簡易檢索 / 詳目顯示

研究生: 邱世偉
Chiu, Shih-Wei
論文名稱: 以異向性拉曼散射頻譜與載子遷移率解析高度有序聚噻吩奈米纖維之侷域分子有序性對巨觀載子遷移率的影響
Analyzing the relation between local molecular ordering and macroscopic carrier transport in Polythiophene nanofibers by anisotropic Raman spectroscopy and organic thin film transistor
指導教授: 徐邦昱
Hsu, Bang-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 79
中文關鍵詞: 共軛高分子聚噻吩溶解率分子量場效電晶體
外文關鍵詞: Conducting polymer, Polythiophene, Solubility, Molecular weight, Thin field transistor.
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 導電高分子柔軟、可撓曲的機械特性,被視為軟性電子產品主要材料之一。自1980 年代發現此材料後,學術界對導電高分子的研究蔚為風潮,並開創了有機電子學領域,開發出了有機電晶體、有機發光二極體、有機太陽能電池等等的元件,然而,可撓曲的迷人特性同時也缺乏剛性,因此讓形貌相依的電子結構缺陷劇增,造成電子傳導效率低落,時至今日,導電效率低仍是有機電子學領域中的最大瓶頸。
    由固態物理學中可知,長程有序的結晶結構可使相鄰原子的電子軌域高度重疊產生交互作用,因而形成非侷域化(delocalized)之電子結構。但因為導電高分子為一種半結晶的材料,混雜了有序結晶區域以及無序區域,使得電子軌域重疊度下降因而形成侷域性(localized)電子結構,其中載子多以跳躍(hopping)方式傳輸,並受到結晶缺陷、晶界、非晶區域等散射中心減低傳導效率。再者,導電高分子會透過主鏈中的π-π內聚(cohesive)作用力結晶成長,導電高分子的內聚力屬微觀尺度的作用力,因此在巨觀元件尺度將以無方向性結晶成長於基板上,形成多晶形貌,各晶粒方向與傳導方向不一致,使得載子傳輸經歷更多的散射,因此,載子傳導效率低是可以預期的。
    本研究使用的材料為Poly(3-hexylthiophene) (P3HT),是以噻吩為單元之共軛高分子。為了解決上述載子傳導效率不彰的問題,我們以三明治(Sandwichstructure)液態成膜系統製造高有序性之奈米纖維,利用經過表面處理的玻璃基材毛細拉力,加上基板表面之奈米溝槽結構,限縮可結晶的自由度,促使高分子沿特定方向長晶;在沉積過程中,單分子層預先改質的基板表面會與高分子產生交互作用力,使高分子更容易沉積至表面,最後可提升製程溫度,增加溶劑-高分子交互作用力,進而降低高分子本身不受控的無序團聚,延展的高分子主鏈更有利於單分子層對高分子的排列行為。在此架構下,可透過操作分子間作用力來調控分子之排列方向,原子力顯微鏡可觀測到巨觀上高度有序的奈米纖維,並以偏振拉曼頻譜驗證P3HT 主鏈在微觀的分子排列,最後利用有機場效電晶體量測載子在通道內的遷移率,由此證實了高度有序之表面形貌對載子遷移率的提升有莫大之影響。本研究從微觀有序的分子結構出發,藉由調控分子間作用力來形成有序分子排列,並對應巨觀有序的纖維形貌,最後以電晶體量測載子遷移率連結有序電子結構的效能,透過製程精密操作分子,為有機電子學領域的發展推進重要的一步。

    With impressive mechanical property, conducting polymer is considered to be the main material of next generation consumer electronics. However, poor charge transport performance is the bottleneck of organic electronics. Charge carriers adopt hopping as main transport type because of the coexistence of amorphous and crystalline region. In addition, Grain boundaries between crystalline domains and crystallographic defect also have negative influence on charge transport. Therefore, increasing morphological ordering is the key point to enhance charge carrier mobility. Highly ordering morphology easily lead to delocalized electronic structure. Charge carrier would transport along the backbone of conducting polymer, which is more efficient than hopping.
    In the study, we introduce sandwich process to align Poly(3-hexylthiophene) (P3HT). The uniaxial flow and nanogrooves help polymer crystalize orientationally. Furthermore, increasing process temperature could promote disentanglement of polymer chain. The extended P3HT is more easily aligned by SAM-treated substrate.
    Molecular ordering is examined by AFM and Raman spectroscopy. The charge-carrier mobility is calculated by I-V characterization. Our results provide the high correlation between microscale molecular ordering and macroscale charge transport behavior.

    中文摘要Ⅰ 英文摘要Ⅱ 目錄Ⅵ 圖目錄Ⅷ 表 目 錄XI 第一章 緒論1 壹、研究動機 1 第二章 文獻回顧 3 壹、導高分子簡介3 貳、導電高分子結晶5 參、聚噻吩類高分子 8 一、聚噻吩簡介 8 二、聚噻吩規整性8 三、聚噻吩的結晶性 10 四、聚噻吩不同分子量影響11 肆、有機薄膜半導體的基本原理14 一、有機薄膜電晶體結構與操作原理14 二、有機薄膜電晶體之重要參數 16 (一)載子遷移率μ(Mobility) 16 (二)閾值電壓 Threshold voltage,VT) 17 (三)開/關電流比(On/Off current Ratio) 17 伍、自組裝單分子層 (Self- Assembly Monolayer) 18 一、自組裝單分子層簡介 18 二、自組裝單分子層與導電高分子作用力19 三、單分子層的製程 20 (一)氣相沉積法21 (二)液相沉積法 21 第三章 實驗架構26 壹、實驗藥品與材料清單26 貳、實驗儀器28 參、實驗流程31 一、實驗流程圖解 31 二、詳細實驗流程 31 肆、實驗方法及與儀器原理 32 一、接觸角量測32 二、原子力顯微鏡(Atomic Force Microscopy,AFM) 33 (一)簡介33 (二)操作原理 33 三、微拉曼頻譜系統35 (一)簡介35 (二)理論36 (三)P3HT的偏振拉曼頻譜量測 37 四、紫外光-可見光吸收光譜 38 (一)簡介 38 (二)原理 38 第四章 實驗結果與討論 41 壹、基板表面性質 41 一、奈米溝槽 41 二、單分子層改質表面 42 貳、P3HT溶液吸收頻譜 44 參、各分子量P3HT極化拉曼光譜 47 一、氯苯類溶劑(chlorobenzene,CB) 47 (一)60kDa P3HT CB/DCB 47 (二)30kDa P3HT CB/DCB 49 (三)14kDa P3HT CB/DCB 50 二、溴苯類溶劑(Bromobenzene,BB) 53 (一)60kDa P3HT BB/DBB 54 (二)30kDa P3HT BB/DBB 56 (三)14kDa P3HT BB/DBB 58 肆、表面形貌分析60 一、60kDa P3HT 表面形貌 60 二、30kDa P3HT 表面形貌 61 三、14kDa P3HT 表面形貌 64 伍、有機電晶體量測67 一、製程參數 67 二、ISD-VGS特性曲線 69 第五章 結論 74

    Reference

    [1] F. Liu et al., "Molecular weight dependence of the morphology in P3HT: PCBM solar cells," ACS applied materials & interfaces, vol. 6, no. 22, pp. 19876-19887, 2014.
    [2] J. Yuan et al., "Single-junction organic solar cell with over 15% efficiency using fused-ring acceptor with electron-deficient core," Joule, vol. 3, no. 4, pp. 1140-1151, 2019.
    [3] T. Aernouts et al., "Printable anodes for flexible organic solar cell modules," Thin solid films, vol. 451, pp. 22-25, 2004.
    [4] Z. Bao, "Materials and fabrication needs for low‐cost organic transistor circuits," Advanced Materials, vol. 12, no. 3, pp. 227-230, 2000.
    [5] B. Kang, W. H. Lee, and K. Cho, "Recent advances in organic transistor printing processes," ACS applied materials & interfaces, vol. 5, no. 7, pp. 2302-2315, 2013.
    [6] J. S. Swensen, C. Soci, and A. J. Heeger, "Light emission from an ambipolar semiconducting polymer field-effect transistor," Applied Physics Letters, vol. 87, no. 25, p. 253511, 2005.
    [7] H. S. Shin, J. K. Jeong, Y. G. Mo, and D. U. Jin, "Organic light emitting display (OLED) and its method of fabrication," ed: Google Patents, 2010.
    [8] G. Gu, P. Burrows, and S. R. Forrest, "Vacuum deposited, non-polymeric flexible organic light emitting devices," ed: Google Patents, 1998.
    [9] Y. Fujita and K. Ban, "Organic LED display device of active matrix drive type and fabrication method therefor," ed: Google Patents, 2003.
    [10] A. Chortos, J. Liu, and Z. Bao, "Pursuing prosthetic electronic skin," Nature materials, vol. 15, no. 9, pp. 937-950, 2016.
    [11] C. Wang et al., "User-interactive electronic skin for instantaneous pressure visualization," Nature materials, vol. 12, no. 10, pp. 899-904, 2013.
    [12] U. Bielecka, P. Lutsyk, K. Janus, J. Sworakowski, and W. Bartkowiak, "Effect of solution aging on morphology and electrical characteristics of regioregular P3HT FETs fabricated by spin coating and spray coating," Organic Electronics, vol. 12, no. 11, pp. 1768-1776, 2011.
    [13] C. Liu, Y. Li, M. V. Lee, A. Kumatani, and K. Tsukagoshi, "Self-assembly of semiconductor/insulator interfaces in one-step spin-coating: a versatile approach for organic field-effect transistors," Physical Chemistry Chemical Physics, vol. 15, no. 21, pp. 7917-7933, 2013.
    [14] T. Salammal Shabi et al., "Enhancement in crystallinity of poly (3‐hexylthiophene) thin films prepared by low‐temperature drop casting," Journal of applied polymer science, vol. 125, no. 3, pp. 2335-2341, 2012.
    [15] J. Park, S. Lee, and H. H. Lee, "High-mobility polymer thin-film transistors fabricated by solvent-assisted drop-casting," Organic electronics, vol. 7, no. 5, pp. 256-260, 2006.
    [16] T. Aernouts, T. Aleksandrov, C. Girotto, J. Genoe, and J. Poortmans, "Polymer based organic solar cells using ink-jet printed active layers," Applied Physics Letters, vol. 92, no. 3, p. 22, 2008.
    [17] T. Hebner, C. Wu, D. Marcy, M. Lu, and J. Sturm, "Ink-jet printing of doped polymers for organic light emitting devices," Applied physics letters, vol. 72, no. 5, pp. 519-521, 1998.
    [18] Y. Yang, S.-C. Chang, J. Bharathan, and J. Liu, "Organic/polymeric electroluminescent devices processed by hybrid ink-jet printing," Journal of Materials Science: Materials in Electronics, vol. 11, no. 2, pp. 89-96, 2000.
    [19] J. Wang, X. Sun, L. Chen, and S. Y. Chou, "Direct nanoimprint of submicron organic light-emitting structures," Applied Physics Letters, vol. 75, no. 18, pp. 2767-2769, 1999.
    [20] C. Chiang, S. Gau, C. Fincher Jr, Y. Park, A. MacDiarmid, and A. Heeger, "Polyacetylene,(CH) x: n‐type and p‐type doping and compensation," Applied Physics Letters, vol. 33, no. 1, pp. 18-20, 1978.
    [21] A. J. Heeger, E. B. Namdas, and N. S. Sariciftci, Semiconducting and metallic polymers. Oxford Univ. Press, 2010.
    [22] W. He and X. Zhang, "Conducting Polymer Aerogels," Conducting Polymers, p. 49, 2016.
    [23] H. F. Mark, Encyclopedia of polymer science and technology, concise. John Wiley & Sons, 2013.
    [24] Y.-W. Su, Y.-C. Lin, and K.-H. Wei, "Evolving molecular architectures of donor–acceptor conjugated polymers for photovoltaic applications: from one-dimensional to branched to two-dimensional structures," Journal of Materials Chemistry A, vol. 5, no. 46, pp. 24051-24075, 2017.
    [25] R. Elsenbaumer, K. Y. Jen, and R. Oboodi, "Processible and environmentally stable conducting polymers," Synthetic Metals, vol. 15, no. 2-3, pp. 169-174, 1986.
    [26] K. Jen, R. Oboodi, and R. Elsenbaumer, "PROCESSIBLE AND ENVIRONMENTALLY STABLE CONDUCTING POLYMERS," in Polymeric Materials Science and Engineering, Proceedings of the ACS Division of Polymeric Material: ACS, 1985, pp. 79-83.
    [27] M. Se, J. Papillon, E. Schulz, and M. Lemaire, "New synthetic method for the polymerization of alkylthiophenes," Tetrahedron letters, vol. 40, no. 32, pp. 5873-5876, 1999.
    [28] K. Yoshino, S. Nakajima, M. Onoda, and R. Sugimoto, "Electrical and optical properties of poly (3-alkylthiophene)," Synthetic Metals, vol. 28, no. 1-2, pp. 349-357, 1989.
    [29] T. Yamamoto et al., "Preparation of π-conjugated poly (thiophene-2, 5-diyl), poly (p-phenylene), and related polymers using zerovalent nickel complexes. Linear structure and properties of the π-conjugated polymers," Macromolecules, vol. 25, no. 4, pp. 1214-1223, 1992.
    [30] R. D. McCullough and R. D. Lowe, "Enhanced electrical conductivity in regioselectively synthesized poly (3-alkylthiophenes)," Journal of the Chemical Society, Chemical Communications, no. 1, pp. 70-72, 1992.
    [31] T.-A. Chen, X. Wu, and R. D. Rieke, "Regiocontrolled synthesis of poly (3-alkylthiophenes) mediated by Rieke zinc: their characterization and solid-state properties," Journal of the American Chemical Society, vol. 117, no. 1, pp. 233-244, 1995.
    [32] T. Prosa, M. Winokur, J. Moulton, P. Smith, and A. Heeger, "X-ray structural studies of poly (3-alkylthiophenes): an example of an inverse comb," Macromolecules, vol. 25, no. 17, pp. 4364-4372, 1992.
    [33] R. J. Kline, M. D. McGehee, E. N. Kadnikova, J. Liu, J. M. Fréchet, and M. F. Toney, "Dependence of regioregular poly (3-hexylthiophene) film morphology and field-effect mobility on molecular weight," Macromolecules, vol. 38, no. 8, pp. 3312-3319, 2005.
    [34] M. Brinkmann and P. Rannou, "Effect of molecular weight on the structure and morphology of oriented thin films of regioregular poly (3‐hexylthiophene) grown by directional epitaxial solidification," Advanced Functional Materials, vol. 17, no. 1, pp. 101-108, 2007.
    [35] L. Bertilsson and B. Liedberg, "Infrared study of thiol monolayer assemblies on gold: preparation, characterization, and functionalization of mixed monolayers," Langmuir, vol. 9, no. 1, pp. 141-149, 1993.
    [36] S. D. Evans and A. Ulman, "Surface potential studies of alkyl-thiol monolayers adsorbed on gold," Chemical physics letters, vol. 170, no. 5-6, pp. 462-466, 1990.
    [37] W. R. Thompson and J. E. Pemberton, "Characterization of octadecylsilane and stearic acid layers on Al2O3 surfaces by Raman spectroscopy," Langmuir, vol. 11, no. 5, pp. 1720-1725, 1995.
    [38] H.-Y. Nie, M. J. Walzak, and N. S. McIntyre, "Delivering octadecylphosphonic acid self-assembled monolayers on a Si wafer and other oxide surfaces," The Journal of Physical Chemistry B, vol. 110, no. 42, pp. 21101-21108, 2006.
    [39] J. T. Woodward, A. Ulman, and D. K. Schwartz, "Self-assembled monolayer growth of octadecylphosphonic acid on mica," Langmuir, vol. 12, no. 15, pp. 3626-3629, 1996.
    [40] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, "Self-assembled monolayers of thiolates on metals as a form of nanotechnology," Chemical reviews, vol. 105, no. 4, pp. 1103-1170, 2005.
    [41] H. Sirringhaus, N. Tessler, and R. Friend, "Integrated, high-mobility polymer field-effect transistors driving polymer light-emitting diodes," Synthetic Metals, vol. 102, no. 1-3, pp. 857-860, 1999.
    [42] D. H. Kim et al., "Enhancement of field‐effect mobility due to surface‐mediated molecular ordering in regioregular polythiophene thin film transistors," Advanced Functional Materials, vol. 15, no. 1, pp. 77-82, 2005.
    [43] S. Kobayashi et al., "Control of carrier density by self-assembled monolayers in organic field-effect transistors," Nature materials, vol. 3, no. 5, p. 317, 2004.
    [44] A. Virkar et al., "The Role of OTS Density on Pentacene and C
    60
    Nucleation, Thin Film Growth, and Transistor Performance," Advanced Functional Materials, vol. 19, no. 12, pp. 1962-1970, 2009.
    [45] C. Luo et al., "General strategy for self-assembly of highly oriented nanocrystalline semiconducting polymers with high mobility," Nano letters, vol. 14, no. 5, pp. 2764-2771, 2014.
    [46] H. Sugimura, A. Hozumi, T. Kameyama, and O. Takai, "Organosilane self‐assembled monolayers formed at the vapour/solid interface," Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, vol. 34, no. 1, pp. 550-554, 2002.
    [47] J. Dong, A. Wang, K. S. Ng, and G. Mao, "Self-assembly of octadecyltrichlorosilane monolayers on silicon-based substrates by chemical vapor deposition," Thin Solid Films, vol. 515, no. 4, pp. 2116-2122, 2006.
    [48] J. Peanasky, H. M. Schneider, S. Granick, and C. R. Kessel, "Self-assembled monolayers on mica for experiments utilizing the surface forces apparatus," Langmuir, vol. 11, no. 3, pp. 953-962, 1995.
    [49] Y. Ito et al., "Crystalline ultrasmooth self-assembled monolayers of alkylsilanes for organic field-effect transistors," Journal of the American Chemical Society, vol. 131, no. 26, pp. 9396-9404, 2009.
    [50] J. H. L. Ngai, J. K. W. Ho, R. K. H. Chan, S. H. Cheung, L. M. Leung, and S. K. So, "Growth, characterization, and thin film transistor application of CH3NH3PbI3 perovskite on polymeric gate dielectric layers," RSC Adv., vol. 7, no. 78, pp. 49353-49360, 2017.
    [51] T. Coan, G. S. Barroso, R. A. F. Machado, F. S. de Souza, A. Spinelli, and G. Motz, "A novel organic-inorganic PMMA/polysilazane hybrid polymer for corrosion protection," Progress in Organic Coatings, vol. 89, pp. 220-230, 2015.
    [52] A. A. Virkar, S. Mannsfeld, Z. Bao, and N. Stingelin, "Organic semiconductor growth and morphology considerations for organic thin-film transistors," Adv Mater, vol. 22, no. 34, pp. 3857-75, Sep 8 2010.
    [53] J. D. P. Ospina, S. Langner, T. Ameri, and C. J. Brabec, "Solubility and miscibility for diluted polymers and their extension to organic semiconductors," Encyclopedia of Physical Organic Chemistry, pp. 1-38, 2016.

    [55] 錢仕賢(2019)。探討噻吩與聯噻吩架構共軛高分子之有序形貌排列:聚(3-己烷噻吩) 及Poly(3,6-dialkylthieno[3,2-b]thiophene-co-bithiophene)。國立成功大學材料科學及工程學系碩士論文,台南市。 取自https://hdl.handle.net/11296/cnp9x8

    無法下載圖示
    校外:不公開
    電子論文及紙本論文均尚未授權公開
    QR CODE