temperature effects in the hot wire chemical vapor deposition of amorphous hydrogenated silicon carbon alloy," Journal of Applied Physics, vol. 87, pp. 4600-4610, 2000.
[30] K. V. Chizh, V. A. Chapnin, V. P. Kalinushkin, V. Y. Resnik, M. S. Storozhevykh, and V. A. Yuryev, "Metal silicide/poly-Si Schottky diodes for uncooled microbolometers," Nanoscale Research Letters, vol. 8, Apr 17 2013.
[31] Y. S. Kim, T. H. Kim, G. T. Kim, B. T. Lim, S. K. Lim, H. D. Lee, et al., "Uncooled Microbolometer Arrays With High Responsivity Using Meshed Leg Structure," Ieee Photonics Technology Letters, vol. 25, pp. 2108-2110, Nov 1 2013.
[32] S. Becker, P. Imperinetti, J. J. Yon, J. L. Ouvrier-Buffet, V. Goudon, A. Hamelin, et al., "Latest pixel size reduction of uncooled IR-FPA at CEA, LETI," Electro-Optical and Infrared Systems: Technology and Applications Ix, vol. 8541, 2012.
[33] M. Almasri, X. Bai, and J. Castracane, "Amorphous silicon two-color microbolometer for uncooled IR detection," Sensors Journal, IEEE, vol. 6, pp. 293-300, 2006.
[34] F. Niklaus, J. Pejnefors, M. Dainese, M. Haggblad, P. E. Hellstrom, U. Wallgren, et al., "Characterization of transfer bonded silicon bolometer arrays," Infrared Technology and Applications Xxx, vol. 5406, pp. 521-530, 2004.
[35] A. Efremov, Y. Kim, H. W. Lee, and K. H. Kwon, "A Comparative Study of HBr-Ar and HBr-Cl-2 Plasma Chemistries for Dry Etch Applications," Plasma Chemistry and Plasma Processing, vol. 31, pp. 259-271, Apr 2011.
[36] I. J. Park and C. Shin, "Effect of double-patterning and double-etching on the line-edge-roughness of multi-gate bulk MOSFETs," Ieice Electronics Express, vol. 10, 2013.
[37] E. Mottin, A. Bain, J.-L. Martin, J.-L. Ouvrier-Buffet, S. Bisotto, J.-J. Yon, et al., "Uncooled amorphous silicon technology enhancement for 25-μm pixel pitch achievement," 2003, pp. 200-207.
[38] S. Han, C. H. Chun, C. S. Han, and S. M. Park, "Parameterized Simulation Program with Integrated Circuit Emphasis Modeling of Two-level Microbolometer," Journal of Electrical Engineering & Technology, vol. 6, pp. 270-274, Mar 2011.
[39] R. M. Howard, "Principles of Random Signal Analysis and Low Noise Design: The Power Spectral Density and its Applications," Wiley-IEEE Press, 2002.
[40] N. B. Lukyanchikova, "Noise Research in Semiconductor Physics," Gordon and Breach Science Publishers, 1996.
[41] C. Parman and J. Kakalios, "Nonlinear 1/f noise in amorphous silicon," Physical Review Letters, vol. 67, pp. 2529-2532, 10/28/ 1991.
[42] M. H. Unewisse, B. I. Craig, R. J. Watson, O. Reinhold, and K. C. Liddiard, "The growth and properties of semiconductor bolometers for infrared detection," Growth and Characterization of Materials for Infrared Detectors Ii, vol. 2554, pp. 43-54, 1995.
[43] C. Li, G. D. Skidmore, and C. J. Han, "Uncooled Infrared Sensor Development Trends and Challenges," Infrared Sensors, Devices, and Applications and Single Photon Imaging Ii, vol. 8155, 2011.
[44] D. Fujisawa, T. Maegawa, Y. Ohta, Y. Kosasayama, T. Ohnakado, H. Hata, et al., "Two-million-pixel SOI diode uncooled IRFPA with 15um pixel pitch," 2012, pp. 83531G-83531G-13.
[45] J. Lv, L. C. Que, L. H. Wei, Y. Zhou, B. B. Liao, and Y. D. Jiang, "Uncooled Microbolometer Infrared Focal Plane Array Without Substrate Temperature Stabilization," Ieee Sensors Journal, vol. 14, pp. 1533-1544, May 2014.
[46] C. Vedel, J. L. Martin, J. L. O. Buffet, J. L. Tissot, M. Vilain, and J. J. Yon, "Amorphous silicon based uncooled microbolometer IRFPA," Infrared Technology and Applications Xxv, vol. 3698, pp. 276-283, 1999.
校內:2020-06-22公開