簡易檢索 / 詳目顯示

研究生: 康敏詩
Kansole, Michelline Marie Regina
論文名稱: 硫酸銅與過氧化氫對水中微囊藻毒素生物降解之影響
Impact of copper sulfate and hydrogen peroxide on biodegration of microcystin-LR (MC-LR) in surface waters
指導教授: 林財富
Lin, Tsair-Fuh
學位類別: 博士
Doctor
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 140
外文關鍵詞: microcystin-LR, biodegradation, mlrA gene, CAAX type II, algaecides, copper sulfate, hydrogen peroxide
相關次數: 點閱:93下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Harmful cyanobacteria blooms may deteriorate freshwater environments, leading to bad water quality that can adversely affect the health of humans and animals. Many cyanobacteria can produce toxic metabolites, with microcystin-LR (MC-LR) being the most commonly detected cyanotoxin in fresh water bodies. A MC-LR degrading bacteria with 93% similarity with Bacillus sp. strain was isolated from a lake (HLPL) in Taiwan and tested for its degradability of the cyanotoxin. The results showed that the degradation of microcystin-LR by the isolated Bacillus sp was temperature-dependent and may be simulated by first order model. Biomolecular monitoring was also applied to detect three types of genes involved in the degradation. The results show that mlrA, and CAAX genes were present in the indigenous bacteria in HLPL water samples, although GST genes were also investigated for their xenobiotic importance in MC-LR degradation. However, for the isolated Bacillus sp. strain, only CAAX genes were detected. The results of this first part of the study may serve as a basis to quantify the degradation of MC-LR in natural water environment and to better understand the possible pathways involved in the degradation. In addition to the biomolecular aspect of MC-LR biodegradation, the impacts of copper sulfate and H2O2 on the degradation of MC-LR, and the growth of M. aeruginosa and Bacillus sp., were carried out in laboratory experiments. The results showed that H2O2 could remove M. aeruginosa even at low dose of 3 mg∙L-1. In addition, 1 mg∙L-1 copper sulfate and 5 mg∙L-1 H2O2 were enough to decimate Bacillus sp. population, suppressing the biodegradation of MC-LR via Bacillus sp. Nevertheless, H2O2 showed a better MC-LR removal even at very low light conditions of 2.3 W∙m-2 if compared with copper sulfate. H2O2 is competitive in terms of cost and sustainability, with a capability of degrading organic compounds when it is assisted with UV light. Henceforth, it may be considered as an alternative algaecide to copper sulfate in reservoirs for algae growth control and management.

    Table of Contents List of Figures iii List of Tables iv List of abbreviations v Declaration vii Acknowledgments viii Summary x Chapter 1 : General introduction 1 1-1. Background 1 1-2. Problems 3 1-3. Aim of the study 4 Chapter 2 . Material and Methodology 5 2-1. Hulupi Lake 5 2-2. Microcystis aeruginosa PCC 7820 culture and cell count 5 2-3. Extraction of crude MC-LR from M. aeruginosa culture 6 2-4. MC-LR and TOC concentration measurements 8 2-5. Isolation of the bacterial strain 9 2-6. MC-LR Biodegradation in HLPL Water 10 2-7. MC-LR biodegradation by the isolated bacteria 12 2-8. DNA extraction for cyanobacteria and bacteria 13 2-9. Polymerase Chain Reaction (PCR) and quantitative PCR (q-PCR) 14 2-10. DNA cloning, sequencing, and phylogenetic tree analysis for bacteria 17 2-11. Exposure of MC-LR, M. aeruginosa, and Bacillus sp. to copper sulfate and H2O2 17 2-12. Quantification of residual H2O2 18 2-13. Quantification of residual hydroxyl radicals 18 2-14. Measurement of total alkalinity and pH 19 2-15. Statistical Analyses 20 Chapter 3 . Microcystin-LR biodegradation by Bacillus sp.: reaction rates and possible genes involved in the degradation 22 Abstract 22 3-1. Introduction 24 3-2. Results and Discussion 27 3-2.1. Degradation of MC-LR in HLPL water 27 3-2.2. Isolated MC-LR degrading bacteria 30 3-2.3. Effect of temperature on MC-LR degradation 31 3-2.4. Effect of MC-LR and bacteria concentration on the degradation rates 33 3-2.5. Biomolecular aspect of MC-LR degradation in HLPL water 38 3-3. Conclusions 47 Chapter 4 . Impacts of hydrogen peroxide and copper sulfate on the control of Microcystis aeruginosa and MC-LR, and the inhibition of MC-LR degrading bacterium Bacillus sp. 48 Abstract 48 4-1. Introduction 50 4-2. Results and discussion 53 4-2.1. Toxicity of copper sulfate and H2O2 53 4-2.1.1. Toxicity to M. aeruginosa PCC 7028 53 4-2.1.2. Toxicity to Bacillus sp. 59 4-2.2. MC-LR degradation in the systems with copper sulfate and hydrogen peroxide 69 4-2.3. Evaluation of the effects of H2O2 and copper sulfate on the control of cyanobacteria and their metabolites 73 4-3. Conclusions 76 Chapter 5 . Conclusions and suggestions 78 5-1. Conclusions 78 5-2. Suggestions for further work 79 References 81 Appendix: Supplementary Information a

    1. de la Noüe, J.; Laliberté, G.; Proulx, D. Algae and waste water. Journal of Applied Phycology 1992, 4, 247-254.
    2. Chen, Y.; Liu, J.; Ju, Y.-H. Flotation removal of algae from water. Colloids and Surfaces B: Biointerfaces 1998, 12, 49-55.
    3. Abdel-Raouf, N.; Al-Homaidan, A.; Ibraheem, I. Microalgae and wastewater treatment. Saudi Journal of Biological Sciences 2012, 19, 257-275.
    4. Zhang, X.-j.; Chen, C.; Ding, J.-q.; Hou, A.; Li, Y.; Niu, Z.-b.; Su, X.-y.; Xu, Y.-j.; Laws, E.A. The 2007 water crisis in wuxi, china: Analysis of the origin. Journal of Hazardous Materials 2010, 182, 130-135.
    5. Newcombe, G.; House, J.; Ho, L.; Baker, P.; Burch, M. Management strategies for cyanobacteria (blue-green algae): A guide for water utilities. Water Quality Research Australia (WQRA), Reserach Report 2010, 74.
    6. Alvarez, M.B.; Rose, J.B.; Bellamy, B. Treating algal toxins using oxidation, adsorption, and membrane technologies. Water Research Foundation: 2010.
    7. Yuan, B.-L.; Qu, J.-H.; Fu, M.-L. Removal of cyanobacterial microcystin-lr by ferrate oxidation–coagulation. Toxicon 2002, 40, 1129-1134.
    8. Lambert, T.W.; Holmes, C.F.; Hrudey, S.E. Adsorption of microcystin-lr by activated carbon and removal in full scale water treatment. Water Research 1996, 30, 1411-1422.
    9. Pendleton, P.; Schumann, R.; Wong, S.H. Microcystin-lr adsorption by activated carbon. Journal of Colloid and Interface Science 2001, 240, 1-8.
    10. Lee, J.J. Removal of microcystin-lr from drinking water using adsorption and membrane processes. The Ohio State University, 2009.
    11. Ho, L.; Lambling, P.; Bustamante, H.; Duker, P.; Newcombe, G. Application of powdered activated carbon for the adsorption of cylindrospermopsin and microcystin toxins from drinking water supplies. Water Research 2011, 45, 2954-2964.
    12. Pyo, D.; Moon, D. Adsorption of microcystin lr by activated carbon fibers. Bulletin-Korean Chemical Society 2005, 26, 2089.
    13. Müller, C.C.; Raya-Rodriguez, M.T.; Cybis, L.F. Powdered activated carbon adsorption for microcystin removal from public water supply. Engenharia Sanitaria e Ambiental 2009, 14, 29-38.
    14. Zhu, S.; Yin, D.; Gao, N.; Zhou, S.; Wang, Z.; Zhang, Z. Adsorption of two microcystins onto activated carbon: Equilibrium, kinetic, and influential factors. Desalination and Water Treatment 2016, 1-9.
    15. Dixon, M.; Falconet, C.; Ho, L.; Chow, C.; O'Neill, B.; Newcombe, G. Nanofiltration for the removal of algal metabolites and the effects of fouling. Water Science and Technology 2010, 61, 1189-1199.
    16. Teixeira, M.R.; Rosa, M.J. Microcystins removal by nanofiltration membranes. Separation and Purification Technology 2005, 46, 192-201.
    17. Gągała, I.; Mankiewicz-Boczek, J. The natural degradation of microcystins (cyanobacterial hepatotoxins) in fresh water-the future of modern treatment systems and water quality improvement. Pol. J. Environ. Stud 2012, 21, 1125-1139.
    18. Nybom, S.; Dziga, D.; Heikkilä, J.; Kull, T.; Salminen, S.; Meriluoto, J. Characterization of microcystin-lr removal process in the presence of probiotic bacteria. Toxicon 2012, 59, 171-181.
    19. Pathmalal, M.; Christine, E.; Linda, A.L. Bacterial degradation of microcystin. dr.lib.sjp.ac.lk 2016.
    20. Ho, L.; Gaudieux, A.-L.; Fanok, S.; Newcombe, G.; Humpage, A.R. Bacterial degradation of microcystin toxins in drinking water eliminates their toxicity. Toxicon 2007, 50, 438-441.
    21. Lemes, G.A.; Kist, L.W.; Bogo, M.R.; Yunes, J.S. Biodegradation of [d-leu 1] microcystin-lr by a bacterium isolated from sediment of patos lagoon estuary, brazil. Journal of Venomous Animals and Toxins including Tropical Diseases 2015, 21, 1.
    22. Kansole, M.M.; Lin, T.-F. Microcystin-LR biodegradation by bacillus sp.: Reaction rates and possible genes involved in the degradation. Water 2016, 8, 508.
    23. Cousins, I.; Bealing, D.; James, H.; Sutton, A. Biodegradation of microcystin-lr by indigenous mixed bacterial populations. Water research 1996, 30, 481-485.
    24. Hudnell, H.K. Cyanobacterial harmful algal blooms: State of the science and research needs. Springer Science & Business Media: 2008; Vol. 619.
    25. U.S. Environmental protection agency. Control and treatment. Https://www.Epa.Gov/nutrient-policy-data/control-and-treatment#main-content date accessed jan. 09. 2017.
    26. Jančula, D.; Maršálek, B. Critical review of actually available chemical compounds for prevention and management of cyanobacterial blooms. Chemosphere 2011, 85, 1415-1422.
    27. MacKintosh, C.; Beattie, K.A.; Klumpp, S.; Cohen, P.; Codd, G.A. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2a from both mammals and higher plants. FEBS letters 1990, 264, 187-192.
    28. Yoshizawa, S.; Matsushima, R.; Watanabe, M.F.; Harada, K.-i.; Ichihara, A.; Carmichael, W.W.; Fujiki, H. Inhibition of protein phosphatases by microcystis and nodularin associated with hepatotoxicity. Journal of cancer research and clinical oncology 1990, 116, 609-614.
    29. Falconer, I.R.; Yeung, D.S. Cytoskeletal changes in hepatocytes induced by microcystis toxins and their relation to hyperphosphorylation of cell proteins. Chemico-biological interactions 1992, 81, 181-196.
    30. Falconer, I.R. Tumor promotion and liver injury caused by oral consumption of cyanobacteria. Environmental Toxicology 1991, 6, 177-184.
    31. Tang, Z.-y. Primary liver cancer. Cina acad. publ.; Berlin etc.: Springer Beijing: 1989.
    32. Jochimsen, E.M.; Carmichael, W.W.; An, J.; Cardo, D.M.; Cookson, S.T.; Holmes, C.E.; Antunes, M.B.; de Melo Filho, D.A.; Lyra, T.M.; Barreto, V.S.T. Liver failure and death after exposure to microcystins at a hemodialysis center in brazil. New England Journal of Medicine 1998, 338, 873-878.
    33. Kuiper-Goodman, I.F.; Fitzgerald, J. . Human health aspects. 1999.
    34. Imanishi, S.; Kato, H.; Mizuno, M.; Tsuji, K.; Harada, K.-i. Bacterial degradation of microcystins and nodularin. Chemical research in Toxicology 2005, 18, 591-598.
    35. Bourne, D.G.; Jones, G.J.; Blakeley, R.L.; Jones, A.; Negri, A.P.; Riddles, P. Enzymatic pathway for the bacterial degradation of the cyanobacterial cyclic peptide toxin microcystin-LR. Applied and Environmental microbiology 1996, 62, 4086-4094.
    36. Bourne, D.G.; Riddles, P.; Jones, G.J.; Smith, W.; Blakeley, R.L. Characterisation of a gene cluster involved in bacterial degradation of the cyanobacterial toxin microcystin lr. Environmental toxicology 2001, 16, 523-534.
    37. Dziga, D.; Wasylewski, M.; Wladyka, B.; Nybom, S.; Meriluoto, J. Microbial degradation of microcystins. Chemical research in toxicology 2013, 26, 841-852.
    38. Jones, G.J.; Orr, P.T. Release and degradation of microcystin following algicide treatment of a microcystis aeruginosa bloom in a recreational lake, as determined by hplc and protein phosphatase inhibition assay. Water research 1994, 28, 871-876.
    39. Kansole, M.M.; Lin, T.-F. Impacts of hydrogen peroxide and copper sulfate on the control of microcystis aeruginosa and MC-LR and the inhibition of mc-lr degrading bacterium bacillus sp. Water 2017, 9, 255.
    40. Rippka, R. Isolation and purification of cyanobacteria. Methods in enzymology 1988, 167, 3-27.
    41. Sadler, T.; von Elert, E. Physiological interaction of daphnia and microcystis with regard to cyanobacterial secondary metabolites. Aquatic Toxicology 2014, 156, 96-105.
    42. Bury, N.; Flik, G.; Eddy, F.; Codd, G. The effects of cyanobacteria and the cyanobacterial toxin microcystin-LR on ca2+ transport and na+/k+-atpase in tilapia gills. The Journal of experimental biology 1996, 199, 1319-1326.
    43. Hu, L.B.; Yang, J.D.; Zhou, W.; Yin, Y.F.; Chen, J.; Shi, Z.Q. Isolation of a methylobacillus sp. That degrades microcystin toxins associated with cyanobacteria. New biotechnology 2009, 26, 205-211.
    44. Australian drinking water guidelines. National Water Quality Management Strategy Paper 2004.
    45. Fischer, W.J.; Garthwaite, I.; Miles, C.O.; Ross, K.M.; Aggen, J.B.; Chamberlin, A.R.; Towers, N.R.; Dietrich, D.R. Congener-independent immunoassay for microcystins and nodularins. Environmental science & technology 2001, 35, 4849-4856.
    46. Sepahi, A.A.; Golpasha, I.D.; Emami, M.; Nakhoda, A. Isolation and characterization of crude oil degrading Bacillus spp. Journal of Environmental Health Science & Engineering 2008, 5, 149-154.
    47. Bartram, J.; Cotruvo, J.; Exner, M.; Fricker, C.; Glasmacher, A. Heterotrophic plate counts and drinking-water safety: The significance of hpcs for water quality and human health. IWA Publishing: 2003.
    48. Bustin, S.A.; Benes, V.; Garson, J.A.; Hellemans, J.; Huggett, J.; Kubista, M.; Mueller, R.; Nolan, T.; Pfaffl, M.W.; Shipley, G.L. The MIQE guidelines: Minimum information for publication of quantitative real-time pcr experiments. Clinical chemistry 2009, 55, 611-622.
    49. Hoefel, D.; Adriansen, C.M.; Bouyssou, M.A.; Saint, C.P.; Newcombe, G.; Ho, L. Development of an mlrA gene-directed taqman PCR assay for quantitative assessment of microcystin-degrading bacteria within water treatment plant sand filter biofilms. Applied and environmental microbiology 2009, 75, 5167-5169.
    50. Muyzer, G.; De Waal, E.C.; Uitterlinden, A.G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16s rRNA. Applied and environmental microbiology 1993, 59, 695-700.
    51. Lloyd-Jones, G.; Lau, P. Glutathione S-transferase-encoding gene as a potential probe for environmental bacterial isolates capable of degrading polycyclic aromatic hydrocarbons. Applied and environmental microbiology 1997, 63, 3286-3290.
    52. Lloyd-Jones, G.; Laurie, A.D.; Hunter, D.W.; Fraser, R. Analysis of catabolic genes for naphthalene and phenanthrene degradation in contaminated new zealand soils. FEMS Microbiology Ecology 1999, 29, 69-79.
    53. Engelbrektson, A.; Kunin, V.; Wrighton, K.C.; Zvenigorodsky, N.; Chen, F.; Ochman, H.; Hugenholtz, P. Experimental factors affecting pcr-based estimates of microbial species richness and evenness. The ISME journal 2010, 4, 642-647.
    54. Ahn, J.-H.; Kim, M.-C.; Shin, H.-C.; Choi, M.-K.; Yoon, S.-S.; Kim, T.; Song, H.-G.; Lee, G.H.; Ka, J.-O. Improvement of PCR amplification bias for community structure analysis of soil bacteria by denaturing gradient gel electrophoresis. Journal of microbiology and biotechnology 2006, 16, 1561-1569.
    55. Schreier, P.H.; Cortese, R. A fast and simple method for sequencing DNA cloned in the single-stranded bacteriophage M13. Journal of molecular biology 1979, 129, 169-172.
    56. Knoche, K.; Kephart, D. Cloning blunt-end pfu DNA polymerase-generated pcr fragments into pgem®-t vector systems. Promega Notes 1999, 71.
    57. NCBI, R.C. Database resources of the national center for biotechnology information. Nucleic acids research 2016, 44, D7.
    58. Tamura, K.; Stecher, G.; Peterson, D.; Filipski, A.; Kumar, S. Mega6: Molecular evolutionary genetics analysis version 6.0. Molecular biology and evolution 2013, mst197.
    59. Sellers, R.M. Spectrophotometric determination of hydrogen peroxide using potassium titanium (iv) oxalate. Analyst 1980, 105, 950-954.
    60. Kwon, M.; Kim, S.; Yoon, Y.; Jung, Y.; Hwang, T.-M.; Kang, J.-W. Prediction of the removal efficiency of pharmaceuticals by a rapid spectrophotometric method using rhodamine B in the UV/H2O2 process. Chemical Engineering Journal 2014, 236, 438-447.
    61. Dickson, A. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep Sea Research Part A. Oceanographic Research Papers 1981, 28, 609-623.
    62. Huo, X.; Chang, D.-W.; Tseng, J.-H.; Burch, M.D.; Lin, T.-F. Exposure of Microcystis aeruginosa to hydrogen peroxide under light: Kinetic modeling of cell rupture and simultaneous microcystin degradation. Environmental science & technology 2015, 49, 5502-5510.
    63. Antoniou, M.G.; De La Cruz, A.A.; Dionysiou, D.D. Cyanotoxins: New generation of water contaminants. Journal of environmental engineering 2005, 131, 1239-1243.
    64. Tsao, H.-W.; Michinaka, A.; Yen, H.-K.; Giglio, S.; Hobson, P.; Monis, P.; Lin, T.-F. Monitoring of geosmin producing Anabaena circinalis using quantitative PCR. Water research 2014, 49, 416-425.
    65. Graham, J.L.; Loftin, K.A.; Meyer, M.T.; Ziegler, A.C. Cyanotoxin mixtures and taste-and-odor compounds in cyanobacterial blooms from the midwestern United States. Environmental science & technology 2010, 44, 7361-7368.
    66. Chorus, I.; Bartram, J. Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. 1999.
    67. Falconer, I.R.; Burch, M.D.; Steffensen, D.A.; Choice, M.; Coverdale, O.R. Toxicity of the blue‐green alga (cyanobacterium) Microcystis aeruginosa in drinking water to growing pigs, as an animal model for human injury and risk assessment. Environmental toxicology and water quality 1994, 9, 131-139.
    68. Falconer, I.R. Algal toxins and human health. In Quality and treatment of drinking water ii, Springer: 1998; pp 53-82.
    69. Kamp, L.; Church, J.L.; Carpino, J.; Faltin-Mara, E.; Rubio, F. The effects of water sample treatment, preparation, and storage prior to cyanotoxin analysis for cylindrospermopsin, microcystin and saxitoxin. Chemico-biological interactions 2016, 246, 45-51.
    70. Dietrich, D.; Hoeger, S. Guidance values for microcystins in water and cyanobacterial supplement products (blue-green algal supplements): A reasonable or misguided approach? Toxicology and applied pharmacology 2005, 203, 273-289.
    71. Falconer, I.R.; Humpage, A.R. Health risk assessment of cyanobacterial (blue-green algal) toxins in drinking water. International Journal of Environmental Research and Public Health 2005, 2, 43-50.
    72. de Figueiredo, D.R.; Azeiteiro, U.M.; Esteves, S.M.; Gonçalves, F.J.; Pereira, M.J. Microcystin-producing blooms—a serious global public health issue. Ecotoxicology and environmental safety 2004, 59, 151-163.
    73. Shen, P.; Shi, Q.; Hua, Z.; Kong, F.; Wang, Z.; Zhuang, S.; Chen, D. Analysis of microcystins in cyanobacteria blooms and surface water samples from meiliang bay, Taihu lake, china. Environment International 2003, 29, 641-647.
    74. Newcombe, G.; Chorus, I.; Falconer, I.; Lin, T.-F. Cyanobacteria: Impacts of climate change on occurrence, toxicity and water quality management. Water research 2012, 46, 1347-1348.
    75. World Health Organization. Guidelines for drinking-water quality. Vol. 2, health criteria and other supporting information: Addendum. 1998.
    76. Jetoo, S.; Grover, V.I.; Krantzberg, G. The Toledo drinking water advisory: Suggested application of the water safety planning approach. Sustainability 2015, 7, 9787-9808.
    77. Carmichael, W.W. Health effects of toxin-producing cyanobacteria:“The cyanohabs”. Human and ecological risk assessment: An International Journal 2001, 7, 1393-1407.
    78. Garcia, A.C.; Bargu, S.; Dash, P.; Rabalais, N.N.; Sutor, M.; Morrison, W.; Walker, N.D. Evaluating the potential risk of microcystins to blue crab (Callinectes sapidus) fisheries and human health in a eutrophic estuary. Harmful Algae 2010, 9, 134-143.
    79. Chen, W.; Song, L.; Peng, L.; Wan, N.; Zhang, X.; Gan, N. Reduction in microcystin concentrations in large and shallow lakes: Water and sediment-interface contributions. Water research 2008, 42, 763-773.
    80. Wang, X.; Utsumi, M.; Gao, Y.; Li, Q.; Tian, X.; Shimizu, K.; Sugiura, N. Influences of metal ions on microcystin-LR degradation capacity and dynamics in microbial distribution of biofilm collected from water treatment plant nearby Kasumigaura Lake. Chemosphere 2016, 147, 230-238.
    81. Edwards, C.; Graham, D.; Fowler, N.; Lawton, L.A. Biodegradation of microcystins and nodularin in freshwaters. Chemosphere 2008, 73, 1315-1321.
    82. Chen, J.; Hu, L.B.; Zhou, W.; Yan, S.H.; Yang, J.D.; Xue, Y.F.; Shi, Z.Q. Degradation of microcystin-LR and RR by a Stenotrophomonas sp. Strain ems isolated from Lake Taihu, china. International journal of molecular sciences 2010, 11, 896-911.
    83. Dziga, D.; Zielinska, G.; Wladyka, B.; Bochenska, O.; Maksylewicz, A.; Strzalka, W.; Meriluoto, J. Characterization of enzymatic activity of mlrB and mlrC proteins involved in bacterial degradation of cyanotoxins microcystins. Toxins 2016, 8, 76.
    84. Sumaiya, I.; Pathmalal, M.; De Silva, B.; Welgamage, A.; Edwards, C.; Lawton, L.A. Isolation and characterization of microcystin-degrading bacteria from two water bodies in Sri lanka. 2016.
    85. Miao, H.-F.; Qin, F.; Tao, G.-J.; Tao, W.-Y.; Ruan, W.-Q. Detoxification and degradation of microcystin-LR and-RR by ozonation. Chemosphere 2010, 79, 355-361.
    86. Okano, K.; Shimizu, K.; Maseda, H.; Kawauchi, Y.; Utsumi, M.; Itayama, T.; Zhang, Z.; Sugiura, N. Whole-genome sequence of the microcystin-degrading bacterium Sphingopyxis sp. Strain c-1. Genome announcements 2015, 3.
    87. Somdee, T.; Thunders, M.; Ruck, J.; Lys, I.; Allison, M.; Page, R. Degradation of MC-LR by a microcystin degrading bacterium isolated from Lake Rotoiti, New Zealand. ISRN microbiology 2013, 2013.
    88. Kormas, K.A.; Lymperopoulou, D.S. Cyanobacterial toxin degrading bacteria: Who are they? BioMed research international 2013, 2013.
    89. Manage, P.M.; Edwards, C.; Singh, B.K.; Lawton, L.A. Isolation and identification of novel microcystin-degrading bacteria. Applied and environmental microbiology 2009, 75, 6924-6928.
    90. Mankiewicz-Boczek, J.; Gagala, I.; Jurczak, T.; Jaskulska, A.; Pawelczyk, J.; Dziadek, J. Bacteria homologus to Aeromonas. Capable of microcystin degradation. Open Life Sci 2015, 10, 119-129.
    91. Saito, T.; Okano, K.; Park, H.-D.; Itayama, T.; Inamori, Y.; Neilan, B.A.; Burns, B.P.; Sugiura, N. Detection and sequencing of the microcystin LR-degrading gene, mlra, from new bacteria isolated from japanese lakes. FEMS Microbiology Letters 2003, 229, 271-276.
    92. Pei, J.; Mitchell, D.A.; Dixon, J.E.; Grishin, N.V. Expansion of type II caax proteases reveals evolutionary origin of γ-secretase subunit aph-1. Journal of molecular biology 2011, 410, 18-26.
    93. Barrett, A.J.; Woessner, J.F.; Rawlings, N.D. Handbook of proteolytic enzymes. Elsevier: 2012; Vol. 1.
    94. Mou, X.; Lu, X.; Jacob, J.; Sun, S.; Heath, R. Metagenomic identification of bacterioplankton taxa and pathways involved in microcystin degradation in Lake Erie. PloS one 2013, 8, e61890.
    95. Yang, F.; Zhou, Y.; Yin, L.; Zhu, G.; Liang, G.; Pu, Y. Microcystin-degrading activity of an indigenous bacterial strain Stenotrophomonas acidaminiphila mc-lth2 isolated from Lake Taihu. PloS one 2014, 9, e86216.
    96. Jordaan, K.; Bezuidenhout, C. Bacterial community composition of an urban river in the north west province, South Africa, in relation to physico-chemical water quality. Environmental Science and Pollution Research 2016, 23, 5868-5880.
    97. Himberg, K.; Keijola, A.-M.; Hiisvirta, L.; Pyysalo, H.; Sivonen, K. The effect of water treatment processes on the removal of hepatotoxins from Microcystis andoscillatoria cyanobacteria: A laboratory study. Water Research 1989, 23, 979-984.
    98. Harada, K.-i.; Tsuji, K.; Watanabe, M.F.; Kondo, F. Stability of microcystins from cyanobacteria-III.* effect of pH and temperature. Phycologia 1996, 35, 83-88.
    99. Farhadkhani, M.; Nikaeen, M.; Adergani, B.A.; Hatamzadeh, M.; Nabavi, B.F.; Hassanzadeh, A. Assessment of drinking water quality from bottled water coolers. Iranian journal of public health 2014, 43, 674.
    100. Cabeen, M.T.; Jacobs-Wagner, C. Bacterial cell shape. Nature Reviews Microbiology 2005, 3, 601-610.
    101. Park, H.D.; Sasaki, Y.; Maruyama, T.; Yanagisawa, E.; Hiraishi, A.; Kato, K. Degradation of the cyanobacterial hepatotoxin microcystin by a new bacterium isolated from a hypertrophic lake. Environmental toxicology 2001, 16, 337-343.
    102. Li, J.; Shimizu, K.; Utsumi, M.; Nakamoto, T.; Sakharkar, M.K.; Zhang, Z.; Sugiura, N. Dynamics of the functional gene copy number and overall bacterial community during microcystin-LR degradation by a biological treatment facility in a drinking water treatment plant. Journal of bioscience and bioengineering 2011, 111, 695-701.
    103. Ho, L.; Hoefel, D.; Palazot, S.; Sawade, E.; Newcombe, G.; Saint, C.P.; Brookes, J.D. Investigations into the biodegradation of microcystin-LR in wastewaters. Journal of hazardous materials 2010, 180, 628-633.
    104. Maatouk, I.; Bouaïcha, N.; Plessis, M.J.; Périn, F. Detection by 32 p-postlabelling of 8-oxo-7, 8-dihydro-2′-deoxyguanosine in DNA as biomarker of microcystin-LR-and nodularin-induced DNA damage in vitro in primary cultured rat hepatocytes and in vivo in rat liver. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 2004, 564, 9-20.
    105. Ding, W.X.; Shen, H.M.; Ong, C.N. Critical role of reactive oxygen species and mitochondrial permeability transition in microcystin‐induced rapid apoptosis in rat hepatocytes. Hepatology 2000, 32, 547-555.
    106. Gehringer, M.M.; Shephard, E.G.; Downing, T.G.; Wiegand, C.; Neilan, B.A. An investigation into the detoxification of microcystin-LR by the glutathione pathway in balb/c mice. The international journal of biochemistry & cell biology 2004, 36, 931-941.
    107. Campos, A.; Vasconcelos, V. Molecular mechanisms of microcystin toxicity in animal cells. International journal of molecular sciences 2010, 11, 268-287.
    108. Dziga, D.; Wladyka, B.; Zielińska, G.; Meriluoto, J.; Wasylewski, M. Heterologous expression and characterisation of microcystinase. Toxicon 2012, 59, 578-586.
    109. Read, T.D.; Salzberg, S.L.; Pop, M.; Shumway, M.; Umayam, L.; Jiang, L.; Holtzapple, E.; Busch, J.D.; Smith, K.L.; Schupp, J.M. Comparative genome sequencing for discovery of novel polymorphisms in Bacillus anthracis. Science 2002, 296, 2028-2033.
    110. Wells, M.L.; Trainer, V.L. International scientific symposium on" harmful algal blooms and climate change". PICES Press 2016, 24, 16.
    111. Lone, Y.; Koiri, R.K.; Bhide, M. An overview of the toxic effect of potential human carcinogen microcystin-LR on testis. Toxicology Reports 2015, 2, 289-296.
    112. Somdee, T.; Peekan, A.; Somdee, A. Bacterial degradation of microcystins within a biologically active sand filter. Journal of Life Sciences and Technologies Vol 2013, 1.
    113. Tsuji, K.; Asakawa, M.; Anzai, Y.; Sumino, T.; Harada, K.-i. Degradation of microcystins using immobilized microorganism isolated in an eutrophic lake. Chemosphere 2006, 65, 117-124.
    114. Zhou, S.; Shao, Y.; Gao, N.; Deng, Y.; Qiao, J.; Ou, H.; Deng, J. Effects of different algaecides on the photosynthetic capacity, cell integrity and microcystin-LR release of Microcystis aeruginosa. Science of The Total Environment 2013, 463, 111-119.
    115. Izaguirre, G. A copper-tolerant phormidium species from Lake Mathews, california, that produces 2-methylisoborneol and geosmin. Water Science and technology 1992, 25, 217-223.
    116. Fan, J.; Ho, L.; Hobson, P.; Brookes, J. Evaluating the effectiveness of copper sulphate, chlorine, potassium permanganate, hydrogen peroxide and ozone on cyanobacterial cell integrity. Water research 2013, 47, 5153-5164.
    117. Le Jeune, A.-H.; Charpin, M.; Deluchat, V.; Briand, J.-F.; Lenain, J.-F.; Baudu, M.; Amblard, C. Effect of copper sulphate treatment on natural phytoplanktonic communities. Aquatic toxicology 2006, 80, 267-280.
    118. Kenefick, S.; Hrudey, S.; Peterson, H.; Prepas, E. Toxin release from Microcystis aeruginosa after chemical treatment. Water science and technology 1993, 27, 433-440.
    119. Starr, T.J.; Jones, M.E. The effect of copper on the growth of bacteria isolated from marine environments. Limnology and Oceanography 1957, 2, 33-36.
    120. Prepas, E.; Murphy, T. Sediment–water interactions in farm dugouts previously treated with copper sulfate. Lake and Reservoir Management 1988, 4, 161-168.
    121. Iwinski, K.J.; McQueen, A.D.; Kinley, C.M.; Calomeni, A.J.; Geer, T.D.; Rodgers Jr, J.H. Sediment copper concentrations, in situ benthic invertebrate abundance, and sediment toxicity: Comparison of treated and untreated coves in a Southern reservoir. Water, Air, & Soil Pollution 2016, 227, 1-10.
    122. Canadian Council of Ministries of the Environment. Canadian sediment quality guidelines for the protection of aquatic life: Summary tables. Canadian environmental quality guidelines, 1999. Canadian Council of Ministers of the Environment Winnipeg: 2001.
    123. Dollwet, H.; Sorenson, J. Historic uses of copper compounds in medicine. Trace elements in Medicine 1985, 2, 80-87.
    124. Brown, B.; Rattigan, B. Toxicity of soluble copper and other metal ions to Elodea canadensis. Environmental Pollution (1970) 1979, 20, 303-314.
    125. World Health Organization. Guidelines for drinking-water quality. Fourth edition. WHO chronicle 2011, 38, 104-108.
    126. Manzl, C.; Enrich, J.; Ebner, H.; Dallinger, R.; Krumschnabel, G. Copper-induced formation of reactive oxygen species causes cell death and disruption of calcium homeostasis in trout hepatocytes. Toxicology 2004, 196, 57-64.
    127. Borkow, G.; Gabbay, J. Copper as a biocidal tool. Current medicinal chemistry 2005, 12, 2163-2175.
    128. Lin, Y.-S.E.; Vidic, R.D.; Stout, J.E.; Victor, L.Y. Individual and combined effects of copper and silver ions on inactivation of Legionella pneumophila. Water Research 1996, 30, 1905-1913.
    129. Drábková, M.; Admiraal, W.; Maršálek, B. Combined exposure to hydrogen peroxide and light selective effects on cyanobacteria, green algae, and diatoms. Environmental science & technology 2007, 41, 309-314.
    130. Barrington, D.J.; Ghadouani, A.; Ivey, G.N. Environmental factors and the application of hydrogen peroxide for the removal of toxic cyanobacteria from waste stabilization ponds. Journal of Environmental Engineering 2011, 137, 952-960.
    131. Barbusiński, K. Fenton reaction-controversy concerning the chemistry. Ecological Chemistry and Engineering. S 2009, 16, 347-358.
    132. Pardieck, D.L.; Bouwer, E.J.; Stone, A.T. Hydrogen peroxide use to increase oxidant capacity for in situ bioremediation of contaminated soils and aquifers: A review. Journal of Contaminant Hydrology 1992, 9, 221-242.
    133. Acar, E. Oxidation of acid red 151 solutions by peroxone (O3/H2O2) process. Citeseer, 2004.
    134. Maillard, J.Y. Bacterial target sites for biocide action. Journal of applied microbiology 2002, 92.
    135. Mikula, P.; Zezulka, S.; Jancula, D.; Marsalek, B. Metabolic activity and membrane integrity changes in Microcystis aeruginosa–new findings on hydrogen peroxide toxicity in cyanobacteria. European Journal of Phycology 2012, 47, 195-206.
    136. Zepp, R.G.; Skurlatov, Y.I.; Pierce, J. In Algal-induced decay and formation of hydrogen peroxide in water: Its possible role in oxidation of anilines by algae, Photochemistry of environmental aquatic systems. ACS Symposium Series, 1987.
    137. Cataldo, F. Hydrogen peroxide photolysis with different UV light sources including a new UV-led light source. Annals of West University of Timisoara. Series of Chemistry 2014, 23, 99.
    138. Tsai, K.-P. Effects of two copper compounds on Microcystis aeruginosa cell density, membrane integrity, and microcystin release. Ecotoxicology and environmental safety 2015, 120, 428-435.
    139. McKnight, D.M.; Chisholm, S.W.; Harleman, D.R. CuSO4 treatment of nuisance algal blooms in drinking water reservoirs. Environmental Management 1983, 7, 311-320.
    140. Gibson, C. The algicidal effect of copper on a green and a blue-green alga and some ecological implications. Journal of applied ecology 1972, 513-518.
    141. Garcı́a-Villada, L.; Rico, M.; Altamirano, M.a.; Sánchez-Martı́n, L.; López-Rodas, V.; Costas, E. Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: Characterisation and future implications in the use of copper sulphate as algaecide. Water research 2004, 38, 2207-2213.
    142. Erickson, R.J.; Bills, T.D.; Clark, J.R.; Hansen, D.J.; Knezovich, J.; Mayer Jr, F.L.; McElroy, A.E. Synopsis of discussion session on physicochemical factors affecting toxicity. Bioavailability: physical, chemical, and biological interactions. Lewis, Boca Raton 1994, 31-38.
    143. Clayton, R. Managing iowa fisheries: Use of copper compounds in aquatic systems. Agriculture and Environment Extension Publications. 2009.
    144. Qian, H.; Yu, S.; Sun, Z.; Xie, X.; Liu, W.; Fu, Z. Effects of copper sulfate, hydrogen peroxide and n-phenyl-2-naphthylamine on oxidative stress and the expression of genes involved photosynthesis and microcystin disposition in Microcystis aeruginosa. Aquatic Toxicology 2010, 99, 405-412.
    145. Sani, R.K.; Peyton, B.M.; Brown, L.T. Copper-induced inhibition of growth of Desulfovibrio desulfuricans g20: Assessment of its toxicity and correlation with those of zinc and lead. Applied and environmental microbiology 2001, 67, 4765-4772.
    146. Zevenhuizen, L.; Dolfing, J.; Eshuis, E.; Scholten-Koerselman, I.J. Inhibitory effects of copper on bacteria related to the free ion concentration. Microbial Ecology 1979, 5, 139-146.
    147. Yu-sen, E.L.; Vidic, R.D.; Stout, J.E.; Victor, L.Y. Negative effect of high pH on biocidal efficacy of copper and silver ions in controlling Legionella pneumophila. Applied and environmental microbiology 2002, 68, 2711-2715.
    148. Hyne, R.V.; Pablo, F.; Julli, M.; Markich, S.J. Influence of water chemistry on the acute toxicity of copper and zinc to the Cladoceran ceriodaphnia cf dubia. Environmental Toxicology and Chemistry 2005, 24, 1667-1675.
    149. Filippis, L.; Pallaghy, C. Heavy metals: Sources and biological effects. Advances in limnology[ERGEB. LIMNOL./ADV. LIMNOL.]. 1994. 1994.
    150. Sunda, W. The relationship between cupric ion activity and the toxicity of copper to phytoplankton. Massachusetts Institute of Technology and Woods Hole Oceanographic Institution, 1975.
    151. Gustafsson, J. Visual minteq version 3.1, department of sustainable development. Environmental Science and Engineering, KTH, Stockholm 2013.
    152. Thomas, E.L.; Milligan, T.W.; Joyner, R.E.; Jefferson, M.M. Antibacterial activity of hydrogen peroxide and the lactoperoxidase-hydrogen peroxide-thiocyanate system against oral Streptococci. Infection and immunity 1994, 62, 529-535.
    153. Sundstrom, D.; Weir, B.; Klei, H. Destruction of aromatic pollutants by UV light catalyzed oxidation with hydrogen peroxide. Environmental progress 1989, 8, 6-11.
    154. Jung, Y.S.; Lim, W.T.; Park, J.Y.; Kim, Y.H. Effect of pH on Fenton and Fenton‐like oxidation. Environmental technology 2009, 30, 183-190.
    155. Walling, C.; Goosen, A. Mechanism of the ferric ion catalyzed decomposition of hydrogen peroxide. Effect of organic substrates. Journal of the American Chemical Society 1973, 95, 2987-2991.
    156. Schmidt, L.J.; Gaikowski, M.P.; Gingerich, W. Environmental assessment for the use of hydrogen peroxide in aquaculture for treating external fungal and bacterial diseases of cultured fish and fish eggs. USGS Report 2006.
    157. Cooper, W.J.; Shao, C.; Lean, D.R.; Gordon, A.S.; Scully Jr, F.E. Factors affecting the distribution of h2o2 in surface waters. Advances in Chemistry Series 1994, 237, 391-391.
    158. Qiao, R.-P.; Li, N.; Qi, X.-H.; Wang, Q.-S.; Zhuang, Y.-Y. Degradation of microcystin-RR by UV radiation in the presence of hydrogen peroxide. Toxicon 2005, 45, 745-752.
    159. Walker, H.W. Harmful algae blooms in drinking water: Removal of cyanobacterial cells and toxins. CRC Press: 2014.
    160. Barroin, G.; Feuillade, M. Hydrogen peroxide as a potential algicide for Oscillatoria rubescens DC. Water Research 1986, 20, 619-623.
    161. Wang, G.; Wu, J.; Xie, W.; Li, Y.; Jia, R. Screening and identification of a microcystin-degrading bacterium strain and its enzymatic degradation of microcystin-LR by intracellular extract of Bacillus cereus. Wei sheng wu xue bao. Acta microbiologica Sinica 2012, 52, 96-103.
    162. Mazzola, P.G.; Martins, A.M.; Penna, T.C. Chemical resistance of the gram-negative bacteria to different sanitizers in a water purification system. BMC infectious diseases 2006, 6, 1.
    163. Miller, T. Killing and lysis of gram-negative bacteria through the synergistic effect of hydrogen peroxide, ascorbic acid, and lysozyme. Journal of Bacteriology 1969, 98, 949-955.
    164. Matthijs, H.C.; Jančula, D.; Visser, P.M.; Maršálek, B. Existing and emerging cyanocidal compounds: New perspectives for cyanobacterial bloom mitigation. Aquatic Ecology 2016, 1-18.
    165. Raman, R.K.; Cook, B.C. Guidelines for applying copper sulfate as an algicide: Lake Loami field study. Illinois Dept. of Energy and Natural Resources 1988.
    166. Küpper, H.; Šetlík, I.; Spiller, M.; Küpper, F.C.; Prášil, O. Heavy metal‐induced inhibition of photosynthesis: Targets of in vivo heavy metal chlorophyll formation1. Journal of Phycology 2002, 38, 429-441.
    167. Singh, R.; Gautam, N.; Mishra, A.; Gupta, R. Heavy metals and living systems: An overview. Indian journal of pharmacology 2011, 43, 246.
    168. Infomine inc. Historical copper prices and price chart. Http://www.Infomine.Com/investment/metal-prices/copper/all/.
    169. Alibaba group. Jan 2017. Hydrogen peroxide, copper sulfate pentahydrate specifications and price. Https://www.Alibaba.Com/product-detail/hot-sale-iso-bv-35-50_60177706929.Html.
    170. Wert, E.C.; Korak, J.A.; Trenholm, R.A.; Rosario-Ortiz, F.L. Effect of oxidant exposure on the release of intracellular microcystin, MIB, and geosmin from three cyanobacteria species. Water research 2014, 52, 251-259.
    171. World Health Organization. Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. London: E & FN Spon 1999.
    172. Acevedo, M.F. Data analysis and statistics for geography, environmental science, and engineering. CRC Press: 2012.
    173. Zhang, J.; Shi, H.; Liu, A.; Cao, Z.; Hao, J.; Gong, R. Identification of a new microcystin-degrading bacterium isolated from Lake Chaohu, china. Bulletin of environmental contamination and toxicology 2015, 94, 661-666.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE