簡易檢索 / 詳目顯示

研究生: 謝立禹
Hsieh, Li-Yu
論文名稱: 無鉛焊錫接點於低週疲勞下潛變與棘齒行為之分析
Analysis of Creep and Ratcheting Phenomena for Lead-Free Solder Joint under Low Cycle Fatigue
指導教授: 屈子正
Chiu, Tz-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 87
中文關鍵詞: 無鉛焊錫疲勞潛變行為棘齒行為損傷
外文關鍵詞: Pb-free solder, Fatigue, Creep, Ratcheting, Damage
相關次數: 點閱:59下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,因為國際上環保意識抬頭,各國開始禁止在電子產品中使用有毒物質,所以以無鉛焊錫取代含鉛焊錫成為必然之趨勢。但錫鉛焊錫的使用已經有一段很長的時間,因此對其材料行為有較充分的了解。相反地,因為對於無鉛焊錫材料相關的研究有限,所以其材料行為仍然無法完全掌握。
    為了解無鉛焊錫在疲勞負載下的行為,本論文以實驗方法針對錫銀銅3807球閘陣列試件藉由恆溫下梯形波和三角波形式之循環負載來觀察材料的變形及損傷行為。實驗考慮的條件包含溫度、負載持平時間和負載峰值。從實驗結果觀察到,當材料處在負載升降的過程,即使所受到的負載峰值低於降伏點,仍然會有棘齒反應產生。另外,在材料處於峰值負載持平階段,會有暫態與穩態潛變反應發生。而且材料的潛變與棘齒反應會隨著溫度與最大負載的增加而增加。此外,本研究中發現,對於整體的負載對位移的遲滯迴圈,潛變行為造成之反應會大於棘齒反應。最後,利用有限元素法模擬恆溫條件下雙層剪力循環實驗,並以塑性應變能密度增量作為疲勞損傷評估的參數,與一上板之晶圓級封裝元件在加速熱循環試驗下之模擬結果作比較。期望藉由兩種實驗比較之結果,發展雙層剪力循環試驗與加速溫度循環之間疲勞壽命的加速因子。

    For the purpose of considering the fatigue response of Pb-free SnAgCu solder joint, a cyclic double lap shear test consisting both ramp and dwell loading profiles under isothermal condition was investigated for ball grid array solder joints. Factors including test temperature, shearing load amplitude and load dwelling time were considered in the experiment for determining the damage accelerating effects. From the experiment it was observed that, during the cyclic shear load ramping stages, ratcheting would still occur even though the peak load is below the solder yielding point. Transient and steady-state creep responses were also observed during the dwelling stages of the loading profile. Both ratcheting and creep responses became more significant as temperature or peak load increases. An important finding of the experiment is that the contribution of creep to the overall load-displacement hysteresis is more significant than the contribution of ratcheting. The hysteresis and the corresponding inelastic energy dissipation under the cyclic double lap shear experiment were compared to those calculated numerically for a typical wafer-level package assembled on printed circuit board. The comparison can be used for developing acceleration factors between the cyclic shear and board-level temperature cycling tests.

    摘要 I 英文摘要 II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIII 第一章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.3 研究目的 5 1.4 論文架構 6 第二章 基本理論 8 2.1 潛變行為 9 2.2 疲勞行為 12 2.3 棘齒現象 13 2.4 損傷理論 14 2.5 Anand 黏塑性本構模型 15 第三章 焊錫接點加速疲勞實驗 17 3.1 錫接點試件 17 3.2 實驗設置 18 3.3 試件安裝流程 21 3.4 實驗方法與條件 22 第四章 實驗結果與討論 25 4.1 實驗結果 25 4.2 數據處理 28 4.3 潛變疊加行為 30 4.3.1 負載持平時間之影響 30 4.3.2 循環負載峰值之影響 35 4.3.3 溫度之影響 39 4.4 棘齒行為 42 4.4.1 循環負載持平時間對棘齒反應之影響 42 4.4.2 循環負載峰值對棘齒反應之影響 46 4.4.3 溫度對棘齒反應之影響 52 4.5 雙層剪力實驗負載與位移之關係 56 4.6 實驗狀態模擬與溫度循環模擬之比較 61 4.6.1 雙層剪力循環實驗模擬 61 4.6.2 實際封裝體之溫度循環模擬 67 第五章 結論與未來方向 72 參考文獻 74 附錄一 環氧樹脂強度測試 78 附錄二 渦電流位移感測器溫度校正 82 自述 87

    [1] T.-S. Park and S.-B. Lee, “Low cycle fatigue testing of ball grid array solder joints under mixed-mode loading conditions,” Journal of Electronic Packing, Vol. 127, pp. 237-244, 2005.
    [2] K. S. Basaruddin and L. C. Wooi, “Uniaxial ratcheting of mild steel under cyclic tension,” Proceedings of International Conference on Applications and Design in Mechanical Engineering, ICADME 2009, Penang, Malaysia, pp. 6E1-6E4, 2009.
    [3] J. L. Chaboche, “Modeling of ratcheting: evaluation of various approaches,” European Journal of Mechanics, A/Solids, Vol. 13, pp. 501-518, 1994.
    [4] T. Kobayashi and K. Sasaki, “Experiments and simulations of uniaxial ratcheting deformation of Sn–3Ag–0.5Cu and Sn–37Pb solder alloys,” Journal of Materials Science, Vol. 20, pp. 343–353, 2009.
    [5] K. Sasaki, T. Kobayashi and K. Ohguchi, “Experimental observation of correlation between creep and uniaxial ratcheting of Sn/37Pb and Sn/3Ag/0.5Cu solder alloys,” Journal of Electronic Packaging, Vol. 129, pp. 82-89, 2007.
    [6] Y. Kanda and Y. Kariya, “Influence of asymmetrical waveform on low-cycle fatigue life of micro solder joint”, Journal of Electronic Materials, Vol. 39, pp. 238-245, 2010.
    [7] C. Basaran, H. Tang and S. Nie, “Experimental damage mechanics of microelectronic solder joints under fatigue loading,” Proceedings of the 55th Electronic Components and Technology Conference, ECTC 2005, Lake Buena Vista, FL, USA, pp. 874-881, 2005.
    [8] T. Goswami and H. Hanninen, “Dwell effects on high temperature fatigue behavior Part I,” Journal of Material & Design, Vol. 22, pp. 199-215, 2001.
    [9] C. K. Lin and C. M. Huang, “Effect of strain ratio and tensile hold time on low-cycle fatigue of lead-free Sn-3.5Ag-0.5Cu solder,” Journal of Electronic Material, Vol. 35, pp. 292-301, 2005.
    [10] X. J. Yang, C. L. Chow and K. J. Lau, “Time-dependent cyclic deformation and failure of 63Sn/37Pb solder alloy,” International Journal of Fatigue, Vol. 25, pp. 533-546, 2003.
    [11] T. Goswami, “Low cycle fatigue-dwell effects and damage mechanisms,” International Journal of Fatigue, Vol. 21, pp. 55-76, 1999.
    [12] G. Chen, X. Chen and C. D. Niu, “Uniaxial ratcheting behavior of 63Sn37Pb solder with loading histories and stress rates,” Journal of Materials Science and Engineering A, Vol. 421, pp. 238-244, 2006.
    [13] L. Anand, “Constitutive equations for the rate-dependent deformation of metals at elevated temperatures,” Journal of Engineering Materials, Vol. 104, pp. 12-17, 1982.
    [14] S. B. Brown, K. H. Kim and L. Anand, “An internal variable constitutive model for hot working of metals,” International Journal of Plasticity, Vol. 5, pp. 95-130, 1989..
    [15] Z. N. Cheng, G. Z. Wang, L. Chen, J. Wilde and K. Becker, “Viscoplastic Anand model for solder alloys and its application,” Journal of Soldering and Surface Mount Technology, Vol. 12, pp. 31-36, 2000.
    [16] N. M. Shaffiar, W. K. Loh, N. Kamsah and M. N. Tamin,”Continuum damage evolution in Pb-free solder joint under shear fatigue loadings,” Proceedings of the 12th Electronics Packaging Technology Conference, EPTC 2010, Singapore, pp.304-308, 2010.
    [17] L. Cai, Q. Niu, S. Qiu and Y. Liu, “Ratcheting behavior of T225NG Titanium alloy under uniaxial cyclic stressing: experiment and modeling,” Chinese Journal of Aeronautics, Vol.18, pp. 31-39, 2005.
    [18] R.K. Penny and D.L. Marriott, Design for Creep Second Edition, Chapman & Hall, South Africa, 1995.
    [19] D. Bhate, D. Chan, G. Subbaraya T. C. Chiu, V. Gupta, and D. R. Edwards, “Constitutive behavior of Sn3.8Ag0.7Cu and Sn1.0Ag0.5Cu alloys at creep and low strain rate regimes,” IEEE Transactions on Components and Packaging Technologies, Vol. 31, 2008.
    [20] R. Darveaux, “Effect of simulation methodology on solder joint crack growth correlation,” Proceedings of the 50th Electronic Components and Technology Conference, ECTC 2000, Las Vegas, NV, USA, pp. 1048-1058, 2000.

    下載圖示 校內:2014-08-31公開
    校外:2014-08-31公開
    QR CODE