| 研究生: |
李坤益 Li, Kun-Yi |
|---|---|
| 論文名稱: |
沉積氮化鎵/氮化鋁鎵薄膜應用於光電元件製作 Deposition of Gallium Nitride/Aluminum Gallium Nitride films for the fabrication of optoelectronic devices |
| 指導教授: |
洪昭南
Hong, Chau-Nan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 氮化鎵 、氮化鎵/氮化鋁鎵 、電感耦合電漿 、磁控濺鍍 、有機發光二極體 |
| 外文關鍵詞: | gallium nitride, gallium nitride/ aluminum gallium nitride, inductively coupled plasma, magnetron sputtering, organic light emitting diode |
| 相關次數: | 點閱:128 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
目前有機發光二極體(OLED)顯示器具備了高亮度、高對比度、超薄、可撓曲且重量輕之絕佳優勢,可望取代使用已久的液晶顯示器。OLED目前面臨的最大挑戰為壽命問題,因此本研究藉由無機材料的高載子遷移率(mobility)與穩定性等優勢,對有機材料進行置換,可讓元件的發光亮度提高,並且提升其耐用性,進而延長使用壽命。本論文以無機氮化鎵(GaN)以及氮化鎵/氮化鋁鎵(AlGaN)結構對傳統的電子傳輸層兼電洞阻擋層BCP進行置換,並且製作有機、無機複合式OLED元件。
本研究分為兩部分,第一部分以實驗室自行開發的電感耦合電漿輔助射頻濺鍍系統沉積氮化鎵,其具備了易大面積化與設備成本低的優勢。藉由ICP電漿所提供的額外能量,本研究成功於500℃低溫下獲得單晶高品質GaN薄膜,結晶方向為(0002),XRD鑑定結果之半高寬值為12.5 arcmin(文獻最佳結果約5~15 arcmin)且無氮空缺之問題。
第二部分為應用上述之電感耦合電漿輔助射頻濺鍍系統沉積氮化鎵於AZO透明玻璃基板之上,藉由AZO提供的優選方向(prefer orientation)成長出高品質的GaN薄膜,並以熱蒸鍍系統完成後續複合式OLED元件製作。起初元件僅採用GaN取代BCP,元件的最高亮度為690 cd/m2,低於傳統OLED元件的最高亮度2575 cd/m2。後續再以GaN/ AlGaN結構取代BCP,結果成功將最高亮度提升至4490 cd/m2,大幅超越傳統元件,但起始電壓較高(12.0 V),並且藉由實驗確認GaN/ AlGaN結構確實具備良好的電洞阻擋效果,可成功取代BCP,並且提升元件整體的耐用性。
Organic light emitting diode (OLED) displayers have excellent advantages of high brightness, high contrast, thin, flexible and light weight, so OLEDs have potential to replace LCD displayers. The most crucial problem of OLEDs is lifetime. In this study, we focus on solving this problem by using inorganic material that has high carrier mobility and stability to replace organic material. Within the hybrid OLED structure, the devices have higher brightness, better durability, and prolong the lifetime of OLEDs. In this study, we utilized gallium nitride (GaN) and GaN/ aluminum gallium nitride (AlGaN) structure to replace traditional hole blocking layer and electron transport layer, BCP, then fabricated organic-inorganic hybrid OLED devices.
Two subjects have been studied as follows. The first part was deposition of GaN film by inductively coupled plasma (ICP) enhanced magnetron sputtering system which had advantages of low equipment cost and large-scale production. With extra energy provided by ICP plasma, we obtained high quality single-crystal GaN thin film under low temperature, 500℃. The preferential orientation of the film was along (0002) direction. By XRD identification result, the full width at half maximum (FWHM) value of the GaN (0002) peak was 12.5 arcmin (the best results in literature were 5 ~ 15 arcmin), and there was no nitrogen vacancy issue.
The second part was to apply inductively coupled plasma enhanced magnetron sputtering system to deposit high quality GaN film on AZO glass substrate which provided prefer orientation, and completed hybrid OLED device by thermal evaporation system. First, we only used GaN film to replace BCP, the maximum brightness of this device was 690 cd/m2 which was lower than traditional device, 2575 cd/m2. Next step, we used GaN/ AlGaN structure to replace BCP and enhanced maximum brightness to 4490 cd/m2 successfully which significantly exceeded tradition OLED devices. However, the turn-on voltage (12.0 V) was higher than literature values. Then, we confirmed GaN/ AlGaN structure has excellent effect for blocking holes. We replaced BCP organic layer successfully and improved the durability of devices.
1. http://www.mem.com.tw/article_content.asp?sn=1209260005&page=1.
2. http://www.cw.com.tw/article/article.action?id=5073095.
3. Deng, Z., et al., Carrier transport in thin films of organic electroluminescent materials. Synthetic metals, 1999. 107(2): p. 107-109.
4. Matsumura, M. and T. Akai, Organic electroluminescent devices having derivatives of aluminum-hydroxyquinoline complex as light emitting materials. Japanese journal of applied physics, 1996. 35(10R): p. 5357.
5. Troadec, D., et al., Organic light-emitting diodes based on multilayer structures. Synthetic metals, 2001. 124(1): p. 49-51.
6. Kalyani, N.T. and S. Dhoble, Organic light emitting diodes: energy saving lighting technology—a review. Renewable and Sustainable Energy Reviews, 2012. 16(5): p. 2696-2723.
7. Ammermann, D., et al., Multilayer organic light emitting diodes for flat panel displays. International Journal of Electronics and Communications, 1996. 50: p. 327-333.
8. Im, W.-B., et al., Bright pure blue emission from multilayer organic electroluminescent device with purified unidentate organometallic complex. Applied Physics Letters, 2001. 79(9): p. 1387-1389.
9. Fujihira, M., et al., Growth of dark spots by interdiffusion across organic layers in organic electroluminescent devices. Applied physics letters, 1996. 68(13): p. 1787-1789.
10. Sato, Y., S. Ichinosawa, and H. Kanai, Operation characteristics and degradation of organic electroluminescent devices. Selected Topics in Quantum Electronics, IEEE Journal of, 1998. 4(1): p. 40-48.
11. Kwon, H., et al. Microlens Array Film with Full Fill Factor for Enhancing Outcoupling Efficiency from OLED Lighting. in Solid-State Sensors, Actuators and Microsystems Conference, 2007. TRANSDUCERS 2007. International. 2007. IEEE.
12. Tanaka, S.-I., Y. Kawakami, and Y. Naito. Improvement of the external extraction efficiency of OLED by using a pyramid array. in Optical Science and Technology, the SPIE 49th Annual Meeting. 2004. International Society for Optics and Photonics.
13. 黃春輝, 李富友, 黃岩誼, 光電功能超薄膜, 北京大學出版社, 北京, 中國, 258 (2001)
14. Adachi, C., K. Nagai, and N. Tamoto, Molecular design of hole transport materials for obtaining high durability in organic electroluminescent diodes. Applied physics letters, 1995. 66(20): p. 2679-2681.
15. Tadayyon, S., et al., CuPc buffer layer role in OLED performance: a study of the interfacial band energies. Organic Electronics, 2004. 5(4): p. 157-166.
16. Zhou, X., et al., Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer. Applied Physics Letters, 2001. 78(4): p. 410-412.
17. Kido, J. and Y. IZUMI, Efficient electroluminescence from tris (4-methyl-8-quinolinolato) aluminum (III). Chemistry letters, 1997. 1997(10): p. 963-964.
18. 周永晟, 具有載子注入平衡共主體結構之黃光有機發光二極體. 2012, 國立清華大學材料科學工程研究所碩士論文.
19. Lengyel, G., Schottky emission and conduction in some organic insulating materials. Journal of Applied Physics, 1966. 37(2): p. 807-810.
20. Kalinowski, J., Electroluminescence in organics. Journal of Physics D: Applied Physics, 1999. 32(24): p. R179.
21. Wolf, U., V. Arkhipov, and H. Bässler, Current injection from a metal to a disordered hopping system. I. Monte Carlo simulation. Physical Review B, 1999. 59(11): p. 7507.
22. Barth, S., et al., Electron injection into an Alq 3 single-layer organic light-emitting diode. Synthetic Metals, 2000. 111: p. 327-330.
23. Gill, W., Drift mobilities in amorphous charge‐transfer complexes of trinitrofluorenone and poly‐n‐vinylcarbazole. Journal of Applied Physics, 1972. 43(12): p. 5033-5040.
24. Pope, M. and C.E. Swenberg, Electronic processes in organic crystals and polymers. 1999: Oxford University Press on Demand.
25. Burrows, P., et al., Relationship between electroluminescence and current transport in organic heterojunction light‐emitting devices. Journal of Applied Physics, 1996. 79(10): p. 7991-8006.
26. Mu, H., Carriers Injection and Transport in Small Molecule Organic Light Emitting Diodes (OLED). 2007, University of Cincinnati.
27. Baldo, M.A., et al., Highly efficient phosphorescent emission from organic electroluminescent devices. Nature, 1998. 395(6698): p. 151-154.
28. Nakamura, S., et al., InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Applied Physics Letters, 1998. 72: p. 211.
29. Davis, R.F., et al., Critical evaluation of the status of the areas for future research regarding the wide band gap semiconductors diamond, gallium nitride and silicon carbide. Materials Science and Engineering: B, 1988. 1(1): p. 77-104.
30. Lei, T., et al., Epitaxial growth and characterization of zinc‐blende gallium nitride on (001) silicon. Journal of Applied Physics, 1992. 71(10): p. 4933-4943.
31. Shi, B., et al., Transition between wurtzite and zinc-blende GaN: An effect of deposition condition of molecular-beam epitaxy. Applied physics letters, 2006. 89(15): p. 151921.
32. Leszczynski, M., et al., Lattice parameters of gallium nitride. Applied Physics Letters, 1996. 69(1): p. 73-75.
33. Cheng, T., et al., Selective growth of zinc‐blende, wurtzite, or a mixed phase of gallium nitride by molecular beam epitaxy. Applied physics letters, 1995. 66(12): p. 1509-1511.
34. Ambacher, O., et al., Thermal stability and desorption of Group III nitrides prepared by metal organic chemical vapor deposition. Journal of Vacuum Science & Technology B, 1996. 14(6): p. 3532-3542.
35. Usui, A., H. Sunakawa, and A. Sakai, Thick GaN epitaxial growth with low dislocation density by hydride vapor phase epitaxy. Japanese journal of applied physics, 1997. 36(7B): p. L899.
36. Daigo, Y. and N. Mutsukura, Synthesis of epitaxial GaN single-crystalline film by ultra high vacuum rf magnetron sputtering method. Thin Solid Films, 2005. 483(1): p. 38-43.
37. Mizuta, M., et al., Low temperature growth of GaN and AlN on GaAs utilizing metalorganics and hydrazine. Japanese journal of applied physics, 1986. 25(12A): p. L945.
38. Shinoda, H. and N. Mutsukura, Structural properties of GaN and related alloys grown by radio-frequency magnetron sputter epitaxy. Thin Solid Films, 2008. 516(10): p. 2837-2842.
39. Junaid, M., et al., Electronic-grade GaN (0001)/Al2O3 (0001) grown by reactive DC-magnetron sputter epitaxy using a liquid Ga target. Applied Physics Letters, 2011. 98(14): p. 141915.
40. Roth, J., Industrial Plasma Engineering Volume 1 Principles. Bristol and Philadelphia. 1995, Institute of Physics publishing.
41. Morii, K., et al., Encapsulation-free hybrid organic-inorganic light-emitting diodes. Applied physics letters, 2006. 89(18): p. 183510.
42. Bolink, H.J., et al. Inverted solution processable OLEDs using a metal oxide as electron injection contact. in Photonics Europe. 2008. International Society for Optics and Photonics.
43. Tokmoldin, N., et al., A Hybrid Inorganic–Organic Semiconductor Light‐Emitting Diode Using ZrO2 as an Electron‐Injection Layer. Advanced Materials, 2009. 21(34): p. 3475-3478.
44. Acharya, R. and X. Cao, High-brightness organic light-emitting diodes based on a simplified hybrid structure. Applied Physics Letters, 2012. 101(5): p. 053306.
45. Kim, M., et al., Characterization of GaN nanowires and light-emitting devices based on a GaN nanowire-PVK nanocomposite. Synthetic metals, 2003. 135: p. 743-744.
46. Shin, M.J., et al., Fabrication of n-GaN/MDMO-PPV hybrid structures for optoelectronic devices. Journal of Luminescence, 2014. 147: p. 1-4.
47. Kim, J.H., M. Davidson, and P.H. Holloway, Electroluminescence from Tm-doped GaN deposited by radio-frequency planar magnetron sputtering. Applied physics letters, 2003. 83(23): p. 4746-4748.
48. Dinescu, M., et al., GaN thin films deposition by laser ablation of liquid Ga target in nitrogen reactive atmosphere. Applied surface science, 1998. 127: p. 559-563.
49. Look, D.C., et al., On the nitrogen vacancy in GaN. Applied physics letters, 2003. 83(17): p. 3525-3527.
50. Hashizume, T. and R. Nakasaki, Discrete surface state related to nitrogen-vacancy defect on plasma-treated GaN surfaces. Applied physics letters, 2002. 80(24): p. 4564-4566.
51. Ventzek, P.L., R.J. Hoekstra, and M.J. Kushner, Two‐dimensional modeling of high plasma density inductively coupled sources for materials processing. Journal of Vacuum Science & Technology B, 1994. 12(1): p. 461-477.
52. Alves, L.L., et al., Capacitively coupled radio-frequency discharges in nitrogen at low pressures. Plasma Sources Science and Technology, 2012. 21(4): p. 045008.
53. Guo, Q., et al., Heteroepitaxial growth of gallium nitride on (111) GaAs substrates by radio frequency magnetron sputtering. Journal of crystal growth, 2002. 237: p. 1079-1083.
54. Wang, K., J. Singh, and D. Pavlidis, Theoretical study of GaN growth: A Monte Carlo approach. Journal of applied physics, 1994. 76(6): p. 3502-3510.
55. Kukushkin, S., et al., Substrates for epitaxy of gallium nitride: new materials and techniques. Rev. Adv. Mater. Sci, 2008. 17(1/2): p. 1-32.
56. Timoshkin, A.Y. and H.F. Schaefer, Spontaneous gas-phase generation of needle-shaped clusters which violate the isolated square rule: A facile road to GaN nanorods? Journal of the American Chemical Society, 2004. 126(38): p. 12141-12154.
57. Nakamura, S., GaN growth using GaN buffer layer. Japanese Journal of Applied Physics, 1991. 30(10A): p. L1705.
58. Junaid, M., et al., Two-domain formation during the epitaxial growth of GaN (0001) on c-plane Al2O3 (0001) by high power impulse magnetron sputtering. Journal of Applied Physics, 2011. 110(12): p. 123519.
59. D'Andrade, B.W., S.R. Forrest, and A.B. Chwang, Operational stability of electrophosphorescent devices containing p and n doped transport layers. Applied physics letters, 2003. 83: p. 3858.
60. Mori, T. and Y. Masumoto, Effect of organic alloy for suppression of polycrystallization in BCP thin film. Journal of Photopolymer Science and Technology, 2006. 19(2): p. 209-214.
61. Li, L., et al., Properties of Al heavy-doped ZnO thin films by RF magnetron sputtering. Materials research bulletin, 2008. 43(6): p. 1456-1462.
62. Fang, G., D. Li, and B.-L. Yao, Fabrication and vacuum annealing of transparent conductive AZO thin films prepared by DC magnetron sputtering. Vacuum, 2002. 68(4): p. 363-372.
63. Hamdani, F., et al., Optical properties of GaN grown on ZnO by reactive molecular beam epitaxy. Applied physics letters, 1997. 70(4): p. 467-469.
64. Luther, B., et al., Investigation of the mechanism for Ohmic contact formation in Al and Ti/Al contacts to n-type GaN. Applied Physics Letters, 1997. 70(1): p. 57-59.
65. Weingarten, M., et al. Characterization of charge carrier injection in organic and hybrid organic/inorganic semiconductor devices by capacitance-voltage measurements. in SPIE Organic Photonics+ Electronics. 2012. International Society for Optics and Photonics.
66. Grabowski, S., et al., Electron affinity of AlxGa1− xN (0001) surfaces. Applied Physics Letters, 2001. 78(17): p. 2503-2505.
67. http://cpb.iphy.ac.cn/article/2015/cpb_24_6_067301.html#.
68. http://www.autooo.net/utf8-classid164-id104243-1.html.
69. Katz, O., et al., Electron mobility in an AlGaN/GaN two-dimensional electron gas. I. Carrier concentration dependent mobility. IEEE Transactions on electron devices, 2003. 50(10): p. 2002-2008.
70. Shur, M., B. Gelmont, and M.A. Khan, Electron mobility in two-dimensional electron gas in AIGaN/GaN heterostructures and in bulk GaN. Journal of electronic materials, 1996. 25(5): p. 777-785.
校內:2021-07-16公開