| 研究生: |
巴優娜 Yosiyana, Badariah |
|---|---|
| 論文名稱: |
發展中偏遠地區沼氣應用之影響
- 運用生命週期評估以印尼家戶尺度為例 Biogas Application Impact in Developing Rural Area - A Life cycle assessment study on household-scale in Indonesia |
| 指導教授: |
福島康裕
Yasuhiro Fukushima |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 124 |
| 中文關鍵詞: | 沼氣應用影響 、偏遠地區 、生命週期評 |
| 外文關鍵詞: | biogas application impact, rural area, life cycle assessment |
| 相關次數: | 點閱:153 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
能源的普及對於地區發展是必須要被滿足的,因為它被視為一個人民提昇生活水平的標準。印尼的能源消耗正快速地在成長,尤其在大都會區;然而,礙於地理與人口特性,在東南亞的偏遠地區,其能源分配仍然是一個挑戰。用來自地方資源所產生的電來滿足地方需求的能源分配,可以加速人民對於地方的發展,因為此種能源普及方式可以避免興建高成本的電力設施。其中,用牲畜排泄物透過生物反應器產生沼氣來發電在印尼是相當有潛力的;然而,這些設施在環境與經濟層面的通盤瞭解與量化分析皆尚未釐清。在此,我們使用系統性的觀點來計算此沼氣發電應用的溫室氣體排放減量與經濟表現。為了要評估沼氣發電應用於偏遠地區之溫室氣體減量潛能,並廣泛的考慮其可替代之能源,例如:煤油、液化石油氣、薪柴、電力、石油等。
研究結果顯示,一個體積大小為4 m3的消化槽,其一天將產生1 m3之生物氣體,其將可供應4.6小時的烹飪燃料、提供14.3小時室內照明或2.8小時電力需求。藉由沼氣發電設施的應用,原本直接排放至環境中的牲畜排泄物將被有效利用,其可減少的溫室氣體每年約2.246 ton CO2-eq。而為了減少此溫室氣體排放而建造之發電設施、消化槽洩漏以及氣體使用之燃燒行為所造成的溫室氣體排放約為0.041、0.503以及0.548 ton CO2-eq 。在沼氣產出之使用部分,將分成烹飪、照明及電力使用三方面做探討,在烹飪方面,沼氣取代燃油、液化石油氣及以薪柴所減少的溫室氣體排放量分別為1.50、1.01以及7.21 ton CO2-eq;在照明方面,沼氣取代燃油燈所減少的溫室氣體排放量為0.562 ton CO2-eq;在電力使用方面,沼氣取代柴油發電機以及國家配給之電力所減少的溫室氣體排放量分別為3.198以及1.150 ton CO2-eq。
將沼氣發電應用於偏遠地區,除了溫室氣體減量尚有其他優點,因為利用牲畜排洩物進行厭氧消化,自消化出流液所回收的養份可再製成生物肥 料。一個4 m3的消化槽可產生21.5 ton污泥,其中包含了元素氮54.8公斤、元素磷29.2公斤及元素鉀25.5公斤。相較於傳統肥料製造,此生物肥料亦可減少0.11 ton CO2-eq。
在經濟方面,本研究利用淨現值(NPV)、本益比(BCR)及回本期評估其經濟效益,其結果為沼氣應用在偏遠地區可降低能源使用成本及帶來正面的效益,除了可用來取代國家電網的電力或是柴油發電機所產生的電力外,其可帶來最大的效益是利用沼氣取代烹飪用燃油之節省成本。在烹飪方面,當沼氣用取代煤油、薪柴及液化石油氣時,NPV與BCR分別為新台幣101,455元及5.15,新台幣40,014元及2.64,新台幣15,887元及1.85;在照明方面,當沼氣取代煤油燈做照明用途時,NPV與BCR分別為新台幣22,667元及1.95,新台幣84,064元及3.00,新台幣-18,706元及0.55。以回本期來看,若進行此項沼氣發電投資的行為,當其目的為取代煤油、薪柴及液化石油氣做為烹飪能量來源,其回本期分別為1.4年、2.9年及5.1年;當其取代煤油做為照明用途時,其回本期為4.1年;當其取代國家電網的電力或柴油發電機時,其回本期為17.8年及4.1年。
從社會層面上來看,沼氣的應用對於人類發展指數(HDI)也有正面的影響。擁有牛隻數量最多的印尼東爪哇省為本篇研究考量沼氣應用與HDI的探討區域,研究結果顯示沼氣應用將會帶來HDI值的增加。藉由沼氣發電設施在此地區的應用,將會提昇當地農耕者的環境衛生、減少對於燃料的耗費。
Access to energy must be assured for development of a region, a process in which living standard (ex. lighting, cooking, air conditioning, mobility) of its people improves. Energy consumption in Indonesia has grown quickly especially in megacities; however energy distribution to rural area remains as a challenge owing to the geographic and demographic characteristic of the region spread widely across southeast Asia. Distributed generation of energy from locally available sources to meet local requirements can accelerate the development by improving people’s access to energy because less construction of costly infrastructure is involved. Among others, biogas reactor using animal waste has a substantial potential in Indonesia; however, comprehensive and quantitative analysis of its influence on environmental and economic aspects are not presented to date. Here, we present GHG emission reduction and economic performance of biogas application calculated from a system-wide perspective is presented. To comprehensively estimate the significance of biogas utilization on rural energy development and greenhouse gas emission reduction, all types of energy sources, including kerosene, LPG, fuel wood, electricity and diesel, which were substituted by biogas, were analyzed based on the amount of energy provided by biogas.
The results show that one cubic meter biogas produced from a 4m3 digester, could be used for 4.6 hours cooking or 14.3 hours lighting or 2.8 hours electricity generation per day. By applying biogas, GHG reduction from livestock is estimated to be 2.325 ton CO2 equivalent/year (CO2-eq). Emission by the biogas construction, digester leakage and combustion are 0.0405, 0.503 and 0.548 ton CO2-eq/year respectively. GHG emission avoided by replacing kerosene, LPG and fuel wood for cooking were 1.5, 1.01 and 7.21 ton CO2-eq/year, respectively. GHG emission avoided by replacing kerosene lamp for lighting was 0.562 ton CO2-eq/year. GHG emission avoided by replacing diesel generator and national grid for electricity were 3.198 and 1.15 ton CO2-eq/year respectively.
Additional benefits from anaerobic digestion of manure include the recovery of nutrients from the digested effluent, which could be used as biofertilizer. From 4m3 digester 21.5 ton of slurry are produced, contains 54.8 kg N, 29.2 kg P and 25.5 kg K. This amount could reduce 0.11 ton CO2-eq/year emission from fertilizer production.
From economic assessment, investment criteria i.e. Net Present Value (NPV), Benefit-cost analysis (BCA) and Payback period are used. The results show that biogas application indicates positive impact for all the utilization (i.e cooking, lighting and generating electricity), except when replacing national grid for electricity supply. The biggest benefits from economic side is when the biogas was used for replacing kerosene for cooking followed by diesel generator for electricity distribution. NPV and benefit cost ratio results when biogas is used for cooking utilization replacing kerosene, fuel wood and LPG were 101,455 NTD and 5.15 , 40,014 NTD and 2.64, 15,887 NTD and 1.85; when replacing kerosene lamp from lighting is 22,667 NTD and 1.95; when replacing diesel generator and national grid are 84,064 and 3.00; – 18,706 and 0.55. Payback period for biogas plant when replacing kerosene, fuel wood and LPG for cooking are 1.4 years, 2.9 years and 5.1 years; when replacing kerosene for lighting is 4.1 years; when replacing diesel generator is 4.1 years and national grid is 17.8 years.
Biogas application also brings positive impact related to Human Development Index (HDI). East Java, the province with the greatest cow population was chosen as the study area to see the relationship between HDI and biogas application. Similar trend was found in Indonesia’s HDI and each area’s HDI. Biogas application could bring positive impact related to HDI. With biogas application, the quality of life could be increased by having more hygienic environment.
References
1. Mortimer, N.D. and J.F. Grant, Evaluating the prospects for sustainable energy development in a sample of Chinese villages. Journal of Environmental Management, 2008. 87(2): p. 276-286.
2. Ministry of Energy and Mineral Resources, Handbook of Energy and Economic Statistic of Indonesia. 2010.
3. Bhattacharya, S.C., J.M. Thomas, and P. Abdul Salam, Greenhouse gas emissions and the mitigation potential of using animal wastes in Asia. Energy, 1997. 22(11): p. 1079-1085.
4. Bhattacharya, S.C., P. Abdul Salam, and M. Sharma, Emissions from biomass energy use in some selected Asian countries. Energy, 2000. 25(2): p. 169-188.
5. Yu, L., et al., Popularizing household-scale biogas digesters for rural sustainable energy development and greenhouse gas mitigation. Renewable Energy, 2008. 33(9): p. 2027-2035.
6. Widodo, T.W. and A. Heriadi, Development of biogas processing for small scale cattle farm in Indonesia, in Biogas technology for poverty reduction and sustainable development. 2005: Beijing, China.
7. Li, G., et al., Assessment of environmental and economic costs of rural household energy consumption in Loess Hilly Region, Gansu Province, China. Renewable Energy, 2009. 34(6): p. 1438-1444.
8. Agus Salim, D. Cadangan energi, kebutuhan energi, dan teknologi masa depan. (Energy reserve, energy demand and future technology). in One day Workshop on Environmentally Friendly Technology for the Future. 2000. Jakarta.
9. Wirawan, S.S. and A.H. Tambunan, The Current Status and Prospects of Biodiesel Development in Indonesia : a review, in Third Asia Biomass Workshop. 2006: Tsukuba, Japan.
10. Legowo, E.H., Y. Kussuryani, and I.K. Reksowardojo, Biofuel Development in Indonesia. 2007, Ministry of Energy and Mineral Resources Republic of Indonesia. p. 32.
11. Widodo, T.W., et al., Design and development of biogas reactor for farmer group scale. Indonesian Journal of Agriculture, 2009. 2: p. 121-128.
12. Federal Ministry of Economics and Technology of Germany. Biogas Market Development. 2011 [cited 2011 11-08-2011]; Available from: http://www.renewables-made-in-germany.com/en/start/bio-energy/biogas/market-development.html.
13. Meyer-Aurich, A., et al., Impact of uncertainties on greenhouse gas mitigation potential of biogas production from agricultural resources. Renewable Energy, 2012. 37(1): p. 277-284.
14. Exportradet Swedish Trade Council. Renewable Energy in the US. 2006 [cited 2011 11-08-2011]; Available from: http://www.energimyndigheten.se/Global/Engelska/News/biogas.pdf.
15. Council, N.R.D. Renewable Energy for America. 2011 [cited 2011 11-08-2011]; Available from: http://www.nrdc.org/energy/renewables/biogas.asp.
16. Tsai, W.-T. and C.-I. Lin, Overview analysis of bioenergy from livestock manure management in Taiwan. Renewable and Sustainable Energy Reviews, 2009. 13(9): p. 2682-2688.
17. Pei-dong, Z., J. Guomei, and W. Gang, Contribution to emission reduction of CO2 and SO2 by household biogas construction in rural China. Renewable and Sustainable Energy Reviews, 2007. 11(8): p. 1903-1912.
18. Karki, A.B., et al., Biogas: As Renewable Source of Energy in Nepal. Theory and Development. 2009, Nepal: BSP - Nepal.
19. Madke, N.S. and V.B. Bhise, Economics of Biogas Technology. 2006, Delhi: The Associated Publisher.
20. Kossmann, W., et al., Biogas Digest. Volume I: Biogas Basics. 1999, The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ).
21. SNV, Feasibility of a National Programme on Domestic Biogas in Indonesia. 2009, SNV.
22. Sasse, L., Biogas Plants. 1988, GTZ.
23. Gunnerson, C.G. and D.C. Stuckey, Anaerobic Digestion. Principles and Practices for Biogas System. 1986, The World Bank.
24. Wikipedia. Common crap. [cited 2011 06-02]; Available from: http://en.wikipedia.org/wiki/Common_carp.
25. Li, Z., et al., Evaluation of exposure reduction to indoor air pollution in stove intervention projects in Peru by urinary biomonitoring of polycyclic aromatic hydrocarbon metabolites. Environment International. In Press, Corrected Proof.
26. Fullerton, D.G., N. Bruce, and S.B. Gordon, Indoor air pollution from biomass fuel smoke is a major health concern in the developing world. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2008. 102(9): p. 843-851.
27. Departemen Pertanian, Pedoman Umum Pengembangan Biogas Asal Ternak Bersama Masyarakat (BATAMAS). 2010: Jakarta.
28. Biogas Rumah, Perbandingan digester. 2010.
29. Lembaga Pengembangan Masyarakat Pedesaan. Homepage. [cited 2011 06-01]; Available from: http://www.lptp.or.id/.
30. Mamat, Personal interview. 2011.
31. Ecoinvent.
32. HIVOS, Proposed new methodology “Simplified standardised ER methodology for household biogas digesters”.
33. Mahapatra, S., H.N. Chanakya, and S. Dasappa, Evaluation of various energy devices for domestic lighting in India: Technology, economics and CO2 emissions. Energy for Sustainable Development, 2009. 13(4): p. 271-279.
34. Amanda, D.C. and E.W. Michael, Cow power: the energy and emissions benefits of converting manure to biogas. Environmental Research Letters, 2008. 3(3): p. 034002.
35. Nantong Taifeng Metal Co. Ltd, Kerosene stove catalog. 2011.
36. TITT INDUSTRY DEVELOPMENT Co., L., LPG stove catalog. 2011.
37. Eggleston HS, et al., IPCC Guidelines for National Greenhouse Gas Inventories. 2006, Intergovernmental Panel on Climate Change.
38. Shenzhen Puxin Science & Technology Co. Ltd, BIogas lamp catalog. 2011.
39. Henan Chengcheng Import & Export Co. Ltd, Biogas generator catalog. 2011.
40. Guangzhou Guangten Machinery Co. Ltd, Diesel generator catalog. 2011.
41. Priambodo, A. and S. Kumar, Energy use and carbon dioxide emission of Indonesian small and medium scale industries. Energy Conversion and Management, 2001. 42(11): p. 1335-1348.
42. Kossmann, W., et al., Biogas Digest. Volume II : Biogas - Application and Product Development. 1999, GATE in Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ), GmbH.
43. Biogas Rumah (2011) About bio-slurry.
44. Biogas Rumah, Turn waste into benefit, B. Rumah, Editor. 2010: Bandung.
45. Mrs. Siti, Personal interview. 2011: Bandung.
46. Sanusi, Y.A., Application of human development index to measurement of deprivations among urban households in Minna, Nigeria. Habitat International, 2008. 32(3): p. 384-398.
47. Human Development Reports UNDP. International Human Development Indicators. 2011 [cited 2011 06-18]; Available from: http://hdr.undp.org/en/statistics/.
48. Biogas Rumah (2011) Training of Trainers in East Java.
49. Werner, U., U. Stöhr, and N. Hees, Biogas plants in animal husbandry. 1989, Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ) GmbH
50. Gomez, J.G. and G.V. Gonzalez (1977) The Use Of Anaerobically Digested Cattle Slurry As A Fertilizer For Vegetables.