| 研究生: |
邱振璋 Chiu, Cheng-Chang |
|---|---|
| 論文名稱: |
基於荷重元電壓流速計於海洋流速量測 Voltage Current Meter Design Based on Load Cell for Ocean Current Measurement |
| 指導教授: |
廖德祿
Liao, Teh-Lu |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 工程科學系 Department of Engineering Science |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 電壓電流表 、電壓感測器 、補償機制 、環境變化 、海洋浮標平台 |
| 外文關鍵詞: | Voltage current meter, Voltage sensor, Compensation mechanism, Environmental change, Marine buoy platform |
| 相關次數: | 點閱:53 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
基於荷重元感測器的電壓式海流計的設計是近年來流體動力學和儀器儀表工程領域的創新。這種類型的海流計採用荷重元感測器技術直接測量流體速度,提供精確且高經濟、高效的解決方法,特別適合工業和環境監測應用。荷重元感測器設計的核心是精密電壓感測器,它可以根據流過其表面的流體的速度變化來改變其電壓輸出。這種技術的設計使得海流計具有即時的響應時間和對低流速流體的高測量靈敏度。透過細緻的校準,這種類型的海流計可以在很寬的流速範圍內提供高精度的量測。為了進一步增強其實用性和適應性,海流計的設計包括各種補償機制,以抵消溫度和壓力變化等環境變化的干擾。此外,這些海流計還整合數據處理技術,使數據採集和分析更有效率、準確,有利於數據遠端傳輸和即時監控。
本論文介紹了流速計的設計原理、製作流程,以及在不同條件下的使用性能。將設計的海流計安裝在海上浮標平台上進行測試,獲得了1至6級流速範圍內海流速度和流向數據的相關係數。本研究提出了一種實際應用方法,利用迴歸分析來修正感測器測量誤差,並結合卡爾曼濾波器進一步驗證資料準確性。測試結果證明,該方法顯著降低了測量數據的誤差,使測量系統能在多變環境中提供穩定且可靠的數據。
The design of a load cell-based voltage current meter is an innovation in fluid dynamics and instrumentation engineering in recent years. This type of current meter uses load cell technology to directly measure fluid velocity, offering a precise and cost-effective solution, especially suitable for industrial and environmental monitoring applications. The core of the load cell design is a precision voltage sensor that can alter its voltage output based on the velocity changes of the fluid flowing across its surface. This design enables the current meter to have a rapid response time and high measurement sensitivity to low-velocity fluid. Through meticulous calibration, this type of current meter can provide highly accurate measurements over a wide range of flow speeds. To further enhance its practicality and adaptability, the current meter's design includes various compensation mechanisms to counteract disturbances from environmental changes such as temperature and pressure variations. Additionally, modern data processing technologies are integrated into these current meters, making data collection and analysis more efficient and accurate, and facilitating remote data transmission and real-time monitoring.
This research introduces the design principles, manufacturing process, and performance under various conditions of the current meter. The designed current meter was installed on a marine buoy platform for testing, and correlation coefficients of ocean current speed and direction within a flow velocity range of grades 1 to 6 were obtained. This research proposes a practical application method that utilizes regression analysis to correct sensor measurement errors and combines it with Kalman filter to further validate data accuracy. Test results indicate that this method significantly reduces measurement data errors, enabling the measurement system to provide stable and reliable data in variable ocean current observation environments.
[1] Singh, H.; Goyal, R.; Upmanyu, A.; Goyal, P. Automatic Liquid Flow Management Using Internet of Things (IoT) Technology. 2023 International Conference on Sustainable Emerging Innovations in Engineering and Technology (ICSEIET), pp. 837-840, 2023. https://doi.org/10.1109/ICSEIET58677.2023.10303566
[2] Haldar, B.; George, B.; Thirumurugan, K.; Muthiah, M. A.; Sudhakar, T.; Atmanand, M. A. Ocean Current Sensing Using Integrated Load Cell in the Mooring Line of a Data Buoy. IEEE Sensors Journal, vol. 24, no. 1, pp. 858-865, 2024. https://doi.org/10.1109/JSEN.2023.3332648
[3] Qiu, Z.; Wang, Q.; Li, H.; Yang S.; Li, X. Depth Control for a Deep-Sea Self-Holding Intelligent Buoy Under Ocean Current Disturbances Based on Finite-Time Boundedness Method. IEEE Access, vol. 7, pp. 114670-114684, 2019. https://doi.org/10.1109/ACCESS.2019.2935815
[4] Puyu, Y.; et al. Design of a new acoustic Doppler wave and current measurement instrument. 2021 IEEE 4th Advanced Information Management, Communicates, Electronic and Automation Control Conference (IMCEC), pp. 2021-2025, 2021. https://doi.org/10.1109/IMCEC51613.2021.9482201
[5] Wang, Q.; Wu, L.; Zhang, L.; Xia, Y. Transmitting Waveforms Ambiguity Function based Complementary Coding in Broadband Acoustic Doppler Current Profiler. 2021 IEEE 21st International Conference on Communication Technology (ICCT), pp. 58-62, 2021. https://doi.org/10.1109/ICCT52962.2021.9657999
[6] Linnert, M. A.; Mariager, S. O.; Rupitsch, S. J.; Lerch, R. Dynamic offset correction of electromagnetic flow meters. 2018 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1-6, 2018. https://doi.org/10.1109/I2MTC.2018.8409600.
[7] Gao, X.; Yue, S.; Cui, Z.; Ding, M.; Li, Q.; Wang, H. Optimal Measurements of Electromagnetic Flowmeter. 2019 IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pp. 1-6, 2019. https://doi.org/10.1109/I2MTC.2019.8827151
[8] Liu Y.; Shi, X. Design of a Marine Litter Collection Apparatus Utilizing Wave and Wind Energy. 2024 Prognostics and System Health Management Conference (PHM), pp. 59-62, 2024. https://doi.org/10.1109/PHM61473.2024.00018
[9] Ye, Y. Design of an Embedded Marine Environment Data Collection and Monitoring System. 2024 Asia-Pacific Conference on Software Engineering, Social Network Analysis and Intelligent Computing (SSAIC), pp. 177-182, 2024. https://doi.org/10.1109/SSAIC61213.2024.00040
[10] Bogatov, N. A.; Ermoshkin, A. V.; Kapustin, I. A.; Kupaev, A. V.; Molkov, A. A. Retrieval of wind Ripple Speed From Stereo Imagery of sea Surface: Preliminary Results. IGARSS 2022 - 2022 IEEE International Geoscience and Remote Sensing Symposium, pp. 7065-7068, 2022. https://doi.org/10.1109/IGARSS46834.2022.9883987
[11] Recolons, J.; Torrents, J. M. A new method for sea wave detection by using a speed log meter. OCEANS 2011 IEEE - Spain, pp. 1-10, 2011. https://doi.org/10.1109/Oceans-Spain.2011.6003521
[12] Wullenweber, N.; Hole, L.R.; Ghaffari, P.; Graves, I.; Tholo, H.; Camus, L. SailBuoy Ocean Currents: Low-Cost Upper-Layer Ocean Current Measurements. Sensors, Vol. 22, no. 15: 5553, 2022. https://doi.org/10.3390/s22155553
[13] Wang, H.-W.; Lin, G.-F.; Tfwala, S. S.; Hong, J.-H. Filtering Continuous River Surface Velocity Radar Data. Vol. 11, no. 4: 764, 2019. https://doi.org/10.3390/w11040764
[14] Zhong, C.; Yin, F.; Zhang, J.; Zhang, S.; Wan, R.; Kitazawa, D. Optimized Algorithm for Processing Outlier of Water Current Data Measured by Acoustic Doppler Velocimeter. Vol. 8, no.9: 655, 2020. https://doi.org/10.3390/jmse8090655
[15] Catsamas, S.; Shi, B.; Deletic, B.; Wang, M.; McCarthy, D.T. A Low-Cost, Low-Power Water Velocity Sensor Utilizing Acoustic Doppler Measurement. Sensors, Vol. 22, no.19: 7451, 2022. https://doi.org/10.3390/s22197451
[16] Alimenti, F.; Bonafoni, S.; Gallo, E.; Palazzi, V.; Vincenti Gatti, R.; Mezzanotte, P.; Roselli, L.; Zito, D.; Barbetta, S.; Corradini, C.; et al. Noncontact Measurement of River Surface Velocity and Discharge Estimation with a Low-Cost Doppler Radar Sensor. IEEE Trans. Geosci. Remote Sens., Vol. 58, 5195–5207, 2020. https://doi.org/10.1109/TGRS.2020.2974185
[17] Chen, S.; Wu, Y.; Liu, S.; Yang, Y.; Wan, X.; Yang, X.; Zhang, K.; Wang, B.; Yan, X. Development of Electromagnetic Current Meter for Marine Environment. J. Mar. Sci. Eng., Vol. 11, no.1: 206, 2023. https://doi.org/10.3390/jmse11010206
[18] Song, Y.; Lu, C.; Yu, Y. Design of electromagnetic current meter circuit and embedded system. Second IYSF Academic Symposium on Artificial Intelligence and Computer Engineering, Vol. 12079, 120790U, 2021. https://doi.org/10.1117/12.2622854
[19] Cai, H.; Liu, W.; Zhou, K.; Wang, X.; Lin, K.; Tang, X.-Y. Physics Constrained High-Precision Data-Driven Modeling for Multi-Path Ultrasonic Flow Meter in Natural Gas Measurement. Sensors, Vol. 24, no. 14: 4521, 2024. https://doi.org/10.3390/s24144521
[20] Jang, D.; Choi, G.; Park, H. Adaptation of multiple regression analysis to identify effective factors of water losses in water distribution systems. Smart Water 4, 1, 2019. https://doi.org/10.1186/s40713-018-0013-6
[21] Sanada, K. Flowrate Measurement in a Pipe Using Kalman-Filtering Laminar Flowmeter. Journal of Robotics and Mechatronics. Vol. 32, no. 5, pp. 994-999, 2020. https://doi.org/10.20965/jrm.2020.p0994
[22] Navada, B. R.; Venkata, S. K.; Rao, S. A Soft Sensor for Estimation of In-Flow Rate in a Flow Process Using Pole Placement and Kalman Filter Methods. Machines, Vol. 7, no. 4: 63. https://doi.org/10.3390/machines7040063
[23] Harahap, I. H. A.; Ariananda, D. D.; Nugroho, H. A.; Dewanto, W. Cooperative Spectrum Sensing for Cognitive Radio Based on Decision Tree Algorithm. International Conference on Advanced Mechatronics, Intelligent Manufacture and Industrial Automation (ICAMIMIA), pp. 618-623, 2023. https://doi.org/10.1109/ICAMIMIA60881.2023.10427813
[24] Khasawneh, M.; Azab, A.; Alrabaee, S.; Sakkal, H.; Bakhit, H. H. Convergence of IoT and Cognitive Radio Networks: A Survey of Applications, Techniques, and Challenges. IEEE Access, vol. 11, pp. 71097-71112, 2023. https://doi.org/10.1109/ACCESS.2023.3294091
[25] Liu, Y.; Qin, X.; Huang, Y.; Tang, L.; Fu, J. Maximizing Energy Efficiency in Hybrid Overlay-Underlay Cognitive Radio Networks Based on Energy Harvesting-Cooperative Spectrum Sensing. Energies, Vol. 15, no.8: 2803. https://doi.org/10.3390/en15082803
[26] Ahmed, R.; Chen, Y.; Hassan, B.; Du, L. CR-IoTNet: Machine learning based joint spectrum sensing and allocation for cognitive radio enabled IoT cellular networks. Ad Hoc Networks, Vol.112, 102390, 2021. https://doi.org/10.1016/j.adhoc.2020.102390
[27] Nurlan, Z.; Zhukabayeva, T.; Othman, M.; Adamova, A.; Zhakiyev, N. Wireless Sensor Network as a Mesh: Vision and Challenges. IEEE Access, 10, 46–67, 2022. https://doi.org/10.1109/ACCESS.2021.3137341
[28] Jabbar, A.; Kazim, J. u. R.; Imran, M. A.; Abbasi, Q. H.; Rehman, M. U. Design of A Compact Ultra-Wideband Microstrip Antenna for Millimeter-Wave Communication. 2021 IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting (APS/URSI), pp. 837-838, 2021. https://doi.org/10.1109/APS/URSI47566.2021.9704395
[29] Marcinkowski, A.; Gralewski, J. The comparison of the environmental impact of steel and vinyl sheet piling: life cycle assess-ment study. International Journal of Environmental Science and Technology, Vol. 17, pp. 4019-4030, 2020. https://doi.org/10.1007/s13762-020-02750-9
[30] Zhao, S.; Ma, H.; Jiang, M.; Li, C.; Liu, Y.; Zhao, X.; Chen, X. Study of Carbon Brush and Slip-Ring System Abrasion From Electric Contact Friction Under Special Environments. IEEE, Volume 9, pp. 9308-9317, 2021. https://doi.org/10.1109/ACCESS.2021.3050098
[31] Ma, G.; Mao, N.; Li, Y.; Jiang, J.; Zhou, H.; Li, C. The Reusable Load Cell with Protection Applied for Online Monitoring of Overhead Transmission Lines Based on Fiber Bragg Grating. Sensors, Vol. 16, no. 6: 922, 2016. https://doi.org/10.3390/s16060922
[32] Kim, H.; Park, S.; Yeom, M.; Shim, H.; Park, S.; Kim, J. Bluetooth Load-Cell-Based Support-Monitoring System for Safety Management at a Construction Site. Sensors, Vol. 22, no. 10: 3955, 2022. https://doi.org/10.3390/s22103955
[33] Al-Dahiree, O.; Tokhi, M.; Hadi, N.; Hmoad, N.; Ghazilla, R.; Yap, H. Albaadani, E. Design and Shape Optimization of Strain Gauge Load Cell for Axial Force Measurement for Test Benches. Sensors, Vol. 22, no. 19: 7508, 2022. https://doi.org/10.3390/s22197508
[34] Zhao, Y.; Liu, Y.; Li, Y.; Hao, Q. Development and Application of Resistance Strain Force Sensors. Sensors, Vol. 20, no. 20: 5826, 2020. https://doi.org/10.3390/s20205826
[35] Sahakyan, H.; Hayrapetyan, A.; Harutyunyan, S.; Stepanyan, A.; Azatyan, H.; Hovsepyan, G. A Low Dropout Voltage Regulator with Higher Than Supply Output Voltage and Load Based Frequency Control System. 2020 IEEE 40th International Conference on Electronics and Nanotechnology (ELNANO), pp. 366-369, 2020. https://doi.org/10.1109/ELNANO50318.2020.9088754
[36] Low Conducted EMI Power Solution for Automotive Digital Cockpit With LMR14050 and TPS65263, TEXAS INSTRUMENTS. 2023.12 https://www.ti.com/lit/an/snva810/snva810.pdf?ts=1727034150689&ref_url=https%253A%252F%252Flens.google.com%252F
[37] Koubâa, A.; Allouch, A.; Alajlan, M.; Javed, Y.; Belghith, A.; Khalgui, M. Micro Air Vehicle Link (MAVlink) in a Nutshell: A Survey. IEEE Access, Vol. 7, pp. 87658-87680, 2019. https://doi.org/10.1109/ACCESS.2019.2924410
[38] NI myRIO Hardware at a Glance. 2024.01 https://www.ni.com/en-us/support/documentation/supplemental/13/ni-myrio-hardware-at-a-glance.html
[39] Serialization, P. MAVLink. https://mavlink.io/en/guide/serialization.html, 2024.1.
[40] Nurmawati, I.; Affandi, A.; Pratomo, I. Evaluation of AIS and MAVLINK Protocol Performance. 2020 International Seminar on Intelligent Technology and Its Applications (ISITIA), pp. 338-344, 2020. https://doi.org/10.1109/ISITIA49792.2020.9163725
[41] P., A. K.; Aswini, B.; Nair, S. S.; Gopika, P. A.; Narayanan, G. Implementation of Spread Spectrum Modulation Schemes for Secure Communications. 2019 International Conference on Intelligent Computing and Control Systems (ICCS), pp. 1397-1401, 2019. https://doi.org/10.1109/ICCS45141.2019.9065811
[42] Choi, H.; Park, B.; et al. Aquaculture Farm Facility Loss Management System. Springer, Communications in Computer and Information Science, vol. 124, pp. 173-179, 2010. https://doi.org/10.1007/978-3-642-17644-9_19
[43] Zhang, Z.; Cao, S.; Wang, Y. A Long-Range 2.4G Network System and Scheduling Scheme for Aquatic Environmental Monitoring. Electronics, Vol. 8, no. 8: 909, 2019. https://doi.org/10.3390/electronics8080909
[44] Jo, J.; Kim, D.; Hejazi, A.; Pu, Y.; Jung, Y.; Huh, H.; Kim, S.; Yoo, J.; Lee, K. Low Phase-Noise, 2.4 and 5.8 GHz Dual-Band Frequency Synthesizer with Class-C VCO and Bias-Controlled Charge Pump for RF Wireless Charging System in 180 nm CMOS Process. Electronics, Vol. 11, no. 7: 1118, 2022. https://doi.org/10.3390/electronics11071118
[45] Wang, Q.; Wang, Y.; Zhang, L. A New Disturbance Rejection Control Scheme for a Class of Controlled Dynamic Nonlinear Systems. 2019 IEEE International Conference on Power, Intelligent Computing and Systems (ICPICS), pp. 443-449, 2019. https://doi.org/10.1109/ICPICS47731.2019.8942544
[46] Moradi-Shahrbabak, Z. Proposed Small Signal Dynamic Model for a Grid-Connected Battery Storage System. 2023 31st International Conference on Electrical Engineering (ICEE), pp. 776-780, 2023. https://doi.org/10.1109/ICEE59167.2023.10334673
[47] Qi, J.; Jiang, Q.; Cao, Y. General formulation of transfer function identification for power system based on WAMS. 2009 IEEE/PES Power Systems Conference and Exposition, pp. 1-6, 2009. https://doi.org/10.1109/PSCE.2009.4840090
[48] Oprzedkiewicz, K.; Rosol, M. Modeling of thermal processes in the microcontroller system using fractional order transfer function. 2022 26th International Conference on Methods and Models in Automation and Robotics (MMAR), pp. 93-97, 2022. https://doi.org/10.1109/MMAR55195.2022.9874336
[49] Rodríguez-Abreo, O.; Castillo Velásquez, F.A.; Zavala de Paz, J.P.; Martínez Godoy, J.L.; Garcia Guendulain, C. Sensorless Estimation Based on Neural Networks Trained with the Dynamic Response Points. Sensors, Vol. 21, no. 20: 6719. https://doi.org/10.3390/s21206719
[50] Korotin, S. M.; Salii, A. G.; Tselischev, Y. P.; Korovin, I. P.; Kotsiuruba, A. V.; Kolomiets, Y. M. Modeling the Characteristics of the Stabilization Circuit of a Hypothetical Dynamic System. 2020 IEEE 2nd International Conference on Advanced Trends in Information Theory (ATIT), pp. 227-233, 2020. https://doi.org/10.1109/ATIT50783.2020.9349315
[51] Ming, Z.; Zhang, H.; Yan, Y.; Zhang, J. Tracking Control of Discrete-Time System With Dynamic Event-Based Adaptive Dynamic Programming. IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 8, pp. 3570-3574, 2022. https://doi.org/10.1109/TCSII.2022.3168428
[52] Zhao Y.; Li, H. Research on Data Analysis Method Based on Multiple Linear Regression Model and Grey Model. 2022 10th International Conference on Information Systems and Computing Technology (ISCTech), pp. 324-327, 2022. https://doi.org/10.1109/ISCTech58360.2022.00057
[53] Gupta, R.; Sharma, A.; Anand, V.; Gupta, S. Automobile Price Prediction using Regression Models. 2022 International Conference on Inventive Computation Technologies (ICICT), pp. 410-416, 2022. https://doi.org/10.1109/ICICT54344.2022.9850657
[54] Rouf, N.; Malik, M. B.; Arif, T. A Regression Based Approach To Predict The Indian Stock Market Trend Amid COVID-19. 2021 3rd International Conference on Advances in Computing, Communication Control and Networking (ICAC3N), pp. 2014-2020, 2021. https://doi.org/10.1109/ICAC3N53548.2021.9725396.
[55] Liang, J. Multivariate linear regression method based on SPSS analysis of influencing factors of CPI during epidemic situation. 2020 2nd International Conference on Economic Management and Model Engineering (ICEMME), pp. 294-297, 2020. https://doi.org/10.1109/ICEMME51517.2020.00062
[56] Daliya, V. K.; Ramesh T. K.; Ko, S. -B. An Optimised Multivariable Regression Model for Predictive Analysis of Diabetic Disease Progression. IEEE Access, vol. 9, pp. 99768-99780, 2021. https://doi.org/10.1109/ACCESS.2021.3096139
[57] Eswarchandra, C.; Kalaiarasi, S. Effective Implementation of Accurate Human Iris Eye Recognition System using Polynomial Regression in comparison with Naive Bayes algorithm for improved Accuracy. 2023 Eighth International Conference on Science Technology Engineering and Mathematics (ICONSTEM), pp. 1-4, 2023. https://doi.org/10.1109/ICONSTEM56934.2023.10142612
[58] Kalman, R. E. A New Approach to Linear Filtering and Prediction Problems. ASME. J. Basic Eng. 1960; 82(1): 35–45. https://doi.org/10.1115/1.3662552
[59] Khodarahmi, M., Maihami, V. A Review on Kalman Filter Models. Arch Computat Methods Eng 30, 727–747, 2023. https://doi.org/10.1007/s11831-022-09815-7
[60] Urrea, C.; Agramonte, R. Kalman Filter: Historical Overview and Review of Its Use in Robotics 60 Years after Its Creation. Journal of Sensors, 9674015, 21 pages, 2021. https://doi.org/10.1155/2021/9674015
[61] Murzova, M. A. The Process Noise Model of Kalman Filter for Chirp Radar. 2019 International Conference on Engineering and Telecommunication (EnT), pp. 1-5, 2019. https://doi.org/10.1109/EnT47717.2019.9030593
[62] Luo, Z.; Shi, D.; Shen, X.; Ji, J.; Gan, W. -S. GFANC-Kalman: Generative Fixed-Filter Active Noise Control With CNN-Kalman Filtering. IEEE Signal Processing Letters, vol. 31, pp. 276-280, 2023. https://doi.org/10.1109/LSP.2023.3334695
[63] Feng, B.; Zhang, P. An Improved Kalman Filter Based on Sequentially Estimating Measurement Noise Covariance. 2021 China Automation Congress (CAC), pp. 589-593, 2021. https://doi.org/10.1109/CAC53003.2021.9727517
校內:2030-01-23公開