簡易檢索 / 詳目顯示

研究生: 許峻僑
Hsu, Chun-Chiao
論文名稱: 以卡式直角坐標所描述的大地位置計算之研究
A Study of Computations of Geodetic Main Problems Using Cartesian Coordinates
指導教授: 尤瑞哲
You, Rey-Jer
學位類別: 碩士
Master
系所名稱: 工學院 - 測量及空間資訊學系
Department of Geomatics
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 68
中文關鍵詞: 大地線廣義梯形數值積分演算法
外文關鍵詞: geodesic, Extended Trapezoidal Rules
相關次數: 點閱:60下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 傳統上,橢球面上的大地線微分方程式常以大地坐標描述之。本研究則利用Euler-lagrange變分法原理推導出以卡式直角坐標所描述的橢球面上大地線微分方程式,並利用Brugnano提出的廣義梯形數值積分法對大地線進行數值積分計算,同時也使用8階的Runge-Kutta演算法與8階的預估改正法來做比較。分析結果顯示:在卡式直角坐標中以廣義梯形數值積分法對大地線進行數值積分運算,不論解算的精準度或效率,都優於另外兩種演算法。

    本研究也將廣義梯形數值積分法運用在大地坐標系中,分別對變化大地線長度、起點位置及起始方位角來進行分析。結果顯示:長度20000公里以內的大地線,在兩坐標系裡所計算出的成果差異不大,但隨著大地線長度的增加,可以發現在卡式直角坐標中所算出的成果會逐漸優於在曲線坐標系中的成果。此外在相同的大地線長度下,當起點位置的緯度越高或起始方位角接近0度或180度時,曲線坐標系的計算成果會逐漸變差;而在卡式直角坐標系中,不論大地線的起點位置與起始方位角大小,仍維持相當穏定的計算成果。

    Conventionally, the differential equations of geodesic on the rotational ellipsoid are expressed by the geodetic coordinates. In this study, the differential equations are described by Cartesian coordinates and they are derived from the Euler-Lagrange variational principle. We apply the extended trapezoidal rule presented by Brugnano to integrate the differential equations of geodesic and compare the results with Runge-Kutta method and the predictor-corrector method. It is shown from the experiments that the numerical integration by the extended trapezoidal rule is superior to the other methods in precision and efficiency.

    The extended trapezoidal rule method is also applied for the differential equations of geodesic described by geodetic coordinates. Three factors are discussed for comparison, namely geodesic length, the starting point position and initial azimuth. The results show that the solutions of both coordinate types are similar when the length of geodesic is within 20000 kilometers and the solutions of Cartesian coordinate type are better than the solutions of geodetic coordinate type if the length of geodesic increases. Besides, the results turn into worse in the geodetic coordinate type, when the initial latitude is higher or initial azimuth near 0 or 180, while in the Cartesian coordinate type, the results of integration are not affected by any initial latitude or initial azimuth.

    目錄 中文摘要.............................................Ⅰ 英文摘要.............................................Ⅱ 誌謝.................................................Ⅲ 目錄.................................................Ⅳ 表目錄...............................................Ⅶ 圖目錄...............................................Ⅷ 第一章 緒論..........................................1 1.1 前言.............................................1 1.2 研究動機與目的...................................1 1.3 研究方法.........................................2 1.4 論文架構.........................................2 第二章 大地位置計算..................................4 2.1 大地線...........................................4 2.2 變分法與Euler-Lagrange方程式.....................4 2.3 在2D曲面空間中大地線微分方程式...................6 2.4 旋轉橢球面上的大地位置計算.......................8 2.4.1 第一大地測量主題之解算.........................9 2.4.2 第一大地測量主題之解算........................16 2.5 三維卡式直角坐標空間中大地線微分方程式..........20 2.6 Clairaut定理....................................24 2.6.1 大地坐標系中的Clairaut定理. ..................24 2.6.2 卡式直角坐標系中的Clairaut定理............... 25 第三章 ETRs廣義梯形數值積分演算法...................27 3.1 初始值問題與邊界值問題..........................27 3.2 單一步驟法和多重步驟法..........................28 3.2.1 單一步驟法....................................28 3.2.2 多重步驟法....................................32 3.2.2.1 Adams-Bashforth法...........................32 3.2.2.2 Adams-Bashforth法與預估改正法...............33 3.3 線性多重步驟演算法..............................35 3.4 廣義梯形數值積分演算法..........................36 3.5 將ETR演算法應用在卡式直角坐標空間中的大地位置計算...................................................37 第四章 實驗與成果分析...............................43 4.1 實驗資料........................................43 4.2 不同積分器積分成果的比較........................43 4.3 ETR演算法在卡式直角坐標與曲線坐標空間中計算大地 位置之分析...........................................46 4.3.1 不同大地線長度之分析..........................50 4.3.2 不同起點緯度與起始方位角之分析................53 4.3.3 大地線通過極點及極點附近之分析................57 第五章 結論與建議...................................63 參考文獻.............................................65 附錄A Runge-Kutta法8階13段係數表...................67 附錄B 8階Adams-Bashforth法係數表...................68 附錄C 8階Adams-Moulton法係數表.....................68

    參考文獻

    尤瑞哲(2000a),大地測量學上課講義,國立成功大學測量工程學系,台南。

    尤瑞哲(2000b),“慮及軌道作用力的人造衛星星曆精密內插法之研究”,國立成功大學測量工程學系,NSC89-2211-E-006-156。

    尹鍾奇(1998),實用大地測量學,國彰出版社,pp.327-331。

    施澄鐘(1993),數值分析,松崗電腦圖書資料股份有限公司,pp.543-553,台北。

    陳志丞(1997),利用Lie級數積分預估人造衛星軌道之研究,成功大學碩士論文,pp.29-33。

    陳健、晁定波(1992),橢球大地測量學,測繪出版社,pp.81-83。

    楊大偉(1998),應用最小功法變分原理於麥卡脫地圖上大地位置計算之研究,成功大學碩士論文,pp.5-9。

    Aringer, K.(1994).Geodätische Hauptaufgaben auf Flächen in kartesischen Kvordinaten.DGK,C-421,München.

    Battin, R.H.(1987).An introduction to the mathematics and methods of astrodynamics. AIAA Education Series,New York.

    Brugnano, L. and Trigiante, D.(1996).Solving differential problem by multistep initial and boundary value method. Universitá di Firenze,Italy,pp.79-87 and pp.159-163.

    Grafarend, E.W. and You, R.J.(1995).”The Newton form of a geodesic in Maupertuis gauge on the sphere and the bixial ellipsoid-Part one.” Zfv 120, pp.68-80.

    Grigorieff, R.D.(1977).Numerik gewöhnlicher Differential gleichungen 2, Teubner Verlag, Stuttgart.

    Grobmann, W.(1976).Geodaetische Rechnungen und Abbildungen in der Landesvermessung.Konrad Wittwer Verlag,Stuggart.

    Montenbruck, O. and Gill, E.(2000).Satellite orbits:model, methods and applications. Springer, Berlin,pp.118-120 and pp.132-135.

    Patel, V.A.(1994).Numerical analysis.Harcourt Brace College Publishers,American,pp.475-491.

    Prince, P.J.and Dormand, J.R.(1981).”High order embedded Runge-Kutta formulae,” J.Comp. Appl. Math.7, 67-75.

    Sjöberg, L.E.(2006).”New solution to the direct and indirect geodetic problems on the ellipsoid.” Zfv 131, pp.35-44.

    Thomas, G.B. and Finney, R.L.(1979).Calculus and analytic geometry. Addison -Wesley Pub.Co.,Massachusetts.

    Torge, W.(1991).Geodesy, Walter de Gruyter Berlin.New York,pp.219 -221.

    下載圖示 校內:立即公開
    校外:2006-08-25公開
    QR CODE