簡易檢索 / 詳目顯示

研究生: 謝嘉興
Shieh, Gia-Shing
論文名稱: 利用端粒酶反轉錄酶調控腺病毒的基因治療膀胱癌
Telomerase-dependent adenovirus-mediated gene therapy in a syngeneic bladder tumor model
指導教授: 蔡宗欣
Tzai, Tzong-Shin
吳昭良
Wu, Chao-Liang
學位類別: 博士
Doctor
系所名稱: 醫學院 - 臨床醫學研究所
Institute of Clinical Medicine
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 87
中文關鍵詞: 溶瘤腺病毒膀胱腫瘤腺病毒端粒酶自殺基因
外文關鍵詞: bladder tumor, adenovirus, suicide gene, oncolytic adenovirus, telomerase
相關次數: 點閱:159下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在人類的惡性腫瘤裡,大部分癌細胞都會表現人類端粒酶反轉錄酶 (human telomerase reverse transcriptase, hTERT),但是在正常細胞中則無此表現,因此許多文獻報告利用hTERT 啟動子 (promoter) 調控治療性基因表現以治療人類的惡性腫瘤。首先我們建構由hTERT promoter 調控cytosine deaminase (CD)自殺基因的腺病毒 (Ad-hTERT-CD)並且結合低劑量的etoposide治療膀胱腫瘤,我們發現在5-fluorocytosine (5-FC)治療下,低劑量etoposide能增加Ad-hTERT-CD對膀胱癌細胞的治療效果,但是對於正常細胞則無毒殺作用。其機轉包括低劑量etoposide治療下,膀胱癌細胞的缺氧調控因子hypoxia-inducible factor-1 (HIF-1) 會被活化,接著促使hTERT promoter活性上升。相反地,低劑量etoposide活化正常細胞的p53因子,促使hTERT promoter活性下降。另外,低劑量etoposide治療下,細胞表面的coxsackie-adenovirus receptor (CAR)表現會上升進而增加腺病毒的感染效果。在動物實驗中,結合Ad-hTERT-CD/5-FC及低劑量etoposide可抑制膀胱腫瘤生長,使75%腫瘤完全消失,並且增加腫瘤中的免疫細胞CD4+及CD8+的數量。因此結合Ad-hTERT-CD/5-FC及低劑量etoposide能更有效地治療膀胱惡性腫瘤。接著我們利用hTERT promoter驅動腺病毒的E1A基因,製造出E1B-55kD缺失的溶瘤腺病毒 (Ad5GS1)來治療膀胱腫瘤,結果Ad5GS1能有效地毒殺人類及老鼠的膀胱癌細胞,但是對於表現telomerase 的正常細胞 (包括老鼠胚胎幹細胞)則無毒殺效果。在動物實驗中,Ad5GS1能有效抑制膀胱腫瘤生長及增加老鼠的存活率,並且治療成效更優於只改造E1B-55kD缺失的溶瘤腺病毒 (Ad5WS1)。進一步地,我們結合表皮成長因素感受器 epidermal growth factor receptor (EGFR)抑制劑 Iressa及Ad5GS1治療膀胱癌細胞,結果我們發現在Iressa治療無效的膀胱腫瘤細胞中,Iressa會活化hTERT promoter活性,並且增加Ad5GS1的治療成果。因為大部分的人類惡性腫瘤都會表現telomerase,因此結合藥物及hTERT promoter調控的基因治療將能更有效的治療人類惡性腫瘤。

    The promoter of human telomearse reverse transcriptase (hTERT) is inactive in normal cells, but active in the majority of cancers. The hTERT promoter can selectively drive transgene expression in telomerase-positive cancers. Here we evaluated the combination therapy of adenoviral vector Ad-hTERT-CD encoding E. Coli cytosine deaminase (CD) drived by the hTERT promoter and low-dose etoposide (0.1 μg/mL) for treating bladder cancer. The results showed that Ad-hTERT-CD conferred sensitivity to 5-fluorocytosine (5-FC) in bladder cancer cells, which could be enhanced by etoposide treatment, but not in normal cells. The up-regulated hTERT promoter was correlated with the expression of hypoxia-inducible factor (HIF)-1α. By contrast, etoposide activated p53 and down-regulated hTERT promoter activity in normal cells. Etoposide also increased adenoviral infection via enhancement of coxsackie-adenovirus receptor (CAR) expression on bladder cancer and normal cells. The combined therapy of Ad-hTERT-CD (109 plaque-forming units)/5-FC (200 mg/kg) with etoposide (2 mg/kg) synergistically suppressed tumor growth and prolonged survival in mice bearing syngeneic MBT-2 bladder tumors. This combination therapy induced complete tumor regression in 75 % of tumor-bearing mice. Furthermore, increased infiltrating CD4+ and CD8+ T cells and necrosis within the tumors were found in mice receiving combination therapy of Ad-hTERT-CD and etoposide compared with those treated with either treatment alone. Thus, the combination therapy may be an appealing therapeutic intervention for bladder cancers. In adenoviral vector system, conditionally replicating adenoviruses (CRAds), which can induce cytolysis of infected tumor cells and spread to surrounding cells, can provide better antitumor efficacy than non-replicating groups. Iressa is a selective tyrosine kinase inhibitor of EGFR, which is overexpressed in majority of human bladder cancers, to block tumor cell proliferation, survival and progression. We hypothesized that the combined therapy of Iressa and an E1B-55kD-deleted CRAd, designed Ad5GS1 which expressed intact E1A driven by hTERT promoter, exerted tumor-specific oncolysis. Ad5GS1 caused severe cytolysis in telomerase-positive human and murine bladder cancer cells, which could be enhanced by Iressa, whereas it was severely attenuated in telomerase-positive normal cells, including murine nontransformed, immortalized fibroblasts and embryonic stem cells. Most notably, after Ad5GS1 infection hTERT promoter was continuously up-regulated in murine bladder cancer cells with mutant p53. The up-regulation of hTERT promoter activity was correlated with the dosage of E1A, which was the adenoviral early gene driven by hTERT promoter. Iressa also up-regulated hTERT promoter activity in Iressa-resistant bladder cancer cells. Ad5GS1 exhibited higher oncolytic activities than an E1B-55 kD-deleted adenovirus driven by the E1A promoter in both in vitro and in vivo studies. Intratumoral administration of Ad5GS1 significantly retarded tumor growth and prolonged the survival time in immunocompetent mice bearing murine bladder tumors. The replication of Ad5GS1 was detectable in tumors for at least 15 days after treatment. Our results suggest that oncolytic effects of Ad5GS1 in telomerase-positive bladder cancer cells provides safety features for tumor-selective killing and yields a therapeutic benefit in the syngeneic murine tumor model, which is relevant to clinical settings. Furthermore, Iressa up-regulated the hTERT promoter activity to enhance the cytolytic efficacy of Ad5GS1 system. Because a majority of human tumors exhibit high telomerase activity, the combination therapy of chemotherapeutic agent and hTERT promoter-driven gene therapy may be applicable to a broad spectrum of cancers.

    Chinese abstract 3 Abstract 5 Content 8 Figure content 11 Acknowledgement 12 Introduction A. Biology of human adenovirus 14 B. Adenoviral vector for therapy 15 C. Oncolytic adnovirus 15 D. Telomerase and telomerase reverse transcriptase promoter 16 E. Suicide gene therapy-Escherichia Coli cytosine deaminase (CD) 17 F. Iressa and etoposide 18 Specific aims Part I. The therapeutic effect of Ad-hTERT-CD/5-FC system combined with 20 low-dose etoposide for bladder cancers Part II. Iressa enhances oncolytic therapy of E1B-55kD-deleted 21 replication-competent adenovirus driven by hTERT promoter in syngeneic bladder cancer models Materials and Methods Part I Cells, mice and chemotherapeutic agents 22 Analysis of hTERT promoter activity and p53 and HIF-1 22 transcriptional activities Construction of Ad-hTERT-CD adenoviral vector 24 In vitro cell viability assay 24 Western blot analysis 25 Flow cytometric analysis of CAR and integrin expressions on bladder cancer 25 cells after etoposide treatment Determination of cell susceptibility to infection by adenovirus 25 Animal studies 26 Histological and immunohistochemical analyses 26 Statistical analysis 27 Part II Cells, mice and Iressa 28 Construction of oncolytic adenoviruses 28 Analyses of p53 mutation and transcriptional activity, and hTERT promoter 29 activity Determination of susceptibility of various cell lines to adenoviral infection 30 Assays of CPE, cell viability and viral replication 30 Animal studies 31 Immunohistochemistry 32 Statistical analysis 32 Results Part I: Ad-hTERT-CD/5-FC treatment suppressed tumor growth and prolonged 33 survival in mice bearing MBT-2 tumors Low-dose etoposide enhanced transgene expression driven by the hTERT 34 promoter through upregulation of HIF-1a expression in murine bladder model Etoposide enhanced adenovirus infection through upregulation of CAR but 35 not of avb3 and avb5 integrins on bladder cancer cells Ad-hTERT-CD/5-FC in combination with etoposide enhanced 5-FC 36 sensitivity to human and murine bladder cancer cells but decreased cytotoxicity to normal cells Ad-hTERT-CD/5-FC and etoposide synergistically suppressed tumor 37 growth and prolonged survival in mice bearing syngeneic MBT-2 tumors Part II: Detection of p53 dysfunction in MBT-2-CF1 cells 39 High promoter activity of hTERT in MBT-2-CF1 and murine embryonic 40 stem cells Similar susceptibility of human and murine bladder cancer cells to 40 adenoviral infection Ad5GS1 induced cytotoxic activity and viral replication in 41 telomerase-positive bladder cancer cells Ad5GS1-induced regulation of hTERT promoter activity correlated with 42 E1A expression Retardation of tumor growth and prolongation in survival time of the 43 immunocompetent mice bearing bladder tumor by Ad5GS1 treatment Transient replication of Ad5GS1 in immunocompetent murine bladder 44 tumor models Iressa up-regulated the hTERT promoter to enhance cytolytic activity of 44 Ad5GS1 in various bladder cancers Discussion Part I 46 Part II 51 References 56

    1. Grossman HB. Superficial bladder cancer: decreasing the risk of recurrence. Oncology 1996; 10:1617-24.
    2. Lutzeyer W, Rubben H, Dahm H. Prognostic parameters in superficial bladder cancer: an analysis of 315 cases. J Urol 1982; 127:250-2.
    3. Cookson MS, Herr HW, Zhang ZF, Soloway S, Sogani PC, Fair WR. The treated natural history of high risk superficial bladder cancer: 15-year outcome. J Urol 1997; 158:62-7.
    4. Mathis JM, Stoff-Khalili MA, Curial DT. Oncolytic adenovirus-selective retargeting to tumor cells. Oncogene 2005; 24:7775-91.
    5. Bergelson JM, Cunningham JA, Droguett G, et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5.Science 1997; 275:1320–3.
    6. Li E, Brown SL, Stupack DG, Purnte XS, Cheresh DA, Nemerow GR. Integrin αvβ1 is an adenovirus coreceptor. J Virol 2001; 75:5405-9.
    7. Wickham TJ, Mathias P, Cheresh DA, Nemerow GR. Integrins avβ3 and avβ5 promote adenovirusinternalization but not virus attachment. Cell 1993; 73: 309–19.
    8. Bischoff JR, Kirn DH, Williams A, Heise C, Fattaey A. McCormick F, et al. An adenovirus mutant that replicates selectively in p53-deficient human tumor cells. Science 1996; 274:373-6.
    9. Ganly I, Kirn D, Eckhardt G, Rodriguez GI, Heise C, Eckhardt SG, et al. A phase I study of Onyx-015, an E1B attenuated adenovirus, administered intratumorally to patients with recurrent head and neck cancer. Clin Cancer Res 2000; 6:798-806.
    10. Nemunaitis J, Khuri F, Ganly I, Arseneau J, Kaye S, Kirn D, et al. Phase II trial of intratumoral administration of ONYX-015, a replication-selective adenovirus, in patients with refractory head and neck cancer. J Clin Oncol 2001; 19:289-298.
    11. Khuri FR, Nemunaitis J, Ganly I, Heise C, Kaye SB, Kirn D, et al. A controlled trial of intratumoral ONYX-015, a selectively-replicating adenovirus, in combination with cisplatin and 5-fluorouracil in patients with recurrent head and neck cancer. Nat Med 2000; 6:879-85.
    12. Rothmann T, Hengstermann A, Whitaker NJ, Scheffner M, zur Hausen H. Replication of ONYX-015, a potential anticancer adenovirus, is independent of p53 status in tumor cells. J Virol 1998; 72:9470-78.
    13. Freytag SO, Rogulski KR, Paielli DL, Gilbert JD, Kim JH. A novel three-pronged approach to kill cancer cells selectively: concomitant viral, double suicide gene, and radiotherapy. Hum Gene Ther 1998; 9:1323-33.
    14. Harada JN, Berk AJ. p53-Independent and -dependent requirements for E1B-55K in adenovirus type 5 replication. J Virol 1999; 73:5333-44.
    15. Hall AR, Dix BR, O'Carroll SJ, Braithwaite AW. p53-dependent cell death/apoptosis is required for a productive adenovirus infection. Nat Med 1998; 4:1068-72.
    16. Turnell AS, Grand RJ, Gallimore PH. The replicative capacities of large E1B-null group A and group C adenoviruses are independent of host cell p53 status. J Virol 1999; 73:2074-83.
    17. Rogulski KR, Freytag SO, Zhang K, Gilbert JD, Heise CC, Kirn DH, et al. In vivo antitumor activity of ONYX-015 is influenced by p53 status and is augmented by radiotherapy. Cancer Res 2000; 60:1193-96.
    18. Geoerger B, Grill J, Barrois M, Feunteun J, Kirn DH, Vassal G, et al. Oncolytic activity of the E1B-55 kDa-deleted adenovirus ONYX-015 is independent of cellular p53 status in human malignant glioma xenografts. Cancer Res 2002; 62:764-72.
    19. O’Shea CC, Johnson L, Bagus B, Choi S, Nicholas C, McCormick F, et al. Late viral RNA export, rather than p53 inactivation, determines ONYX-015 tumor selectivity. Cancer Cell 2004; 6:611-23.
    20. Alemany R, Balague C, Curiel DT. Replicative adenoviruses for cancer therapy. Nat Biotechnol 2000; 18:723-27.
    21. Hemminki A, Kanerva A, Kremer EJ, Bauerschmitz GJ, Smith BF, Curiel DT, et al. A canine conditionally replicating adenovirus for evaluating oncolytic virotherapy in a syngeneic animal model. Mol Ther 2003; 7:163-73.
    22. Wang Y, Hallden G, Hill R, Anand A, Liu TC, Kirn D, et al. E3 gene manipulations affect oncolytic adenovirus activity in immunocompetent tumor models. Nat Biotechnol 2003; 21:1328-35.
    23. Goodrum FD, Ornelles DA. p53 status does not determine outcome of E1B 55-kilodalton mutant adenovirus lytic infection. J Virol 1998; 72:9479-90.
    24. Heise C, Hermiston T, Johnson L, Brooks G, Sampson-Johannes A, Kirn D, et al. An adenovirus E1A mutant that demonstrates potent and selective systemic anti-tumoral efficacy. Nat Med 2000; 6:1134-1139.
    25. Harley CB, Futcher AB, Greider CW. Telomeres shorted during aging of human fibroblasts. Nature 1990; 31:458-60.
    26. Counter CM, Avilion AA, LeFeuvre CE, Stewart NG, Greider CW, Bacchetti S, et al. Telomere shortening associated with chromosome instability is arrested in immortal cells which express telomerase activity. EMBO J 1992; 11:1921-9.
    27. Feng J, Funk WD, Wang SS, Weinrich SL, Avilion AA, Yu J, et al. The RNA component of human telomerase. Science 1995; 269:1236-41
    28. Nakamura TM, Morin GB, Chapman KB, Weinrich SL, Andrews WH, Cech TR, et al. Telomerase catalytic subunit homologs from fission yeast and human. Science 1997; 277:955-9.
    29. Meyerson M, Counter CM, Eaton EN, Ellisen LW, Steiner P, Weinberg RA, et al. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 1997; 90:785-95.
    30. Nakayama J, Tahara H, Tahara E, Saito M, Ito K, Ishikawa F, et al. Telomerase activation by hTRT in human normal fibroblasts and hepatocellular carcinomas. Nat Genet 1998; 18:65-8.
    31. Ramakrishnan S, Eppenberger U, Mueller H, Shinkai Y, Narayanan R. Expression profile of putative catalytic subunit of the telomerase gene. Cancer Res 1998; 58:622-5.
    32. Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL,Brooks MW, Weinberg RA. Creation of human tumour cells with defined genetic elements. Nature 1999; 400:464-8.
    33. Shay JW, Bacchetti S. A survey of telomerase activity in human cancer. Eur J Cancer 1997; 33: 787-791.
    34. Rahat MA, Lahat N, Sharon A, Gazawi H, Abramovici H, Bornstein J. Telomerase activity in patients with transitional cell carcinoma: a preliminary study. Cancer 1999; 85:919-24.
    35. De Kok JB, van Balken MR, Roelofs RW, van Aarssen YA, Swinkels DW, Klein Gunnewiek JM. Quantitative measurement of telomerase reverse transcriptase (hTERT) mRNA in urothelial cell carcinomas. Int J Cancer 2000; 87: 217-220.
    36. Suzuki T, Suzuki Y, Fujioka T. Expression of the catalytic subunit associated with telomerase gene in human urinary bladder cancer. J Urol 1999; 162: 2217-2220.
    37. Koga S, Hirohata S, Kondo Y, Komata T, Takakura M, Kondo S, et al. A novel telomerase-specific gene therapy: gene transfer of caspase-8 utilizing the human telomerase catalytic subunit gene promoter. Hum Gene Ther 2000; 11:1397-1406.
    38. Komata T, Kondo Y, Kanzawa T, Hirohata S, Koga S, Kondo S, et al. Treatment of malignant glioma cells with the transfer of constitutively active caspase-6 using the human telomerase catalytic subunit (human telomerase reverse transcriptase) gene promoter. Cancer Res 2001; 61:5796-5802.
    39. Gu J, Kagawa S, Takakura M, Kyo S, Inoue M, Fang B, et al. Tumor-specific transgene expression from the human telomerase reverse transcriptase promoter enables targeting of the therapeutic effects of the Bax gene to cancers. Cancer Res 2000; 60:5359-64.
    40. Mullen CA, Kilstrup M, Blaese RM. Transfer of the bacterial gene for cytosine deaminase to mammalian cells confers lethal sensitivity to 5?fluorocytosine: a negative selection system. Proc Natl Acad Sci USA 1992; 89: 33?37.
    41. Huber BE, Austin EA, Richards CA, Davis ST, Good SS. Metabolism of 5-fluorocytosine to 5-fluorouracil in human colorectal tumor cells transduced with the cytosine deaminase gene: significant antitumor effects when only a small percentage of tumor cells express cytosine deaminase. Proc Natl Acad Sci USA 1994; 91: 8302-06.
    42. Yang L, Rowe TC, Liu LF. Identification of DNA topoisomerase II as an intracellular target of antitumor epipodophyllotoxins in simian virus 40-infected monkey cells. Cancer Res 1985; 45:5872-6.
    43. Lock RB, Stribinskiene L. Dual modes of death induced by etoposide in human epithelial tumor cells allow Bcl-2 to inhibit apoptosis without affecting clonogenic survival. Cancer Res 1996; 56:4006-12.
    44. Sato N, Mizumoto K, Kusumoto M, Nishio S, Maehara N, Tanaka M, et al. Up-regulation of telomerase activity in human pancreatic cancer cells after exposure to etoposide. British J Cancer 2000; 82:1819-26.
    45. Bouvet M, Fang B, Ekmekcioglu S, Ji L, Bucana CD, Roth JA, et al. Suppression of the immune response to an adenovirus vector and enhancement of intratumoral transgene expression by low-dose etoposide. Gene Therapy 1998; 5:189-95.
    46. Vlahovic G, Crawford J. Activation of tyrosine kinases in cancer. The oncologist 2003; 8: 531-8.
    47. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Baselga J, et al. Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small cell lung cancer. J Clin. Oncol 2003; 21:2237-46.
    48. Ranson M, Hammond LA, Ferry D, Kris M, Tullo A, Rowinsky EK, et al. ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 2002; 20:2240-50.
    49. Neal DE, Sharples L, Smith K, Fennelly J, Hall RR, Harris AL. The epidermal growth factor receptor and the prognosis of bladder cancer. Cancer 1990; 65:1619-25.
    50. Wood DP Jr, Fair WR, Chaganti RS. Evaluation of epidermal growth factor receptor, DNA replication and mRNA expression in bladder cancer. J Urol 1992; 147: 274-7.
    51. Nguyen PL, Swanson PE, Jaszcz W, Aeppli DM, Zhang G, Niehans GA, et al. Expression of epidermal growth factor receptor in invasive transitional cell carcinoma of the urinary bladder. Am. J Clin Pathol 1994; 101: 166-76.
    52. Maida Y, Kyo S, Kanaya T, Wang Z, Yatabe N, Inoue M. et al. Direct activation of telomerase by EGF through Ets-mediated transactivation of TERT via MAP kinase signaling pathway. Oncogene 2002; 21: 4171-79.
    53. Rodriguez R, Schuur ER, Lim HY, Henderson GA, Simons JW, Henderson DR. Prostate attenuated replication competent adenovirus (ARCA) CN706: a selective cytotoxic for prostate-specific antigen-positive prostate cancer cells. Cancer Res 1997; 30:410:293-6.
    54. Yu DC, Sakamoto GT, Henderson DR. Identification of the transcriptional regulatory sequences of human kallikrein 2 and their use in the construction of calydon virus 764, an attenuated replication competent adenovirus for prostate cancer therapy. Cancer Res 1999; 59:1498-504.
    55. Hallenbeck PL, Chang YN, Hay C, Golightly D, Stewart D, Chiang YL, et al. A novel tumor-specific replication-restricted adenoviral vector for gene therapy of hepatocellular carcinoma. Hum Gene Ther 1999; 10:1721-33.
    56. Li Y., Yu D.C., Chen Y., Amin P., Zhang H., Nguyen N., Henderson D.R. A hepatocellular carcinoma-specific adenovirus variant, CV890, eliminates distant human liver tumors in combination with doxorubicin. Cancer Res 2001; 61:6428-36.
    57. Takahashi M., Sato T., Sagawa T., Lu Y., Sato Y., Iyama S., Yamada Y., Fukaura J., Takahashi S., Miyanishi K., Yamashita T., Sasaki K., Kogawa K., Hamada H., Kato J., Niitsu Y. E1B-55K-deleted adenovirus expressing E1A-13S by AFP-enhancer/promoter is capable of highly specific replication in AFP-producing hepatocellular carcinoma and eradication of established tumor. Mol Ther 2002; 5:627-634.
    58. Horikawa I, Cable PL, Afshari C, Barrett JC. Cloning and characterization of the promoter region of human telomerase reverse transcriptase gene. Cancer Res 1999; 59:826-30.
    59. Ameri K, Lewis CE, Raida M, Sowter H, Hai T, Harris AL. Anoxic induction of ATF-4 through HIF-1-independent pathways of protein stabilization in human cancer cells. Blood 2004; 103:1876-82.
    60. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B. A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci USA 1998; 95: 2509-14.
    61. Gao S, McGarry M, Priddle H, Ferrier T, Gasparrini B, Wilmut I, et al. Effects of donor oocytes and culture conditions on development of cloned mice embryos. Mol Reprod Dev 2003; 66:126-33.
    62. Hsieh JL, Wu CL, Lee CH, Shiau AL. Hepatitis B virus X protein sensitizes hepatocellular carcinoma cells to cytolysis induced by E1B-deleted adenovirus through the disruption of p53 function. Clin Cancer Res 2003; 9:338-45.
    63. Gannon JV, Greaves R, Iggo R, Lane DP. Activating mutations in p53 produce a common conformational effect. A monoclonal antibody specific for the mutant form. EMBO J 1990; 9:1595-1602.
    64. Chresta CM, Masters JR, Hickman JA. Hypersensitivity of human testicular tumors to etoposide-induced apoptosis is associated with functional p53 and a high Bax:Bcl-2 ratio. Cancer Res 1996; 56:1834–41.
    65. Vermes A, Guchelaar HJ, Dankert J. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J Antimicrob Chemother 2000; 46:171–9.
    66. Huber BE, Austin EA, Good SS, Knick VC, Tibbels S, Richards CA. In vivo antitumor activity of 5-fluorocytosine on human colorectal carcinoma cells genetically modified to express cytosine deaminase. Cancer Res 1993; 53:4619–26.
    67. Martin-Rivera L, Herrera E, Albar JP, Blasco MA. Expression of mouse telomerase catalytic subunit in embryos and adult tissues. Proc Natl Acad Sci USA 1998; 95:10471-76.
    68. Greenberg RA, Allsopp RC, Chin L, Morin GB, DePinho RA. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene 1998; 16:1723-30.
    69. Chadeneau C, Siegel P, Harley CB, Muller WJ, Bacchetti S. Telomerase activity in normal and malignant murine tissues. Oncogene 1995; 11:893-98.
    70. Boklan J, Nanjangud G, MacKenzie KL, May C, Sadelain M, Moore MA. Limited proliferation and telomere dysfunction following telomerase inhibition in immortal murine fibroblasts. Cancer Res 2002; 62:2104-14.
    71. Shirakawa T, Gardner TA, Ko SC, Bander N, Woo S, Kao C, et al. Cytotoxicity of adenoviral-mediated cytosine deaminase plus 5-fluorocytosine gene therapy is superior to thymidene kinase plus acyclovir in a human renal cell carcinoma model. J Urol 1999; 162:949-54.
    72. Freund CT, Tong XW, Block A, Contant CF, Kieback DG, Lerner SP, et al. Adenovirus-mediated suicide gene therapy for bladder cancer: comparison of the cytomegalovirus- and Rous sarcoma virus-promoter. Anticancer Res 2000; 20:2811-16.
    73. Ambriovic-Ristov A, Gabrilova J, Cimbora-Zovko T, Osmak M. Increased adenoviral transduction efficacy in human laryngeal carcinoma cells resistant to cisplatin is associated with increased expression of integrin avβ3 and coxsackie adenovirus receptor. Int J Cancer 2004; 110:660 –7.
    74. Hemminki A, Kanerva A, Liu B, Wang M, Alvarez RD, Curiel DT,et al. Modulation of coxsackie-adenovirus receptor expression for increased adenoviral transgene expression. Cancer Res 2003; 63: 847-53.
    75. Miller CR, Williams CR, Bushsbaum DJ, Gillespie GY. Intratumoral 5-fluorouracil produced by cytosine deaminase/5-fluorocytosine gene therapy is effective for experimental human glioblastomas. Cancer Res 2002; 62:773-80.
    76. Takakura M, Kyo S, Kanaya T, et al. Cloning of human telomerase catalytic subunit (hTERT)gene promoter and identification of proximal core promoter sequences essential for transcriptional activation in immortalized and cancer cells. Cancer Res 1999; 59:551-7.
    77. Kyo S, Takakura M, Taira T, et al. Sp1 cooperates with c-Myc to activate transcription of the human telomerase reverse transcriptase gene (hTERT).Nucleic Acids Res 2000; 28:669–77.
    78. Fujimoto K, Kyo S, Takakura M, et al. Identification and characterization of negative regulatory elements of the human telomerase catalytic subunit (hTERT)gene promoter: possible role of MZF-2 in transcriptional repression of hTERT. Nucleic Acids Res 2000; 28:2557–62.
    79. Gunes C, Lichtsteiner S, Vasserot AP, Englert C. Expression of the hTERT gene is regulated at the level of transcriptional initiation and repressed by Mad1. Cancer Res 2000; 60:2116–21.
    80. Lin SY, Elledge SJ. Multiple tumor suppressor pathways negatively regulate telomerase. Cell 2003; 113:881–9.
    81. Yatabe N, Kyo S, Maida Y, et al. HIF-1-mediated activation of telomerase in cervical cancer ells. Oncogene 2004; 23:3708–15.
    82. Anderson CJ, Hoare SF, Ashcroft M, Bilsland AE, Keith WN. Hypoxic regulation of telomerase gene expression by transcriptional and post-transcriptional mechanisms. Oncogene 2006; 25:61–9.
    83. Unruh A, Ressel A, Mohamed HG, Johnson RS, Nadrowitz R, Wenger RH, et al. The hypoxia-inducible factor-1 alpha is a negative factor for tumor therapy. Oncogene 2003; 22:3213-20.
    84. Nishi H, Nakada T, Kyo S, Inoue M, Shay JW, Isaka K. Hypoxia-inducible factor 1 mediates up-regulation of telomerase (hTERT). Mol Cell Biol 2004; 24:6076–83.
    85. Wu KJ, Grandori C, Amacker M, et al. Direct activation of TERT transcription by c-MYC. Nat Genet 1999; 21:220–4.
    86. Kuball J, Wen SF, Leissner J, et al. Successful adenovirus-mediated wild-type p53 gene transfer in patients with bladder cancer by intravesical vector instillation. J Clin Oncol 2002; 20:957–65.
    87. Kirch HC, Ruschen S, Brockmann D, Esche H, Horikawa I, Hengge UR, et al. Tumor-specific activation of hTERT-derived promoters by tumor suppressive E1A-mutants involves recruitment of p300/CBP/HAT and suppression of HDAC-1 and defines a combined tumor targeting and suppression system. Oncogene 2002; 21:7991-8000.
    88. Ginsberg HS, Moldawer LL, Sehgal PB, Redington M, Kilian PL, Prince GA, et al. A mouse model for investigating the molecular pathogenesis of adenovirus pneumonia. Proc Natl Acad Sci U S A 1991; 88:1651-55.
    89. Oualikene W, Gonin P, Eloit M. Short and long term dissemination of deletion mutants of adenovirus in permissive (cotton rat) and non-permissive (mouse) species. J Gen Virol 1994; 75:2765-68.
    90. Nemunaitis J, Ganly I, Khuri F, Arseneau J, Kuhn J, Kirn D, et al. Selective replication and oncolysis in p53 mutant tumors with ONYX-015, an E1B-55kD gene-deleted adenovirus, in patients with advanced head and neck cancer: a phase II trial. Cancer Res 2000; 60:6359-66.
    91. Hallden G, Hill R, Wang Y, Anand A, Liu TC, Kirn D, et al. Novel immunocompetent murine tumor models for the assessment of replication-competent oncolytic adenovirus efficacy. Mol Ther 2003; 8:412-24.
    92. Zhang L, Akbulut H, Tang Y, Peng X, Pizzorno G, Deisseroth A, et al. Adenoviral vectors with E1A regulated by tumor-specific promoters are selectively cytolytic for breast cancer and melanoma. Mol Ther 2002; 6:386-93.
    93. Matsubara S, Wada Y, Gardner TA, Egawa M, Park MS, Chung LW, et al. A conditional replication-competent adenoviral vector, Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an experimental model of androgen-independent prostate cancer bone metastasis. Cancer Res 2001; 61:6012-19.
    94. Huang TG, Savontaus MJ, Shinozaki K, Sauter BV, Woo SL. Telomerase-dependent oncolytic adenovirus for cancer treatment. Gene Ther 2003; 10:1241-47.
    95. Wirth T, Zender L, Schulte B, Mundt B, Plentz R, Kuhnel F, et al. A telomerase-dependent conditionally replicating adenovirus for selective treatment of cancer. Cancer Res 2003; 63:3181-88.
    96. Cunnick JM, Dorsey JF, Standley T, Turkson J, Kraker AT, Wu J, et al. Role of tyrosine kinase activity of epidermal growth factor receptor in the lysophosphatidic acid-stimulated mitogen-activated protein kinase pathway. J biol Chem 1998; 273:14468-75.
    97. Chakravarti A, Chakladar A, Delaney MA, Latham DE, Loeffler JS. The epidermal growth factor receptor pathway mediates resistance to sequential administration of radiation and chemotherapy in primary human glioblastoma cells in aRAS-dependent manner. Cancer Res 2002; 62:4307-15.
    98. Roudabush FL, Piece KL, Maudsley S, Khan KD, Luttrell LM. Transactivation of the EGF receptor mediates IGF-1-stimulated shc phosphorylation and ERK 1/2 activation in COS-7 cells. J Biol Chem 2000; 175:22583-9.
    99. Hirata A, Ogawa S, Kometani T, Kuwano T, Naito S, Ono M, et al. ZD1839 (Iressa) induces antiangiogenic effects through inhibition or epidermal growth factor receptor tyrosine kinase. Cancer Res 2002; 62:2554-60.
    100. Matsuo M, Sakurai H, Saiki I. ZD1839, a selective epidermal growth factor receptor tyrosine kinase inhibitor, shows antimetastatic activity using a hepatocellular carcinoma model. Mol Cancer Ther 2003; 2:557-61.

    下載圖示 校內:2008-01-29公開
    校外:2008-01-29公開
    QR CODE