| 研究生: |
施偉翔 Shih, Wei-Hsiang |
|---|---|
| 論文名稱: |
運用極心改換速度於無四桿迴路平面連桿組之加速度分析 Acceleration Analysis of Planar Linkages without Four-Bar Loops Using Pole Changing Velocity |
| 指導教授: |
黃文敏
Hwang, Wen-Miin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2008 |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 105 |
| 中文關鍵詞: | 雙蝴蝶八連桿組 、運動複雜性機構 、加速度分析 、路徑曲率中心 、虛擬連桿組 、極心改換速度 、運動不確定性 |
| 外文關鍵詞: | center of path curvature, acceleration analysis, pole changing velocity, virtual linkage, kinematically complex mechanism, kinematic indeterminacy, double butterfly eight-bar linkage |
| 相關次數: | 點閱:104 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用一套幾何作圖法進行平面連桿組的加速度分析,此分析方法包含四個步驟。首先,以速度輔助點法求出連桿組之速度極心,並完成速度分析。其次,利用求解連桿組速度極心位置時所繪製之輔助線,建構一虛擬連桿組,再以此虛擬連桿組進行極心改換速度之分析。然後,以極心改換速度搭配Hartmann 定理,求出特定耦桿點之瞬時路徑曲率中心,藉以將原複雜連桿組拆解成多組等效四連桿組。最後,利用等效四連桿組與原連桿組耦桿的角速度與角加速度相同之特性,完成原複雜連桿組之加速度分析。
此分析方法之關鍵在於極心改換速度之求解,然而,具運動不確定性之連桿組,其極心改換速度無法依一般方法求出。針對此問題,本文提出一種幾何法,先以虛擬連桿組之運動拘束關係,求出輔助點與其正交速度前端點兩者之改換速度,再求出各速度極心之改換速度,藉以完成整個加速度分析之流程。
本文針對三個不具任何四桿迴路之連桿組,分別是雙自由度五連桿組、雙蝴蝶八連桿組、三自由度八連桿組,套用此加速度分析程序,完成各連桿組之加速度分析,並使用工程分析軟體驗證其結果之正確性。
This article provides a geometrical method to analyze the acceleration of planar linkages. This analysis method contains four main steps. The first step is to find the velocity poles for the velocity analysis of linkages using the auxiliary point method for velocity. Next, the changing velocities of poles are determined by using a virtual linkage constructed from the auxiliary lines for finding velocity poles. Then, the Hartmann construction is applied to find the centers of path curvature of coupler points. Thus, the original linkage can be considered as several instantaneously equivalent four-bar linkages. Finally, using the acceleration analysis technique for the equivalent four-bar linkages, the acceleration analysis of the original complex linkages can be successfully accomplished.
The key step of the procedures is to find the pole changing velocity. However, the pole changing velocities of linkages having kinematic indeterminacies can’t be obtained with the existing method. Thus, this article presents an improved way to find the pole changing velocities through the changing velocities of auxiliary points and tips of their orthogonal velocities, which can be obtained from the motion constrains between virtual links.
Three planar linkages without four-bar loops, i.e., the two-degree-of-freedom five-bar linkage, the double butterfly eight-bar linkage, and a three-degree-of-freedom eight-bar linkage, are analyzed using the proposed method. The results are verified by a commercial software.
1. Aronhold, S., “Grundzüge der kinematischen geometrie,” Verhandlungen des Vereins zur Beförderung des Gewerbefleisses in Preussen, Vol. 51, pp. 129-155, 1872.
2. Kennedy, A. B. W., The Mechanics of Machinery, Macmillan, London, 1886.
3. Bagci, C., “Turned Velocity Image and Turned Velocity Superposition Techniques for the Velocity Analysis of Multi-Input Mechanisms Having Kinematic Indeterminacies,” Mechanical Engineering News, Vol. 20, No. 1, pp. 10-15, 1983.
4. 徐孟輝,以解析法求運動鏈速度瞬心,碩士論文,國立成功大學機械工程研究所,台南,1990。
5. Hirschhorn, J., Kinematics and Dynamics of Plane Mechanisms, McGraw-Hill Book Company, Inc., New York, 1962.
6. Yan, H. S., Creative Design of Mechanical Devices, Springer-Verlag Singapore Pte. Ltd., Singapore, 1998.
7. Bernoulli, J., De Centro Spontaneo Rotationis, Opera 4, Lausannae, p. 265, 1742.
8. Chasles, M., “Note sur les propriétés générales du systéme de deux corps…,” Bulletin des Sciences Mathématiques de Férrusac, Vol. 14, pp. 321-326, 1830.
9. Dijksman, E. A., “Why Joint-Joining Is Applied on Complex Linkages,” Proceedings of the Second IFToMM International Symposium on Linkages and Computer Aided Design Methods, Vol. I1, paper 17, pp. 185-212, Bucuresti, Romania, 1977.
10. Gilmore, B. J. and Cipra, R. J., “An Analytical Method for Computing the Instant Centers, Centrodes, Inflection Circles, and Centers of Curvature of the Centrodes by Successively Grounding Each Link,” ASME Transactions, Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 105, No. 2, pp. 407-414, 1983.
11. Yan, H. S. and Hsu, M. H., “An Analytical Method for Locating Velocity Instantaneous Centers,” Proceedings of the Twenty Second Biennial ASME Mechanisms Conference, DE-Vol. 47, Flexible Mechanisms, Dynamics, and Analysis, pp. 353-359, Scottsdale, Arizona, September 13-16, 1992.
12. Hall, A. S. and Ault, E. S., “Auxiliary Points Aid Acceleration Analysis,” Machine Design, Vol. 15, No. 11, pp. 120-23, 1943.
13. Carter, W. J., “Acceleration of the Instant Center,” ASME Trasactions, Journal of Applied Mechanics, Vol. 17, No. 2, pp. 142-144, 1950.
14. Goodman, T. P., “An Indirect Method for Determining Accelerations in Complex Mechanisms,” ASME Transactions, Vol. 80, No. 8, pp. 1676-1682, 1958.
15. Hirschhorn, J., “Acceleration Analysis of Low-complexity Mechanisms,” Production Engineering, Vol. 32, No. 19, pp. 26-29, 1961.
16. Rakesh, N., Mruthyunjaya, T. S., and Girish G. D., “Velocity and Acceleration Analysis of Complex Mechanisms by Graphical Iteration,” Mechanism and Machine Theory, Vol. 19, No. 3, pp. 349-356, 1984.
17. Hall, A. S. Jr., Kinematics and Linkage Design, Waveland Press, Inc., Prospect Heights, Illinois, 1986.
18. 汪安國,平面五連桿組之剛體導引,碩士論文,國立成功大學機械工程研究所,台南,1990。
19. Balli, S. S. and Chand, S., “Five-Bar Motion and Path Generators with Variable Topology for Motion between Extreme Positions,” Mechanism and Machine Theory, Vol. 37, pp. 1435-1445, 2002.
20. Pennock, G. R., “Curvature Theory for a Two-Degree-of-Freedom Planar Linkage,” Mechanism and Machine Theory, Vol. 43, No. 5, pp. 525-548, 2008.
21. Du, R. and Guo, W. Z., “The Design of a New Metal Forming Press with Controllable Mechanism,” ASME Transations, Journal of Mechanical Design, Vol. 125, pp. 582-592, September 2003.
22. Meng, C. F., Zhang, C., Lu, Y. H., and Shen, Z. G., “Optimal Design and Control of a Novel Press with an Extra Motor,” Mechanism and Machine Theory, Vol. 39, pp. 811-818, 2004.
23. Li, H., Zhang, C., and Song, Y. M., “Design of Slider Curve for the Hybrid-Driven Mechanical Press,” Journal of Machine Design and Research, Vol. 20, No. z1, pp. 244-246, 2004 (in Chinese).
24. He, K., Jin, Z. L., Guo, W. Z., and Du, R., “The Design of a New Controllable Metal Forming Mechanical Press,” Journal of Machine Design and Research, Vol. 21, No. 2, pp.12-14, 2005 (in Chinese).
25. Alt, H. and Rauh, U. K., “Koppelgetriebe ohne Gelenkvierecke,” Reuleaux-Mitteilungen, Vol. 5, p. 380 (Zuschrift und Erwiderung), 1937.
26. Rosenauer, N., “Unmittelbare Geschwindigkeitskonstruktion am Römer-Getriebe,” Reuleaux-Mitteilungen, Vol. 5, pp. 329-330, 1937.
27. Dijksman, E. A., “Geometric Determination of Coordinated Centers of Curvature in Net Work Mechanism Through Linkage Reduction,” Mechanism and Machine Theory, Vol. 19, No. 3, pp. 289-295, 1984.
28. Adams, D. P. and Samoiloff, A., “Synthesis of Plane Mechanisms (Synthese ebener Getriebe),” Transactions of the Sixth Conference on Mechanisms, Purdue University, Lafayette, Ind., pp. 120-128, 1960.
29. Freudenstein, F., “The Cardan Positions of a Plane (Die Kardanlagen einer Ebene),” Transactions of the sixth Conference on Mechanisms, Purdue University, Lafayette, Ind., pp. 129-133, 1960.
30. Wu, L. I. and Chiang, C. H., “Dead-Center Configurations of Planar Complex Eight-Bar Linkages,” Journal of the Chinese Society of Mechanical Engineers, Vol. 14, No. 5, pp. 492-503, 1993.
31. Waldron, K. J. and Sreenivasan S. V., “A Study of the Solvability of the Position Problem for Multi-Circuit Mechanisms by Way of Example of the Double Butterfly Linkage,” ASME Transactions, Journal of Mechanical Design, Vol. 118, No. 3, pp. 390-395, 1996.
32. Pennock, G. R. and Hasan, A., “A Polynomial Equation for a Coupler Curve of the Double Butterfly Linkage,” ASME Transactions, Journal of Mechanical Design, Vol. 124, No. 1, pp. 39-46, 2002.
33. Foster, D. E. and Pennock, G. R., “A Graphical Method to Find the Secondary Instantaneous Centers of Zero Velocity for the Double Butterfly Linkage,” ASME Transactions, Journal of Mechanical Design, Vol. 125, No. 2, pp. 268-274, 2003.
34. Pennock, G. R. and Raje, N. N., “Curvature Theory for the Double Flier Eight-Bar Linkage,” Mechanism and Machine Theory, Vol. 39, No. 7, pp. 665-679, 2004.
35. Pennock, G. R. and Raje, N. N., “Coupler Cognates for the Double Flier Eight-Bar Linkage,” ASME Transactions, Journal of Mechanical Design, Vol. 127, No. 6, pp. 1145-1151, 2005.
36. 黃景政,平面R 接頭並聯式機構之工作空間及奇異性分析,碩士論文,國立成功大學機械工程研究所,台南,1999。
37. Rosenauer, N., “Koppeltriebe ohne Gelenkvierecke,” Reuleaux-Mitteilungen, Vol. 6, pp. 147-149, 1938.
38. Lin, C. S. and Erdman, A. G., “Dimensional Synthesis of Planar Triads: Motion Generation with Prescribed Timing for Six Precision Positions,” Mechanism and Machine Theory, Vol. 22, No. 5, pp. 411-419, 1987.
39. Gosselin, C. and Angeles, J. “Optimum Kinematic Design of a Planar Three-Degree-of-Freedom Parallel Manipulator,” ASME Conference, Design Engineering Division (Publication) DE, Vol. 10-2, pp. 111-115, 1987.
40. Lin, C. S. and Erdman, A. G., “Singular Conditions and Solutions of the Standard Triad Displacement Equation,” ASME Conference, Design Engineering Division (Publication) DE, Vol. 15-1, pp. 371-377, 1988.
41. Gosselin, C. and Angeles, J. “Singularity Analysis of Closed-Loop Kinematic Chains,” IEEE Transactions, Robotics and Automation, Vol. 6, No. 3, pp. 281-290, 1990.
42. Tong, G. L. and Paul, R. P., “Singularity Avoidance and the Control of an Eight-Revolute-Joint Manipulator,” International Journal of Robotics Research, Vol. 11, No. 6, pp. 503-515, 1992
43. 鍾國源,平面並聯式機械臂的運動規劃,碩士論文,國立成功大學機械工程研究所,台南,1998。
44. Cha, S. H, “Singularity Avoidance for the 3-RRR Mechanism Using Kinematic Redundancy,” Proceedings of IEEE International Conference on Robotics and
Automation, Roma, Italy, pp. 1195-1200, 2007.
45. Mallik, A. K., Ghosh, A., and Dittrich G., Kinematic Analysis and Synthesis of Mechanisms, CRC Press, Inc., Boca Raton, 1994.
46. Burmester, L., “Über die momentane Bewegung ebener kinematischer Ketten,” Civilingenieur, No. 26, pp. 247-286, 1880.
47. Mehmke, R., “Über die Geschwindigkeiten beliebiger Ordnung eines in seiner Ebene bewegten ähnlich veränderlichen ebenen Systems,” Civil Ing., p. 487, 1883.
48. Dijksman, E. A., Motion Geometry of Mechanisms, Cambridge University Press, London, 1976.
49. Hartmann, W., “Ein neues Verfahren zur Aufsuchung des Krümmungskreises,” VDI-Z, Vol. 37, pp. 95-102, 1893.
50. Schiler, R. W., “Method for Determining the Instantaneous Center of Acceleration for a Given Link,” ASME Transactions, Journal of Mechanical Design, Vol. 87, pp. 218, 1965.
51. Bobillier, E., Cours de géométrie, 12th Edition, p. 232, 1870.