簡易檢索 / 詳目顯示

研究生: 戚智勇
Chi, Chih-Yung
論文名稱: 禾本科專一NAC引子在葉綠體瓦解時功能探討
Function study of a grass-specific NAC transcription factor in thylakoid membrane disassembly during chloroplast degradation
指導教授: 李瑞花
Lee, Ruey-Hua
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 70
中文關鍵詞: 鹼性半乳糖水解酶雙半乳糖酯瓦解酵素花的發育基因調控葉片衰老NAC水稻
外文關鍵詞: alkaline a-galactosidase, DGDG-degrading enzyme, flower development, gene regulation, leaf senescence, NAC, rice
相關次數: 點閱:78下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 葉子衰老是發育過程的最後階段,最後導致器官死亡。該過程處於遺傳編程序列的控制之下,稱之為程序細胞死亡。葉綠體是最早在葉片衰老過程中經歷降解的胞器,當類囊體膜被破壞時,進而葉綠素發生降解。在先前我們已經調查到衰老相關基因Os08g0495800(OsakαGal),其編碼為水稻中特異性的鹼性α-半乳糖苷酶。 OsakαGal是一種二半乳糖基二酰基甘油(DGDG)降解酶,此酵素與葉綠體降解過程中類囊體膜的分解有關。我們的研究目的是確定在OsakαGal基因中如何被轉錄因子調節,並且被激發OsAkaGal基因的基因功能。我們從OsakαGal基因起始密碼子複製了上游1kb DNA序列片段,並用來做高效率酵母雜交篩選的誘餌,並使用由來自水稻(Oryza sativa cv. Nipponbare)的1100個轉錄因子組成的基因庫。在此我們已經調查出Os07g0456900與OsakαGal啟動子有強烈結合。藉由網路系統分析,我們發現Os07g0456900是屬於一個禾本科專一的NAC家族,並且是由10個同源基因組成。經由再葉子衰老和花發育期間表現量分析,我們發現Os07g0456900和一些同源基因轉錄因子的表現量在葉子衰老和花發育期間是上升的。最後我們藉由轉殖植物來調查基因機制,從基因抑制的轉殖植物中我們發現ZmUbiP::Os07g0456900-SRDX顯示成功抑制Os07g0456900和OsakαGal基因表達。這表明Os07g0456900可能參與OsakαGal基因在葉片衰老和花發育過程中。

    Leaf senescence is the final stage of the developmental process that ultimately leads to organ death. This process is under the control of a genetically programmed sequence and is referred to as program cell death. Chloroplasts are the earliest organelles subjected to degradation during leaf senescence, and breakdown of Chlorophyll takes place when thylakoid membranes are disrupted. We have previously identified a senescence-associated gene, Os08g0495800 (OsakαGal), encoding a green plant specific alkaline a-galactosidase in rice. OsakαGal is a digalactosyldiacylglycerol (DGDG)-degrading enzyme associated with the disassembly of thylakoid membranes during chloroplast degradation. The aim of this work is to identify transcription factors that play putative function in the transactivation of OsakαGal gene. We have cloned upstream 1kb DNA sequences from start codon and used as bait for high-throughput yeast one-hybrid screening using a library composed of 1100 transcription factors from Oryza sativa cv. Nipponbare. We have identified Os07g0456900 strongly bind to the OsakαGal promoter. Phylogenetic analysis showed Os07g0456900 belongs to a novel grass-specific NAC subfamily consist of 10 homologous genes. The expression profiles of Os07g0456900 and some of the homologous gene transcripts were up-regulated during leaf senescence and flower development. Gene suppression transgenic plants ZmUbiP::Os07g0456900-SRDX showed successful down regulated Os07g0456900 and OsakαGal gene expression. This suggested that Os07g0456900 might involve in the transactivation of OsakαGal gene during leaf senescence and flower development.

    Abstract ……………………………………………………………………………………. i 中文摘要 ………………………………………………………………………………….. ii Acknowledge …………………………………………………………………………...... iii Abbreviations ..…………………………………………………………………………… iv Contents ......………………………………………………………………………………. v List of Tables ...……………………………………………………………………………vii List of Figures..…………………………………………………………………………...viii 1.Intrduction 1 1.1. Leaf senescence 1 1.2. Structure and Function of chloroplast 2 1.3. Structure and Function of thylakoid membrane 4 1.4. Thylakoid membrane degradation 5 1.5. Environmental Factors and Leaf Senescence 7 1.6. Gene expression during leaf senescence 10 1.7. Transcriptional regulation during leaf senescence 11 1.8. research aim 12 2.Method and material 13 2.1. Grow and maintenance of rice 13 2.2. Genomic DNA isolation 13 2.3. Total RNA extraction and quantitation 13 2.4. Non-denaturing RNA and DNA agarose gel electrophoresis 14 2.5. Total chlorophyll extraction and quantitation 14 2.6. Retrieval of cDNA, gDNA, promoter and amino acid sequences 14 2.7. Sequence analysis 15 2.8. Semi-Quantitative Reverse Transcript-PCR (RT-PCR) 15 2.9. Preparation of chemically competent E. coli DH5α 15 2.10. Cloning of PCR amplicon into plasmid vectors 16 2.11. Bacterial transformation by heat shock 16 2.12. Colony PCR 17 2.13. Plasmid DNA isolation 17 2.14. Preparation of E. coli glycerol stocks 17 2.15. SYBR Green quantitative RT-PCR (qRT-PCR) 17 2.16. Yeast one hybrid (Y1H) 18 2.17. Plant transformation 18 3. Result 19 3.1. Cloning of 1 kb OsakαGal promoter into pHISi2 19 3.2. Identification of a NAC transcription factor binds to OsakαGal promoter by Y1H screen 19 3.3. Os07g0456900 belongs to a grass-specific NAC sub-family 20 3.4. Expression profiles of Os07g0456900 and homologous genes during different stages of leaf senescence 20 3.5. Expression profiles of Os07g0456900 and homologous genes during different stages of flower development 20 3.6. Genotyping of ZmUbiP::Os07g0456900-SDRX knockout mutant 21 3.7. Detection of Os07g0456900 and OsakαGal gene transcripts in ZmUbiP:: Os07g0456900-SDRX knockout mutants 21 3.8. Phenotyping of ZmUbiP::Os07g0456900-SDRX knockout mutant phenotype they are no different in leaf senescence and flower development, but the seed production and grain filling are different. 22 4. Discussion 23 5. Conclusion 25 6. Reference 26

    Arber A. (1934). The gramineae: a study of cereal, bamboo, and grass. Cambridge: Cambridge University Press. p1-506
    Andersson B, Anderson JM. (1980). Lateral heterogeneity in the distribution of chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta. 593(2): 427-40.
    Abeles FB, Dunn LJ, Morgens P, Callahans A, Dinterman RE, Schmidit J. (1988). Induction of 33-kD and 60-kD peroxidases during ethylene-induced senescence of cu-cumber cotyledons. Plant Physiol. 87: 609–15.
    Andersson A, Keskitalo J, Sjodin A, Bhalerao R, Sterky F, et al. (2004). A transcrip-tional timetable of autumn senescence. Genome Biol. 5: R24
    Aida, M., Tasaka, M. (2006). Morphogenesis and patterning at the organ boundaries in the higher plant shoot apex. Plant Mol. Biol. 60:915-928.
    Andersson M. X., Dörmann P. (2009). Chloroplast Membrane Lipid Biosynthesis and Transport. The Chloroplast. p125-158.
    Bennett, S.R.M., Alvarez, J., Bossinger, G., Smyth, D.R. (1995). Morphogenesis in pinoid mutants of Arabidopsis thaliana. Plant J. 8: 505-520.
    Buchanan-Wollaston V. 1997. The molecular biology of leaf senescence. Journal of Experimental Botany. 48 (2): 181–199.
    Buchanan-Wollaston V, Earl S, Harrison E, Mathas E, Navabpour S, et al. (2003). The molecular analysis of leaf senescence: a genomics approach. Plant Biotechnol. J. 1: 3–22.
    Balazadeh S, Siddiqui H, Allu AD, Matallana-Ramirez LP, Caldana C, Mehrnia M, Zanor MI, Kohler B, Mueller-Roeber B. (2010). A gene regulatory network controlled by the NAC transcription factor ANAC092/AtNAC2/ORE1 during salt-promoted senescence. Plant J. 62: 250-264.
    Cao J, Jiang F, Sodmergen, Cui K. (2003). Time-course of programmed cell death dur-ing leaf senescence in Eucommia ulmoides. J. Plant Res. 162: 7–12.
    Breeze E, Harrison E, McHattie S, Hughes L, Hickman R, Hill C, Kiddle S, Kim YS, Penfold CA, Jenkins D et al. (2011). High-resolution temporal profiling of transcripts during Arabidopsis leaf senescence reveals a distinct chronology of processes and regulation. Plant Cell. 23: 873-894.
    Chengzhen Lianga,b, Yiqin Wanga, Yana Zhua , Jiuyou Tanga, Bin Hua, Linchuan Liua, Shujun Oua, Hongkai Wuc, Xiaohong Suna, Jinfang Chua, and Chengcai Chua, (2014). OsNAP connects abscisic acid and leaf senescence by fine-tuning abscisic acid biosynthesis and directly targeting senescence-associated genes in rice. PNAS. 111(27): 10013–10018.
    Chanjuan Mao, Songchong Lu, Bo Lv, Bin Zhang, Jiabin Shen, Jianmei He, Liqi-ong Luo, Dandan Xi, Xu Chen, Feng Ming. (2017). A Rice NAC Transcription Factor Promotes Leaf Senescence via ABA Biosynthesis. Plant Physiology. 174: 1747–1763.
    Dagmara Podzimska-Sroka, Charlotte O’Shea, Per L. Gregersen, Karen Skriver. (2015). NAC Transcription Factors in Senescence: From Molecular Structure to Function in Crops. Plants. 4(3): 412-448.
    Ellis CM, Nagpal P, Young JC, Hagen G, Guilfoyle TJ, Reed JW. (2005). AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development. 132: 4563–74.
    Elkehal R., Becker T., Sommer M S., Königer M., Schleiff E. (2012). Specific lipids influence the import capacity of the chloroplast outer envelope precursor protein translocon. Biochimica et Biophysica Acta (BBA) Molecular Cell Research. 1823(5): 1033-1040.
    Fujimoto, Z., Kaneko, S., Momma, M., Kobayashi, H. and Mizuno, H. (2003). Crys-tal structure of rice a-galactosidase complexed with D-galactose. J. Biol. Chem. 278: 20313 20318.
    Gepstein S, Thimann KV. (1980). Changes in the abscisic acid content of oat leaves during senescence. Proc. Natl. Acad. Sci. USA 77: 2050–53.
    Goldberg R B., Beals T P., Sanders P M. (1993). Anther development: basic principles and practical applications. Plant Cell. 5: 1217-1229.
    Gan S, Amasino RM. (1995). Inhibition of leaf senescence by autoregulated production of cytokinin. Science. 270:1986–88.
    Gao, Z. and Schaffer, A.A. (1999). A novel alkaline a-galactosidase from melon fruit with a substrate preference for raffinose. Plant Physiol. 119: 979-987.
    Gepstein, S., Sabehi, G., Carp, M.-J., Hajouj, T., Nesher, M.F.O., Yariv,I., Dor, C. and Bassani, M. (2003). Large-scale identification of leaf senescence-associated genes. Plant J. 36: 629–642.
    Guo Y, Cai Z, Gan S. (2004). Transcriptome of Arabidopsis leaf senescence. Plant Cell Environ. 27:521–49.
    Guo Y, Gan S. (2006). AtNAP, a NAC family transcription factor, has an important
    role in leaf senescence. Plant J. 46: 601–12.
    Herman, E.M. and Shannon, L.M. (1985). Accumulation and subcellular localization of a-galactosidase-hemeagglutinin in developing soybean cotyledons. Plant Physiol. 77: 886–890.
    Hoshikawa K. (1989). The growing rice plants. Tokyo: Nobunkyo. p1-219.
    Hong SB, Sexton R, Tucker ML. (2000). Analysis of gene promoters for two tomato polygalacturonases expressed in abscission zones and the stigma. Plant Physiol. 123:869–81.
    Henrissat, B., Coutinho, P.M. and Davies, G.J. (2001). A census of carbohydrate-active enzymes in the genome of Arabidopsis thaliana. Plant Mol. Biol. 47: 55–72.
    Hinderhofer K, Zentgraf U. (2001). Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta. 213: 469–73.
    Haixia Pei, Nan Ma, Ji Tian, Jing Luo, Jiwei Chen, Jing Li, Yi Zheng, Xiang Chen. (2013). A NAC Transcription Factor Controls Ethylene-Regulated Cell Expansion in Flower Petals. Plant physiology. 163(2): 775-91.
    Hickman R, Hill C, Penfold CA, Breeze E, Bowden L, Moore JD, Zhang P, Jackson A, Cooke E, Bewicke-Copley F et al. (2013). A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidopsis leaves. Plant J. 75: 26-39.
    Hyo Jung Kim, Hong Gil Nam, Pyung Ok Lim. (2016). Regulatory network of NAC transcription factors in leaf senescence. Plant Biology. 33: 48–56.
    Ishida H., Yoshimoto K., Izumi M., Reisen D., Yano Y., MakinoA., Ohsumi Y., Hanson M R., Mae T. (2008). Mobilization of Rubisco and Stroma-Localized Fluorescent Proteins of Chloroplasts to the Vacuole by an ATG Gene-Dependent Autophagic Process Plant Physiology. 108: 122770.
    Ishida H., Yoshimoto K., Reisen D., Makino A., Ohsumi Y., Hanson M R., Mae T. (2013). Visualization of Rubisco-Containing Bodies Derived from Chloroplasts in Living Cells of Arabidopsis. Photosynthesis. Energy from the Sun. p1207-1210.
    Jing HC., Sturre MJG., Hille J, Dijkwel PP. (2002). Arabidopsis onset of leaf death mutants identify a regulatory pathway controlling leaf senescence. Plant J. 32: 51–63.
    Jing HC, Schippers JH, Hille J, Dijkwel PP. (2005). Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J. Exp. Bot. 56:2915–23.
    K. Kikuchi, M. Ueguchi-Tanaka, K. Yoshida, Y. Nagato, M. Matsusoka, H.Y. Hirano. (2000). Molecular analysis of the NAC gene family in rice. Molecular and Gen-eral Genetics MGG. 262(6): 1047–1051.
    Kim HJ, Ryu H, Hong SH, Woo HR, Lim PO, et al. (2006). Cytokinin-mediated
    control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis.
    Proc. Natl. Acad. Sci. USA 103:814–19.
    Kwiatkowska D. (2006). Flower primordium formation at the Arabidopsis shoot apex: quantitative analysis of surface geometry and growth. J. Exp. Bot. 57: 571-80.
    Kwiatkowska D. (2008). Flowering and apical meristem growth dynamics. J. Exp. Bot. 59: 187-201.
    Kim HJ, Nam HG, Lim PO. (2016). Regulatory network of NAC transcription factors in leaf senescence. Curr Opin Plant Biol. 3:48-56.
    Lee RH, Wang CH, Huang LT, Chen SCG. (2001). Leaf senescence in rice plants: cloning and characterization of senescence up-regulated genes. Journal of Experimental Botany. 52: 1117–1121.
    Lee, R H., Chen, S C G. (2002). Programmed cell death during rice leaf senescence is nonapoptotic. New Phytologist. 155(1): 25-32.
    Lim PO., Woo HR., Nam HG. (2003). Molecular genetics of leaf senescence in Ara-bidopsis. Trends Plant Sci. 8: 272–78.
    Lara MEB, Garcia MCG, Fatima T, Ehne R, Lee TK, et al. (2004). Extracellular in-vertase is an essential component of cytokinin-mediated delay of senescence. Plant Cell 16: 1276–87.
    Lee RH, Lin MC, Chen SCG. (2004). A novel alkaline a-galactosidase gene is involved in rice leaf senescence. Plant Molecular Biology 55: 281– 295.
    Lim PO, Nam HG. (2005). The molecular and genetic control of leaf senescence and
    longevity in Arabidopsis. Curr. Top. Dev. Biol. 67: 49–83.
    Lee RH, Hsu JH, Huang HJ, Lo SF, Chen G. (2009). Alkaline α-galactosidase degrades thylakoid membranes in the chloroplast during leaf senescence in rice. New Phytologist. 184 (3): 596-606.
    Martínez D., Costa M., Guiamet J. (2008). Senescence-associated degradation of chloroplast proteins inside and outside the organelle. Plant Bioogyl. 10(1): 5-22.
    Mustárdy L., Buttle K., Steinbach G., Garaba G. (2008). The Three-Dimensional Network of the Thylakoid Membranes in Plants: Quasihelical Model of the Granum-Stroma Assembly. Plant Cell. 20(10): 2552–2557.
    Mizusawa N., Wada H. (2012). The role of lipids in photosystem II. Biochimica et Biophysica Acta. 1817(1): 194-208.
    Ma X, Zhang Y, Turečková V, Xue GP, Fernie AR, Mueller-Roeber B, Balazadeh S. (2018). The NAC Transcription Factor SlNAP2 Regulates Leaf Senescence and Fruit Yield in Tomato. Plant Physiol.177(3): 1286-1302.
    Noode’n, LD, Guiame’t JJ and John, I. (1997). Senescence mechanisms. Physiol. Plant. 101: 746–753.
    Nood’en LD, AC Leopold. (1988). The phenomena of senescence and aging. In Senes-cence and Aging in Plants. San Diego: Academic. p1–50.
    Noh YS, Amasino R. (1999). Identification of a promoter region responsible for the
    senescence-specific expression of SAG12. Plant Mol. Biol. 41: 181–94.
    Nood’en LD. (2003). Plant cell death process. Academic. p1-392
    Penfold CA, Buchanan-Wollaston V. 2014. Modelling transcriptional networks in leaf senescence. J Exp Bot, 65: 3859-3873.
    Nobutaka Mitsuda, Motoaki Seki, Kazuo Shinozaki, Masaru Ohme-Takagi. (2005). The NAC Transcription Factors NST1 and NST2 of Arabidopsis Regulate Secondary Wall Thickenings and Are Required for Anther Dehiscence. Plant cell. 17(11): 2993-3006.
    Nobutaka Mitsuda, Miho Ikeda, Shinobu Takada, Yuko Takiguchi, Youichi Kondou Takeshi Yoshizumi, Miki Fujita, Kazuo Shinozaki, Minami Matsui, Masaru Ohme-Takagi. (2010). Efficient Yeast One-/Two-Hybrid Screening Using a Library Composed Only of Transcription Factors in Arabidopsis thaliana. Plant and Cell Physiology. 51(12): 2145–2151.
    Quirino, B., Normanly, J. and Amasino, R.M. (1999). Diverse range of gene activity during Arabidopsis thaliana leaf senescence includes pathogen independent induction of defense related genes. Plant Mol. Biol. 40: 267–278.
    Qinqin Han, Junhong Zhang, Hanxia Li, Zhidan Luo, Khurram Ziaf, Bo Ouyang,
    Okushima Y, Mitina I, Quach HL, Theologis A. (2005). AUXIN RESPONSE FAC-TOR 2 (ARF2), a pleiotropic developmental regulator. Plant J. 43:29–46.
    Rao MV, Davis KR. (2001). The physiology of ozone-induced cell death. Planta 213:682–90.
    Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM (2004). Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131: 4225-4237.
    Richard Hickman, Claire Hill, Christopher A. Penfold, Emily Breeze, Laura Bowd-en, Jonathan D. Moore, Peijun Zhang, Alison Jackson, Emma Cooke, Findlay Bewicke-Copley, Andrew Mead, Jim Beynon David L. Wild, Katherine J. Denby, Sascha Ott1 and Vicky Buchanan-Wollaston. (2013). A local regulatory network around three NAC transcription factors in stress responses and senescence in Arabidop-sis leaves. Plant J. 75(1):26-39.
    Stapf O. (1917). Gramineae. In: Oliver D, ed. Flora of tropical Africa. London: Lowell Reeve & Co, 1–192.
    Sexton R., Roberts JA. (1982). Cell biology of abscission. Annu. Rev. Plant Physiol. 33:133.
    Staehelin L. (1986). Chloroplast Structure and Supramolecular Organization of Photosynthetic Membranes. Photosynthesis III p1-84.
    Salma Balazadeha, Miroslaw Kwasniewskia,c, Camila Caldanab, Mohammad Mehrniab, Marı´a Ine´ s Zanorb,e, Gang-Ping Xued, Bernd Mueller-Roebera. (2011). ORS1, an H2O2-Responsive NAC Transcription Factor, Controls Senescence in Arabidopsis thaliana. Molecular Plant. 4: 346–360.
    Salma Balazadeh, Max Planck, Golm, Germany. (2018). SlNAP2 regulates leaf senescence in tomato. Plant Physiology. 177(3):1286-1302.
    Takeoka Y, Shimizu M, Wada T. (1993). Panicles. In: Matsuo T, Hoshikawa K, eds. Science of the rice plant, Tokyo: Nobunkyo. 1: 295–326.
    Tang D, Christiansen KM, Innes RW. (2005). Regulation of plant disease resistance, stress responses, cell death, and ethylene signaling in Arabidopsis by the EDR1 protein kinase. Plant Physiology. 138:1018–2.
    Taotao Wang, Zhibiao Ye. (2012). Identification and expression pattern of one stress-responsive NAC gene from Solanum lycopersicum. Molecular Biology Reports. 39(2): 1713–1720.
    Ueda J, Kato J. (1980). Identification of a senescence-promoting substance from wormwood (Artemisia absinthum L.). Plant Physiol. 66:246–49.
    Van der GraaffE., Schwacke R, Schneider A., Desimone M., Flugge U I., Kunze R. (2006). Transcription analysis of Arabidopsis membrane transporters and hormone path-ways during developmental and induced leaf senescence. Plant Physiol. 141:776–92.
    Woolhouse H W. (1984). The biochemistry and regulation of senescence in chloroplasts.
    Can. J. Bot. 62:2934–42.
    Weaver LM, Gan S, Quirino B, Amasino RM. (1998). A comparison of the expression patterns of several senescence-associated genes in response to stress and hormone treat-ment. Plant Mol. Biol. 37:455–69.
    Woo HR, Goh CH, Park JH, Teyssendier B, Kim JH, et al. (2002). Extended leaf longevity in the ore4-1 mutant of Arabidopsis with a reduced expression of a plastid
    ribosomal protein gene. Plant J. 31:331–40.
    Yoshida S, Ito M, Callis J, Nishida I,Watanabe A. (2002). A delayed leaf senescence mutant is defective in arginyl-tRNA:protein arginyltransferase, a component of the N-end rule pathway in Arabidopsis. Plant J. 32:129–37.
    Zeevaart JAD, Creelman RA. (1988). Metabolism and physiology of abscisic acid. An-nu. Rev. Plant Physiol. Plant Mol. Biol. 39:439–73.

    無法下載圖示 校內:2023-08-23公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE