| 研究生: |
吳重億 Wu, Chung-Yi |
|---|---|
| 論文名稱: |
板鰭式熱沉於矩形外殼內之混合對流熱傳特性的研究 Study of Mixed Convection Heat Transfer Characteristics for Plate-Fin Heat Sink in The Rectangular Enclosures |
| 指導教授: |
陳寒濤
Chen, Han-Taw 溫昌達 Wen, Chang-Da |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 96 |
| 中文關鍵詞: | 逆算法 、混合對流之熱傳性質 、板鰭式熱沉 、開孔矩形外殼 |
| 外文關鍵詞: | inverse method, mixed convection, plate-fin heat sink, rectangular enclosure, heat transfer coefficient |
| 相關次數: | 點閱:180 下載:13 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文以逆算法與CFD軟體配合實驗數據探討以AISI 304不銹鋼為材料之矩形鰭片置於各種不同矩形外殼內之熱傳及流體流動特性,並探討鰭片間距、外殼高度與風速對結果之影響。由於鰭片上的熱傳係數並非均勻分佈,故將鰭片表面分割成數個子區域並假設各子區域之熱傳係數為常數,再利用結合有限差分法、最小平方法及實驗溫度量測值之逆算法來預測鰭片上的熱傳係數;本文亦利用CFD軟體求得於外殼內之空氣溫度與速度分佈以及鰭片表面之溫度與熱傳係數,為了求出本研究較正確之熱傳及流體流動特性,選用適當的流動模式及網格格點數所求得之鰭片熱傳係數,須盡可能分別接近實驗溫度量測值、逆算結果及先前之結果。結果顯示,流動模式對結果之影響不容忽視,於開孔矩形殼內鰭片上的混合對流平均熱傳係數會隨鰭片間距及風扇速度的增加而增大;而鰭片上的平均熱傳係數則隨外殼高度的增加先呈現增加的趨勢,若大於某高度後,鰭片的的平均熱傳係數則愈來愈小,此外,風扇的作用亦使得鰭片間距及外殼高度的影響變小。為了驗證本文逆算法預測結果之可靠度,亦與其它相關文獻之經驗公式以及CFD軟體之模擬進行比較。
This study applies inverse method and FLUENT to determine the heat transfer and fluid flow characteristics of plate-fin heat sinks with various enclosures and whether to install the axial-flow fan inside and exhaust fan on the cabinet. Using measured data to predict and analyze the average heat transfer coefficient on the fin in limited space. The inverse method along with the finite difference method, least squares fitting method and experimental temperature data are applied to determine the heat transfer coefficient. Since the distribution of the heat transfer coefficient on the fin is not uniform, the plate-fin is divided into several sub-fin regions and the heat transfer coefficient in each sub-fin region is assumed to be unknown constant. To obtain correct heat transfer and fluid flow characteristics of plate-fin heat sinks,choose appropriate flow model and number of grid points is very important. The results indicate that the heat transfer coefficient increase with increasing fin pitch and speed of fan in the opening rectangulr enclosure.. But the average heat transfer coefficient decreases when the heights larger than the optimal height. At the same time, the effect of the heights and the fin pitch decreases because of fans for mixed convection. In order to verify the reliability of the inverse method with predicted results of this paper, the present study also in comparison with the empirical corelations of other relevant literature and CFD simulation packages.
[1]W. Elenbass, Heat dissipation of parallel plates by free convection, Physica, vol. 9, No.1 (1942), pp. 2-28.
[2]K.E. Starner, H.N. McManus, An experimental investigation of free-convection heat transfer from rectangular fin arrays, ASME J. Heat Transfer, vol. 85 (1963), pp. 273-278.
[3]J.R. Welling, C.V. Wooldridge, Free convection heat transfer coefficients from rectangular vertical fins, ASME J. Heat Transfer, vol. 87 (1965), pp. 439-444
[4]F. Harahap, H.N. McManus, Jr., Natural convection heat transfer from horizontal rectangular fin arrays, ASME J. Heat Transfer, vol. 89 (1967), pp. 32-38.
[5]E.M. Sparrow, A. Haji-Sheikh, T.S. Lundgren, The inverse problem in transient heat conduction, J. Appl. Mech., vol. 31 (1964), pp. 369-375.
[6]F. Harahap, D. Setio, Correlations for heat dissipation and natural convection heat-transfer from horizontally-based, vertically-finned arrays, Appl. Energy, vol. 69 (2001), pp. 29-38.
[7]Biber C. R., Pressure Drop and Heat Transfer in an Isothermal Channel with Impinging Flow , IEEE Trans. on Comp. and Packag. Tech. - Part A, Vol. 20, pp. 458 - 462, December 1997.
[8]C.W. Leung, S.D. Probert, M.J. Shilston, Heat exchanger design: optimum uniform separation between rectangular fins protruding from a vertical rectangular base, Applied Energy, vol. 19 (1985), pp. 287-299.
[9]Charles D. Jones, Lester F. Smith, Optimum arrangement of rectangular fins on horizontal surfaces for free convection heat transfer, ASME J. Heat Transfer, vol. 92 (1970) 6-10.
[10]S. Baskaya, M. Sivirioglu, M. Ozek, Parametric study of natural convection heat transfer from horizontal rectangular fin arrays, Int. J. Therm. Sci., vol. 39 (2000), pp. 797-805.
[11]S. Acharya, S.V. Patankar, Laminar mixed convection in a shrouded fin array, ASME. J. Heat Transfer, vol. 103 (1981), pp. 559-565
[12]N.C. Markatos, K.A. Pericleous, Laminar and turbulent natural convection in an enclosed cavity, Int. J. Heat Mass Transfer, vol. 27 (1984), pp. 755-772.
[13]M. Hasnaoui, P. Vasseur, E. Bilgen, Natural convection in rectangular enclosures with adiabatic fins attached on the heated wall, Wärme- und Stoffübertragung, vol. 27 (1992), pp. 357-368.
[14]T.S. Fisher, K.E. Torrance, Free convection limits for pin-fin cooling, ASME J. Heat Transfer, vol. 120 (1998), pp. 633-640.
[15]E. Yu, Y. Joshi, Heat transfer enhancement from enclosed discrete components using pin-fin heat sinks, Int. J. Heat Mass Transfer, vol. 45 (2002), pp. 4957-4966.
[16]E. Arquis, M. Rady, Study of natural convection heat transfer in a finned horizontal fluid layer, Int. J. Thermal Science, vol. 44 (2005), pp. 43-52.
[17]S.A. Nada, Natural convection heat transfer in horizontal and vertical closed narrow enclosures with heated rectangular finned base plate, Int. J. Heat Mass Transfer, vol. 50 (2007), pp. 667-679.
[18]H.G. Yalcin, S. Baskaya, M. Sivrioglu, Numerical analysis of natural convection heat transfer from rectangular shrouded fin arrays on a horizontal surface, Int. Comm. Heat Mass Transfer, vol. 35 (2008), pp. 299-311.
[19]E.M. Sparrow, D.S. Kadle, Effect of tip to shroud clearance on turbulent heat transfer from a shrouded, longitudinal fin array, ASME J. Heat Transfer, vol. 108 (1986), pp. 519-524.
[20]M. Dogan, M. Sivrioglu, Experimental investigation of mixed convection heat transfer from longitudinal fins in a horizontal rectangular channel: in natural convection dominated flow regimes, Energy Conversion and Management, vol. 50 (2009), pp. 2513-2521.
[21]M. Dogan, M. Sivrioglu, Experimental investigation of mixed convection heat transfer from longitudinal fins in a horizontal rectangular channel, Int. J. Heat Mass Transfer, vol. 53 (2010), pp. 2149-2158.
[22]M. Dogan, M. Sivrioglu, Experimental and numerical investigation of clearance gap effects on laminar mixed convection heat transfer from fin array in a horizontal channel-A conjugate analysis, Appl. Energy, vol. 40 (2012), pp. 102-113.
[23]J.V. Beck, Calculation of surface heat flux from an integral temperature history, ASME J. Heat Transfer, vol. 62 (1962), pp. 46-51.
[24]J.V. Beck, Surface heat flux determination using an integral method, Nuclear Engineering Design, vol. 7 (1968), pp. 170-178.
[25]J.V. Beck, B. Litkouhi, C.R. Stclair, “Efficient sequential solution of nonlinear inverse heat-conduction problem,” Numer. Heat Transfer, vol. 5 (1982), pp. 275-286.
[26]N.M. Alnajem, M.N. Özişik, A direct analytical approach for solving linear inverse heat conduction problems, ASME J. Heat Transfer, vol 107 (1985), pp. 700-703.
[27]S. Sunil, J.R.N. Reddy, C.B. Sobhan, Natural convection heat transfer from a thin rectangular fin with a line source at the base – A finite difference solution, Int. J. Heat Mass Transfer, vol. 31 (1996), pp. 127-135.
[28]E. Velayati, M. Yaghoubi, Numerical study of convection heat transfer from an array of parallel bluff plates, Int. J. Heat Fluid Flow, vol. 26 (2005), pp. 80-91.
[29]H.T. Chen, J.P. Song, Y.T. Wang, Prediction of heat transfer coefficient on the fin inside one-tube plate finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol. 48 (2005), pp. 2697-2707.
[30]H.T. Chen, W.L. Hsu, Estimation of heat transfer coefficient on the fin of annular finned-tube heat exchangers in natural convection for various fin spacings, Int. J. Heat Mass Transfer, vol. 50 (2007), pp. 1750-1761.
[31]H.T. Chen, S.T. Lai, L.Y. Haung, Investigation of heat transfer characteristics in plate-fin heat sink, App. Thermal Engineering, vol. 50 (2013), pp. 352-360.
[32]M.N. Özişik, H.R.B. Orlande, Inverse heat transfer: Fundamentals and applications, Taylor & Francis, New York (2000).
[33]A.N. Tikhonov, V.Y. Arsenin, Solution of ill-posed problems, V. H. Winston & Sons, Washington, DC (1977).
[34]O.M. Alifanov, Inverse heat transfer problem, Springer-Verlag, Berlin (1994).
[35]J.V. Beck, B. Blackwell, C.R. St. Clair, Inverse heat conduction: ill-posed problems, Wiley Interscience, New York (1985).
[36]V.S. Arpaci, Introduction to heat transfer, Prentice Hall, New Jersey (1999), pp. 580.
[37]A. Bejan, Heat transfer, John Wiley & Sons, Inc., New York (1993), pp. 53-62.
[38]F.E.M. Saboya, E.M. Sparrow,Local and average heat transfer coefficients for one-row plate fin and tube heat exchanger configurations, ASME J. Heat Transfer, vol. 96 (1974), pp. 265-272.
[39]H.T. Chen, J.C. Chou, Investigation of natural-convection heat transfer coefficient from the vertical fin of finned-tube heat exchangers, Int. J. Heat Mass Transfer, vol. 49 (1993), pp. 3034-3044.
[40]C.D. Jones, L.F. Smith, Optimum arrangement of rectangular fins on horizontal surfaces for free-convection heat transfer, ASME J. Heat Transfer (1970), pp. 6-10.
[41]賴詩婷,矩行鰭片陣列於具開孔矩形外殼內之熱傳特性研究,國立成功大學機械工程學系,碩士論文,2012。
[42]曾鈴如,矩形鰭片陣列於不同矩形外殼內之熱傳特性的實驗與數值研究,國立成功大學機械工程學系,碩士論文,2013。
[43]賴仲豪,板鰭式熱沉於封閉外殼內之自然對流熱傳特性的實驗與數值研究,國立成功大學機械工程學系,碩士論文,2014。
[44]林子祥,預測板鰭式熱沉於各種矩形外殼內之熱傳特性,國立成功大學機械工程學系,碩士論文,2015。
[45]Q. Chen, W. Xu, A zero-equation turbulence model for indoor airflow simulation, energy & buildings, vol 28 (1998), pp. 137-144.
[46]B.E. Launder, D. Spalding, The numerical computation of turbulent flows, Computer Methods in Applied Mechanics and Engineering, vol. 3 (1974), pp. 269-289.
[47]V. Yakhot, S.A. Orszag, S. Thangam, T.B. Gatski, C.G. Speziale, Development of turbulence models for shear flows by a double expansion technique, Physics of Fluids A, vol. 4 (1992), pp 1510-1520.
[48]FLUENT Dynamic Software, FLUENT, Lehanon, NH (2010).
[49]陳韋志,預測傾斜矩形平板上之自然對流熱傳特性,國立成功大學機械工程學系,碩士論文,2009。