簡易檢索 / 詳目顯示

研究生: 張嘉仁
Chang, Jia-Jen
論文名稱: 從地震活動性及震源機制探討台灣中央山脈中段深層地震之成因
Deep Earthquakes beneath Central Taiwan: Seismicity and Focal Mechanisms
指導教授: 饒瑞鈞
Rau, Ruey-Juin
學位類別: 碩士
Master
系所名稱: 理學院 - 地球科學系
Department of Earth Sciences
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 86
中文關鍵詞: 震源機制應力反演深部地震
相關次數: 點閱:43下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在台灣中部地區底下,發現有深度40~80公里的深部地震之存在,依其分佈形態大略可分為東、西兩側地震群;本研究使用中央氣象局所提供1991年至2004年之三分量短週期數位地震資料,研究範圍在中央山脈中段,且深度30公里以下,而藉由三維地震重新定位、震源機制解以及應力反演等方法來加以討探其發震構造。

      研究結果顯示,東側地震群主要是受到板塊的推擠,而有向北、向西下傾的現象,σ1方向以N100oE為主,由於菲律賓海板塊斜向碰撞的關係,造成與區域最大應力方向垂直的側向伸張,形成東北-西南向之伸張方向;西側地震群則呈一寬約20公里的狹長地震帶,向東下傾至中央山脈底下深度75公里處,由於菲律賓海板塊持續不斷的向西北方進行推擠,進而產生呈現西北-東南向壓縮之逆斷層,而在碰撞造山的過程中,中央山脈底下會產生局部的斷塊,破裂的岩體受浮力所影響向上抬升,而產生西北-東南向伸張的正斷層。

    摘要 I 致謝 II 目錄 III 表目錄 V 圖目錄 V 第一章 緒論 1 第二章 前人研究 6 2.1 研究區域之地質環境 6 2.2 研究區域之相關研究 6 2.2.1 臺灣造山帶相關研究 9 第三章 研究方法 14 3.1 地震資料之選取 14 3.2 三維地震定位 17 3.2.1 三維地震定位演算法概述 17 3.2.2 三維地震定位演算法原理 18 3.3 震源機制解 19 3.3.1 震源機制解原理 19 3.3.2 震源機制解的分類 21 3.4 應力反演 22 3.4.1 線性反演法 23 3.4.2 格點搜尋反演法 24 第四章 研究結果 25 4.1 地震重新定位 25 4.2 震源機制 25 4.2.1 東側區域 28 4.2.2 西側區域 41 4.3 應力反演 53 4.3.1 兩種應力反演法之比較 53 4.3.2 應力反演之結果 55 第五章 討論 64 5.1 東側地震群 64 5.2 西側地震群 71 第六章 結論 81 參考文獻 83 附錄 A-1 A. 本研究震源機制之參數表 A-1 B. 本研究之震源機制解 B-1 自述 C-1

    中文部分

    交通部中央氣象局地震季報,第五十卷,第四號,第1~9頁,2004。
    經濟部中央地質調查所,臺灣地質圖,2000。

    英文部分

    Aki, K., and W. H. K. Lee, Determination of the three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes, 1, A homogeneous initial model, J. Geophys. Res., 81, 4381-4399, 1976.

    Aki, K., and P. G. Richards, Quantitative Seismology: Theory and Methods, 2nd. ed., University Science Books, California, 2002.

    Angelier, J., Sur l’analyse de measures recueillies dans des sites faillé: l’utlité d’une confrontation entre les methods dynamiques et cinématiques. C. R. Acad. Sci. Paris (D), 281, 1805-1808, 1975 (Erratum: Ibid., 283, 466, 1976).

    Angelier J., Determination of the mean principal direction of stresses for a given fault population, Tectonophysics, 56, T17-T26, 1979.

    Angelier J., Tectonic analysis of fault slip data sets, J. Geophys. Res., 89, 5835-5848, 1984.

    Angelier, J., From orientation to magnitudes in paleostress determinations using fault slip data. J. Struct. Geol., 11, 37-50, 1989.

    Angelier, J., Fault slip analysis and paleostress reconstruction, In Continental Deformation, Edited by P. Hancock, pp. 53-100, Pergamon, New York, 1994.

    Bos, A. G., W. Spakman, and M. C. J. Nyst, Surface deformation and tectonic setting of Taiwan inferred from a GPS velocity field, J. Geophys. Res., 108, 2458-2475, 2003

    Chemenda, A. I., R. K. Yang, C.-H. Hsieh, and Groholsky, Evolutionary model for the Taiwan collision based on physical modelling, Tectonophysics, 274, 253-274, 1997.

    Chemenda, A. I., R. K. Yang, J.-F. Stephan, E. A. Konstantinovskaya, and G. M. Ivanov, New result from physical modelling of arc-continent collision in Taiwan: evolutionary model, Tectonophysics, 333, 159-178, 2001.

    Christova, C., Depth distribution of stresses in the Kamchatka Wadati-Benioff zone inferred by inversion of earthquake focal mechanisms, J.
    Geodynamics, 31, 355-372, 2001.

    Ellsworth, W. L., and X. Zhonghuai, Determination of the stress tensor from focal mechanism data, abstract, Eos Trans. AGU, 61, p. 1117, 1980.

    Gephart, J. W., and D. W. Forsyth, An improved method for determining the regional stress tensor using earthquake focal mechanism data: application to the San Fernando earthquake sequence, J. Geophys. Res., 89, 9305-9320, 1984.

    Gephart, J. W., FMSI, A Fortran program for inverting fault/slickenside and earthquake focal mechanism data to obtain the regional stress tensor, Comput. and Geosci., 16, 953-989, 1990a.

    Gephart, J. W., Stress and the direction of slip on fault planes, Tectonics, 9, 845-858, 1990b.

    Gomberg, J. S., K. M. Shedlock, and S. W. Roecker, The effect of S-wave arrival times on the accuracy of hypocenter estimation, Bull. Seiemol. Soc. Am., 80, 1605-1628, 1990.

    Hardebeck, J. L., and E. Hauksson, Stress orientations obtained from earthquake focal mechanisms: what are the appropriate uncertainty estimates? Bull. Seiemol. Soc. Am., 91, 250-262, 2001.

    Huang, C.-Y., K. Xia, P. B. Yuan, and P.-G. Chen, Structural evolution from Paleogene extension to Latest Miocene-Recent arc-continent collision offshore Taiwan: comparison with on land geology, Journal of Asian Earth Sciences, 19, 619-639, 2001.

    Kisslinger, C., Evaluation of S to P amplitude ratios for determining focal mechanisms from regional network observations, Bull. Seismol. Soc. Am., 70, 4, 999-1014, 1980.

    Kisslinger, C., J. R. Bowman, and K. Koch, Procedures for computing focal mechanisms from regional network observations, Bull. Seismol. Soc. Am., 70, 999-1014, 1981.

    Kohler, M. D., and D. Eberhart-phillips, Intermediate-depth earthquakes in a region of continental convergence: South Island, New Zealand, Bull. Seismol. Soc. Am., 93, 85-93, 2003.

    Lallemand, S., Y. Font, H. Bijwaard, and H. Kao, New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications, Tectonophysics, 335, 229-253, 2001.

    Lin, C.-H., and S. W. Roecker, Deep earthquakes beneath central Taiwan: mantle shearing in an arc-continent collision, Tectonics, 12, 745-755, 1993.

    Lin, C.-H., Thermal modeling of continental subduction and exhumation constrained by heat flow and seismicity in Taiwan, Tectonophysics, 324, 189-201, 2000.

    Lin, C.-H., Active continental subduction and crustal exhumation: the Taiwan orogeny, Terra Nova, 14, 281-287, 2002.

    Maggi, A., J. A. Jackson, K. Priestley, and C. Baker, A re-assessment of focal depth distributions in southern Iran, the Tien Shan and northern India: do earthquakes really occur in the continental mantle? Geophys. J. Int., 143, 629-661, 2000.

    McKenzie, D. P., The relation between fault plane solutions and the directions of the principal stresses, Bull. Seismol. Soc. Amer., 59, 591-601, 1969.

    Michael, A. J., Determination of stress from slip data: Faults and folds, J. Geophys. Res., 89, 11517-11526, 1984.

    Michael, A. J., Use of focal mechanisms to determine stress: A control study, J. Geophys. Res., 92, 357-368, 1987a.

    Michael, A. J., Stress rotation during the Coalinga aftershock sequence, J. Geophys. Res., 92, 7963-7979, 1987b.

    Midgley, J. P., and D. J. Blundell, Deep seismic structure and thermo-mechanical modelling of continental collision zones, Tectonophysics, 273, 155-167, 1997.

    Pavlis, G. L., Appraising earthquake hypocenter location errors: a complete, practical approach for single-event location, Bull. Seismol. Soc. Am., 76, 1699-1717, 1986.

    Pulver, M. H., J. M. Crespi, and T. B. Byrne, Lateral extrusion in a transpressional collision zone: An example from the pre-Tertiary metamorphic basement of Taiwan, Geological Society of America Special Paper, 358, 107-120, 2002.

    Rau, R.-J., and F. T. Wu, Tomographic imaging of lithospheric structures under Taiwan, Earth Planet. Sci. Lett., 133, 517-532, 1995.

    Rau, R. J., 3-D tomography, focal mechanisms, and Taiwan orogeny, ph. D. Thesis in Geology, State Univ. of New York at Binghamton, 1996a.

    Rau, R. J., Wu, F. T., and Shin, T. C., Regional network focal mechanism determination using 3-D velocity model and SH/P amplitude ratio, Bull. Seismol. Soc. Am., 86, 1270-1283, 1996b.

    Rau, R.-J., and F. T. Wu, Active tectonics of Taiwan orogeny from focal mechanisms of small-to-moderate-sized earthquakes, Terr. Atmos. Ocean. Sci., 9, 4, 755-778, 1998.

    Sibuet, J.-C., and S.-K. Hsu, How was Taiwan created? Tectonophysics, 379, 159-181, 2004.

    Snoke, J. A., FOCMEC: FOcal MEChanism determinations, International Handbook of Earthquake and Engineering Seismology (W. H. K. Lee, H. Kanamori, P. C. Jennings, and C. Kisslinger, Eds.), Academic Press, San Diego, Chapter 85.12. , 2003

    Suppe, J., The active Taiwan mountain belt, in The Anatomy of Mountain Ranges, edited by J. P. Schaer and J. Rodgers, 277-293, 1987.

    Teng, L. S., C. T. Lee, Y. B. Tsai, and L. Y. Hsiao, Slab breakoff as a mechanism for flipping of subduction polarity in Taiwan, Geology, 28, 155-158, 2000.

    Thurber, C. H., Earthquake locations and three-dimensional crustal structure in the Coyote Lake area, central California, J. Geophys. Res., 88, 8226-8236, 1983.

    Yeh, Y. H., E. Barrier, C. H. Lin, and J. Angelier, Stress tensor analysis in the Taiwan areaf from focal mechanisms of earthquakes, Tectonophysics, 200, 267-280, 1991.

    Yu, S.-B., H.-Y. Chen, and L.-C. Kuo, Velocity field of GPS stations in the Taiwan area, Tectonophysics, 274, 41-59, 1997.

    Wiemer, S., A software package to analyze seismicity: ZMAP, Seismological Research Letters, 72, 373-382, 2001.

    Wu, F. T., R.-J. Rau, and D. Salzberg, Taiwan orogeny: thin-skinned or lithospheric collision? Tectonophysics, 274, 191-200, 1997.

    Zoback, M. L, First- and second-order patterns of stress in the lithosphere: The world stress map project, J. Geophys. Res., 97, 11703-11728, 1992.

    下載圖示 校內:2006-08-24公開
    校外:2006-08-24公開
    QR CODE