簡易檢索 / 詳目顯示

研究生: 李坤益
Li, Kun-Yi
論文名稱: 沉積氮化鎵/氮化鋁鎵薄膜應用於光電元件製作
Deposition of Gallium Nitride/Aluminum Gallium Nitride films for the fabrication of optoelectronic devices
指導教授: 洪昭南
Hong, Chau-Nan
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 109
中文關鍵詞: 氮化鎵氮化鎵/氮化鋁鎵電感耦合電漿磁控濺鍍有機發光二極體
外文關鍵詞: gallium nitride, gallium nitride/ aluminum gallium nitride, inductively coupled plasma, magnetron sputtering, organic light emitting diode
相關次數: 點閱:128下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前有機發光二極體(OLED)顯示器具備了高亮度、高對比度、超薄、可撓曲且重量輕之絕佳優勢,可望取代使用已久的液晶顯示器。OLED目前面臨的最大挑戰為壽命問題,因此本研究藉由無機材料的高載子遷移率(mobility)與穩定性等優勢,對有機材料進行置換,可讓元件的發光亮度提高,並且提升其耐用性,進而延長使用壽命。本論文以無機氮化鎵(GaN)以及氮化鎵/氮化鋁鎵(AlGaN)結構對傳統的電子傳輸層兼電洞阻擋層BCP進行置換,並且製作有機、無機複合式OLED元件。
    本研究分為兩部分,第一部分以實驗室自行開發的電感耦合電漿輔助射頻濺鍍系統沉積氮化鎵,其具備了易大面積化與設備成本低的優勢。藉由ICP電漿所提供的額外能量,本研究成功於500℃低溫下獲得單晶高品質GaN薄膜,結晶方向為(0002),XRD鑑定結果之半高寬值為12.5 arcmin(文獻最佳結果約5~15 arcmin)且無氮空缺之問題。
    第二部分為應用上述之電感耦合電漿輔助射頻濺鍍系統沉積氮化鎵於AZO透明玻璃基板之上,藉由AZO提供的優選方向(prefer orientation)成長出高品質的GaN薄膜,並以熱蒸鍍系統完成後續複合式OLED元件製作。起初元件僅採用GaN取代BCP,元件的最高亮度為690 cd/m2,低於傳統OLED元件的最高亮度2575 cd/m2。後續再以GaN/ AlGaN結構取代BCP,結果成功將最高亮度提升至4490 cd/m2,大幅超越傳統元件,但起始電壓較高(12.0 V),並且藉由實驗確認GaN/ AlGaN結構確實具備良好的電洞阻擋效果,可成功取代BCP,並且提升元件整體的耐用性。

    Organic light emitting diode (OLED) displayers have excellent advantages of high brightness, high contrast, thin, flexible and light weight, so OLEDs have potential to replace LCD displayers. The most crucial problem of OLEDs is lifetime. In this study, we focus on solving this problem by using inorganic material that has high carrier mobility and stability to replace organic material. Within the hybrid OLED structure, the devices have higher brightness, better durability, and prolong the lifetime of OLEDs. In this study, we utilized gallium nitride (GaN) and GaN/ aluminum gallium nitride (AlGaN) structure to replace traditional hole blocking layer and electron transport layer, BCP, then fabricated organic-inorganic hybrid OLED devices.
    Two subjects have been studied as follows. The first part was deposition of GaN film by inductively coupled plasma (ICP) enhanced magnetron sputtering system which had advantages of low equipment cost and large-scale production. With extra energy provided by ICP plasma, we obtained high quality single-crystal GaN thin film under low temperature, 500℃. The preferential orientation of the film was along (0002) direction. By XRD identification result, the full width at half maximum (FWHM) value of the GaN (0002) peak was 12.5 arcmin (the best results in literature were 5 ~ 15 arcmin), and there was no nitrogen vacancy issue.
    The second part was to apply inductively coupled plasma enhanced magnetron sputtering system to deposit high quality GaN film on AZO glass substrate which provided prefer orientation, and completed hybrid OLED device by thermal evaporation system. First, we only used GaN film to replace BCP, the maximum brightness of this device was 690 cd/m2 which was lower than traditional device, 2575 cd/m2. Next step, we used GaN/ AlGaN structure to replace BCP and enhanced maximum brightness to 4490 cd/m2 successfully which significantly exceeded tradition OLED devices. However, the turn-on voltage (12.0 V) was higher than literature values. Then, we confirmed GaN/ AlGaN structure has excellent effect for blocking holes. We replaced BCP organic layer successfully and improved the durability of devices.

    中文摘要 I 英文摘要 III 目錄 V 表目錄 IX 圖目錄 X 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 5 第二章 理論基礎與文獻回顧 6 2-1 有機發光二極體元件理論 6 2-1-1 有機發光二極體元件結構 6 2-1-1-1 元件效率 7 2-1-2 有機發光二極體元件各層材料選擇 8 2-1-2-1 電洞注入與傳輸材料 9 2-1-2-2 電子注入與傳輸材料 10 2-1-2-3 發光材料 10 2-1-3 載子的注入、傳導與複合理論 11 2-1-3-1 載子注入理論 11 2-1-3-2 載子傳輸理論 13 2-1-3-3 載子複合理論 14 2-2 氮化鎵材料簡介與薄膜製作 19 2-2-1 氮化鎵的性質介紹 19 2-2-2 磁控濺鍍製作氮化鎵薄膜 20 2-3 電漿原理 26 2-4 有機無機複合式發光元件 33 2-4-1 氧化物製作複合式發光元件 33 2-4-2 氮化物製作複合式發光元件 35 第三章 實驗方法與步驟 40 3-1 實驗流程 40 3-2 實驗系統設計 40 3-2-1 電感耦合電漿輔助射頻濺鍍系統 41 3-2-2 高真空熱阻式蒸鍍系統 42 3-2-3 掃描式電子顯微鏡及X射線能量散佈儀 44 3-2-4 原子力顯微鏡 45 3-2-5 X射線繞射分析儀 45 3-2-6 紫外光/可見光分光光譜儀 46 3-2-7 光電子光譜分析儀 47 3-2-8 光致螢光光譜儀 47 3-2-9 有機發光元件量測系統 48 3-3 實驗材料 53 3-3-1 基板材料 53 3-3-2 金屬材料 53 3-3-3 蒸鍍材料 53 3-3-4 溶劑與實驗氣體 54 3-4 實驗步驟 54 3-4-1 基板清潔 54 3-4-2 氮化鎵薄膜濺鍍 55 3-4-3 絕緣層SiO蒸鍍 55 3-4-4 有機層與銀金屬陽極蒸鍍 56 3-4-5 元件特性量測與分析 57 第四章 結果與討論 59 4-1電感耦合電漿輔助射頻濺鍍系統低溫成長氮化鎵薄膜 59 4-1-1 成長溫度對於GaN薄膜結晶品質之影響 61 4-1-2 ICP功率對結晶品質之影響 64 4-1-3 鍍膜時間對結晶品質之影響 66 4-2製作有機-無機異質接面之複合式有機發光元件 75 4-2-1 沉積GaN薄膜於AZO透明導電玻璃 75 4-2-2 元件量測與結果分析 78 4-2-3 無機GaN與有機Alq3異質接面之載子傳輸行為 79 4-2-4 應用GaN/AlGaN作為電子傳輸層兼電洞阻擋層 81 4-2-4-1 GaN/AlGaN結構應用原理 81 4-2-4-2 高結晶品質AlGaN製作 82 4-2-4-3 GaN/ AlGaN複合式OLED元件製作與量測結果分析 83 4-2-4-4 AlGaN厚度對於複合式元件之影響與分析 85 4-2-4-5 於GaN/ AlGaN與Alq3間添加BCP之影響 86 第五章 總結論與未來展望 102 5-1 總結論 102 5-2 未來展望 103 第六章 參考文獻 104 表目錄 表1-1 不同照明產品之特性比較 3 表1-2 LCD與OLED顯示器特性比較 4 表2-1 纖鋅礦(wurtzite)結構之氮化鎵基本性質 23 表2-2 氮化鎵與不同基板之匹配程度 24   圖目錄 圖1-1 發光效率演進圖 3 圖2-1 不同OLED元件的結構 16 圖2-2 不同OLED元件中各有機層的功能 16 圖2-3 元件中載子於低外加電壓與高外加電壓之注入機制 17 圖2-4 四種電子自旋方位不同的激發子 17 圖2-5 於螢光有機材料中加入過渡金屬之放光機制示意圖 18 圖2-6 纖鋅礦(wurtzite)與閃鋅礦(zinc-blende)結構示意圖 23 圖2-7 不同操作壓力及基板溫度下GaN的XRD繞射圖 24 圖2-8 不同氣體組成及基板溫度下GaN的XRD繞射圖 25 圖2-9 GaN薄膜的TEM、選區繞射以及低溫(4K)PL頻譜 25 圖2-10電漿中兩側電極之電壓與電流關係圖 32 圖2-11 有機無機複合元件架構、I-V-L特性量測及能帶圖 37 圖2-12 元件亮度及效率量測結果 37 圖2-13 使用ZrO2的複合元件架構、能帶圖、EL頻譜及L-V特性 38 圖2-14 傳統元件與WO3複合元件的結構、亮度及耐久性比較 38 圖2-15 GaN奈米線複合元件架構及L-V特性圖 39 圖2-16 GaN複合PLED的元件結構、能帶及EL頻譜 39 圖3-1 電感耦合電漿輔助射頻濺鍍系統 49 圖3-2 高真空熱阻式蒸鍍系統 49 圖3-3 掃描式電子顯微鏡(HITACHI SU-8000) 50 圖3-4 原子力顯微鏡(VEECO DI NS3A-2/MMAFM) 50 圖3-5 紫外光/可見光 分光光譜儀 51 圖3-6 光電子光譜分析儀(AC-2)與原理圖 51 圖3-7 OLED元件電流-電壓-輝度量測系統 52 圖3-8 實驗流程與工作面積定義示意圖 58 圖3-9 蒸鍍絕緣層加裝擋板示意圖 58 圖4-1 不同基板溫度下GaN(0002)方向的XRD繞射圖 68 圖4-2 不同基板溫度下GaN(0002)方向的XRD繞射峰半高寬值 68 圖4-3 基板溫度500℃下成長GaN薄膜的XRD繞射圖 69 圖4-4 沉積薄膜時基板表面分子之行為 69 圖4-5 不同基板溫度下GaN的鍍膜速率。ICP功率固定為30W 70 圖4-6 基板溫度為(a)室溫、(b)400℃、(c)500℃、(d)600℃下GaN薄膜的SEM橫截面影像。ICP功率固定為30W 70 圖4-7 不同基板溫度下薄膜的Ga與N組成比例。ICP功率固定為30W 71 圖4-8 不同ICP功率下GaN繞射圖與半高寬值。溫度固定為500℃ 71 圖4-9 不同ICP功率下薄膜的Ga與N組成比例。溫度固定為500℃ 72 圖4-10 無使用ICP與ICP功率為60W下GaN繞射圖與半高寬值以及Ga與N組成比例。溫度固定為500℃ 72 圖4-11 不同鍍膜時間GaN繞射圖與半高寬值 73 圖4-12 薄膜因應力造成小角度偏移示意圖 73 圖4-13 鍍膜時間為20分鐘及30分鐘GaN繞射圖 74 圖4-14 (A)傳統OLED元件、(B)複合式元件結構與各層功能說明 89 圖4-15 AZO基板(0002)與(0004)方向的XRD繞射圖 89 圖4-16 GaN沉積於AZO基板上(0002)與(0004)方向的XRD繞射圖 90 圖4-17 GaN沉積於AZO之AFM掃描影像 90 圖4-18 GaN沉積於AZO之SEM橫截面影像 91 圖4-19 (A) GaN沉積於AZO之穿透度量測;(B) AZO表面功函數量測 91 圖4-20 (A) AZO/GaN/Al元件能帶圖;(B) AZO/GaN/Al元件I-V特 92 圖4-21 (A) OLED複合元件之I-V特性;(B) OLED複合元件與傳統元件I-V特性比較 92 圖4-22 (A) OLED複合元件之L-V特性;(B) OLED複合元件與傳統元件L-V特性比較 93 圖4-23 (A)傳統OLED元件能帶圖;(B)複合式OLED元件能帶圖 93 圖4-24 (A)單一電子元件能帶結構圖;(B)單一電子元件I-V特性圖 94 圖4-25 有無BCP層的GaN複合OLED與傳統OLED之I-V特性比較 94 圖4-26 有無BCP層的GaN複合OLED與傳統OLED之L-V特性比較 95 圖4-26 (A)氮化鋁鎵(AlGaN)之能隙與鋁含量關係圖;(B)氮化鋁鎵之導帶能階與鋁含量之關係圖 95 圖4-27 (A)AlGaN與GaN接觸時之能帶變化 96 圖4-28 (A)沉積於矽基板上之AlGaN薄膜EDX分析結果;(B)沉積於單晶氧化鋁基板上之AlGaN薄膜SEM橫截面影像 96 圖4-29沉積於單晶氧化鋁基板上之AlGaN薄膜(0002)與(0004)方向的XRD繞射圖 97 圖4-30 有無AlGaN的複合OLED元件與傳統OLED之I-V特性比較 97 圖4-31 有無AlGaN的複合OLED元件與傳統OLED之L-V特性比較 98 圖4-32 (A)具有AlGaN之單一電子元件能帶結構圖;(B)有無AlGaN之單一電子元件I-V特性圖 98 圖4-33 不同AlGaN厚度複合元件之I-V特性比較 99 圖4-34不同AlGaN厚度複合元件之L-V特性比較 99 圖4-35 (A)GaN/ AlGaN/ Alq3接觸後達熱平衡之能帶示意圖;(B)複合元件施加電壓後之能帶示意圖 100 圖4-36 有無BCP層的GaN/ AlGaN複合式OLED元件之I-V特性比較 100 圖4-37 有無BCP層的GaN/ AlGaN複合式OLED元件之L-V特性比較 101

    1. http://www.mem.com.tw/article_content.asp?sn=1209260005&page=1.
    2. http://www.cw.com.tw/article/article.action?id=5073095.
    3. Deng, Z., et al., Carrier transport in thin films of organic electroluminescent materials. Synthetic metals, 1999. 107(2): p. 107-109.
    4. Matsumura, M. and T. Akai, Organic electroluminescent devices having derivatives of aluminum-hydroxyquinoline complex as light emitting materials. Japanese journal of applied physics, 1996. 35(10R): p. 5357.
    5. Troadec, D., et al., Organic light-emitting diodes based on multilayer structures. Synthetic metals, 2001. 124(1): p. 49-51.
    6. Kalyani, N.T. and S. Dhoble, Organic light emitting diodes: energy saving lighting technology—a review. Renewable and Sustainable Energy Reviews, 2012. 16(5): p. 2696-2723.
    7. Ammermann, D., et al., Multilayer organic light emitting diodes for flat panel displays. International Journal of Electronics and Communications, 1996. 50: p. 327-333.
    8. Im, W.-B., et al., Bright pure blue emission from multilayer organic electroluminescent device with purified unidentate organometallic complex. Applied Physics Letters, 2001. 79(9): p. 1387-1389.
    9. Fujihira, M., et al., Growth of dark spots by interdiffusion across organic layers in organic electroluminescent devices. Applied physics letters, 1996. 68(13): p. 1787-1789.
    10. Sato, Y., S. Ichinosawa, and H. Kanai, Operation characteristics and degradation of organic electroluminescent devices. Selected Topics in Quantum Electronics, IEEE Journal of, 1998. 4(1): p. 40-48.
    11. Kwon, H., et al. Microlens Array Film with Full Fill Factor for Enhancing Outcoupling Efficiency from OLED Lighting. in Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International. 2007. IEEE.
    12. Tanaka, S.-I., Y. Kawakami, and Y. Naito. Improvement of the external extraction efficiency of OLED by using a pyramid array. in Optical Science and Technology, the SPIE 49th Annual Meeting. 2004. International Society for Optics and Photonics.
    13. 黃春輝, 李富友, 黃岩誼, 光電功能超薄膜, 北京大學出版社, 北京, 中國, 258 (2001)
    14. Adachi, C., K. Nagai, and N. Tamoto, Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Applied physics letters, 1995. 66(20): p. 2679-2681.
    15. Tadayyon, S., et al., CuPc buffer layer role in OLED performance: a study of the interfacial band energies. Organic Electronics, 2004. 5(4): p. 157-166.
    16. Zhou, X., et al., Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer. Applied Physics Letters, 2001. 78(4): p. 410-412.
    17. Kido, J. and Y. IZUMI, Efficient electroluminescence from tris (4-methyl-8-quinolinolato) aluminum (III). Chemistry letters, 1997. 1997(10): p. 963-964.
    18. 周永晟, 具有載子注入平衡共主體結構之黃光有機發光二極體. 2012, 國立清華大學材料科學工程研究所碩士論文.
    19. Lengyel, G., Schottky emission and conduction in some organic insulating materials. Journal of Applied Physics, 1966. 37(2): p. 807-810.
    20. Kalinowski, J., Electroluminescence in organics. Journal of Physics D: Applied Physics, 1999. 32(24): p. R179.
    21. Wolf, U., V. Arkhipov, and H. Bässler, Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation. Physical Review B, 1999. 59(11): p. 7507.
    22. Barth, S., et al., Electron injection into an Alq 3 single-layer organic light-emitting diode. Synthetic Metals, 2000. 111: p. 327-330.
    23. Gill, W., Drift mobilities in amorphous charge‐transfer complexes of trinitrofluorenone and poly‐n‐vinylcarbazole. Journal of Applied Physics, 1972. 43(12): p. 5033-5040.
    24. Pope, M. and C.E. Swenberg, Electronic processes in organic crystals and polymers. 1999: Oxford University Press on Demand.
    25. Burrows, P., et al., Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices. Journal of Applied Physics, 1996. 79(10): p. 7991-8006.
    26. Mu, H., Carriers Injection and Transport in Small Molecule Organic Light Emitting Diodes (OLED). 2007, University of Cincinnati.
    27. Baldo, M.A., et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395(6698): p. 151-154.
    28. Nakamura, S., et al., InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Applied Physics Letters, 1998. 72: p. 211.
    29. Davis, R.F., et al., Critical evaluation of the status of the areas for future research regarding the wide band gap semiconductors diamond, gallium nitride and silicon carbide. Materials Science and Engineering: B, 1988. 1(1): p. 77-104.
    30. Lei, T., et al., Epitaxial growth and characterization of zinc‐blende gallium nitride on (001) silicon. Journal of Applied Physics, 1992. 71(10): p. 4933-4943.
    31. Shi, B., et al., Transition between wurtzite and zinc-blende GaN: An effect of deposition condition of molecular-beam epitaxy. Applied physics letters, 2006. 89(15): p. 151921.
    32. Leszczynski, M., et al., Lattice parameters of gallium nitride. Applied Physics Letters, 1996. 69(1): p. 73-75.
    33. Cheng, T., et al., Selective growth of zinc‐blende, wurtzite, or a mixed phase of gallium nitride by molecular beam epitaxy. Applied physics letters, 1995. 66(12): p. 1509-1511.
    34. Ambacher, O., et al., Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition. Journal of Vacuum Science & Technology B, 1996. 14(6): p. 3532-3542.
    35. Usui, A., H. Sunakawa, and A. Sakai, Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy. Japanese journal of applied physics, 1997. 36(7B): p. L899.
    36. Daigo, Y. and N. Mutsukura, Synthesis of epitaxial GaN single-crystalline film by ultra high vacuum rf magnetron sputtering method. Thin Solid Films, 2005. 483(1): p. 38-43.
    37. Mizuta, M., et al., Low temperature growth of GaN and AlN on GaAs utilizing metalorganics and hydrazine. Japanese journal of applied physics, 1986. 25(12A): p. L945.
    38. Shinoda, H. and N. Mutsukura, Structural properties of GaN and related alloys grown by radio-frequency magnetron sputter epitaxy. Thin Solid Films, 2008. 516(10): p. 2837-2842.
    39. Junaid, M., et al., Electronic-grade GaN (0001)/Al2O3 (0001) grown by reactive DC-magnetron sputter epitaxy using a liquid Ga target. Applied Physics Letters, 2011. 98(14): p. 141915.
    40. Roth, J., Industrial Plasma Engineering Volume 1 Principles. Bristol and Philadelphia. 1995, Institute of Physics publishing.
    41. Morii, K., et al., Encapsulation-free hybrid organic-inorganic light-emitting diodes. Applied physics letters, 2006. 89(18): p. 183510.
    42. Bolink, H.J., et al. Inverted solution processable OLEDs using a metal oxide as electron injection contact. in Photonics Europe. 2008. International Society for Optics and Photonics.
    43. Tokmoldin, N., et al., A Hybrid Inorganic–Organic Semiconductor Light‐Emitting Diode Using ZrO2 as an Electron‐Injection Layer. Advanced Materials, 2009. 21(34): p. 3475-3478.
    44. Acharya, R. and X. Cao, High-brightness organic light-emitting diodes based on a simplified hybrid structure. Applied Physics Letters, 2012. 101(5): p. 053306.
    45. Kim, M., et al., Characterization of GaN nanowires and light-emitting devices based on a GaN nanowire-PVK nanocomposite. Synthetic metals, 2003. 135: p. 743-744.
    46. Shin, M.J., et al., Fabrication of n-GaN/MDMO-PPV hybrid structures for optoelectronic devices. Journal of Luminescence, 2014. 147: p. 1-4.
    47. Kim, J.H., M. Davidson, and P.H. Holloway, Electroluminescence from Tm-doped GaN deposited by radio-frequency planar magnetron sputtering. Applied physics letters, 2003. 83(23): p. 4746-4748.
    48. Dinescu, M., et al., GaN thin films deposition by laser ablation of liquid Ga target in nitrogen reactive atmosphere. Applied surface science, 1998. 127: p. 559-563.
    49. Look, D.C., et al., On the nitrogen vacancy in GaN. Applied physics letters, 2003. 83(17): p. 3525-3527.
    50. Hashizume, T. and R. Nakasaki, Discrete surface state related to nitrogen-vacancy defect on plasma-treated GaN surfaces. Applied physics letters, 2002. 80(24): p. 4564-4566.
    51. Ventzek, P.L., R.J. Hoekstra, and M.J. Kushner, Two‐dimensional modeling of high plasma density inductively coupled sources for materials processing. Journal of Vacuum Science & Technology B, 1994. 12(1): p. 461-477.
    52. Alves, L.L., et al., Capacitively coupled radio-frequency discharges in nitrogen at low pressures. Plasma Sources Science and Technology, 2012. 21(4): p. 045008.
    53. Guo, Q., et al., Heteroepitaxial growth of gallium nitride on (111) GaAs substrates by radio frequency magnetron sputtering. Journal of crystal growth, 2002. 237: p. 1079-1083.
    54. Wang, K., J. Singh, and D. Pavlidis, Theoretical study of GaN growth: A Monte Carlo approach. Journal of applied physics, 1994. 76(6): p. 3502-3510.
    55. Kukushkin, S., et al., Substrates for epitaxy of gallium nitride: new materials and techniques. Rev. Adv. Mater. Sci, 2008. 17(1/2): p. 1-32.
    56. Timoshkin, A.Y. and H.F. Schaefer, Spontaneous gas-phase generation of needle-shaped clusters which violate the isolated square rule: A facile road to GaN nanorods? Journal of the American Chemical Society, 2004. 126(38): p. 12141-12154.
    57. Nakamura, S., GaN growth using GaN buffer layer. Japanese Journal of Applied Physics, 1991. 30(10A): p. L1705.
    58. Junaid, M., et al., Two-domain formation during the epitaxial growth of GaN (0001) on c-plane Al2O3 (0001) by high power impulse magnetron sputtering. Journal of Applied Physics, 2011. 110(12): p. 123519.
    59. D'Andrade, B.W., S.R. Forrest, and A.B. Chwang, Operational stability of electrophosphorescent devices containing p and n doped transport layers. Applied physics letters, 2003. 83: p. 3858.
    60. Mori, T. and Y. Masumoto, Effect of organic alloy for suppression of polycrystallization in BCP thin film. Journal of Photopolymer Science and Technology, 2006. 19(2): p. 209-214.
    61. Li, L., et al., Properties of Al heavy-doped ZnO thin films by RF magnetron sputtering. Materials research bulletin, 2008. 43(6): p. 1456-1462.
    62. Fang, G., D. Li, and B.-L. Yao, Fabrication and vacuum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering. Vacuum, 2002. 68(4): p. 363-372.
    63. Hamdani, F., et al., Optical properties of GaN grown on ZnO by reactive molecular beam epitaxy. Applied physics letters, 1997. 70(4): p. 467-469.
    64. Luther, B., et al., Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN. Applied Physics Letters, 1997. 70(1): p. 57-59.
    65. Weingarten, M., et al. Characterization of charge carrier injection in organic and hybrid organic/inorganic semiconductor devices by capacitance-voltage measurements. in SPIE Organic Photonics+ Electronics. 2012. International Society for Optics and Photonics.
    66. Grabowski, S., et al., Electron affinity of AlxGa1− xN (0001) surfaces. Applied Physics Letters, 2001. 78(17): p. 2503-2505.
    67. http://cpb.iphy.ac.cn/article/2015/cpb_24_6_067301.html#.
    68. http://www.autooo.net/utf8-classid164-id104243-1.html.
    69. Katz, O., et al., Electron mobility in an AlGaN/GaN two-dimensional electron gas. I. Carrier concentration dependent mobility. IEEE Transactions on electron devices, 2003. 50(10): p. 2002-2008.
    70. Shur, M., B. Gelmont, and M.A. Khan, Electron mobility in two-dimensional electron gas in AIGaN/GaN heterostructures and in bulk GaN. Journal of electronic materials, 1996. 25(5): p. 777-785.

    無法下載圖示 校內:2021-07-16公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE