簡易檢索 / 詳目顯示

研究生: 林煥庭
Lin, Huan-Ting
論文名稱: 鰭片高度對環狀鰭片上之熱傳特性的影響
Effect of Fin Height on Heat Transfer Characteristics from Annular Fins
指導教授: 陳寒濤
Chen, Han-Taw
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 86
中文關鍵詞: 環狀圓鰭片總熱傳係數鰭片效率鰭片高度
外文關鍵詞: annular circular fin, heat transfer coefficient, fin efficiency, fin height
相關次數: 點閱:148下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文乃以有限差分法(Finite difference method)配合最小平方法(Least-squares scheme)及實驗溫度數據來預測於風速下對應之不同鰭片高度及鰭片間距之環狀鰭管式熱交換器之垂直環狀圓鰭片上的平均熱傳係數(Average heat transfer coefficient)、熱傳量(Heat transfer rate)及鰭片效率(Fin efficiency)。本文鰭片上之總熱傳係數事先假設為非均勻分佈。為了欲求得所須之平均總熱傳係數、熱傳量及鰭片效率,因此將整個環狀圓鰭片分割成數個小鰭片區域,並假設每個小區域上的總熱傳係數為未知的常數。結果顯示,於自然對流條件下,平均熱傳係數與鰭片效率會隨著鰭片高度增加而減少,但會隨著鰭片間距的增加而增加,並會趨近於單一環狀圓鰭片之值。鰭片上之熱傳量也會隨著鰭片間距的增加而有增加的趨勢。於自然對流之情況下,頗吻合課本的經驗公式所得之值,此乃由於輻射熱傳係數可能需要考慮所致。於強制對流之情況下,平均熱傳係數與鰭片效率會隨著鰭片高度增加而減少。為了驗證本文反算法之準確性與可靠性,本文所預測之結果將與其他相關文獻之結果相比較

    The finite difference method in conjunction with the least-squares scheme and experimental temperature data is proposed to predict the average overall heat transfer coefficient, heat transfer rate on a vertical annular circular fin of annular-finned tube heat exchangers for two kinds fins and various fin spacings. The overall heat transfer coefficient on this annular circular fin is assumed to be non-uniform. Thus, the whole plate fin is divided into several sub-fin regions in order to predict the average overall heat transfer coefficient. heat transfer rate from the knowledge of the measured experimental temperatures. The unknown heat transfer coefficient on each sub-fin region can be assumed to be constant. The results show that the average heat transfer coefficient and the fin efficiency decrease with increasing the fin height and increase with increasing the fin spacing. The average heat transfer coefficient and fin efficiency can approach their corresponding asymptotical value obtained from fin for the fin spacing above a certain value. The heat transfer rate also increases with increasing the fin spacing. The average heat transfer coefficient increases with the air speed for various fin spacing in force convection. The average heat transfer coefficient increases with the fin spacing and it can approach its corresponding asymptotical value obtained from a single annular circular fin for various air speed above a certain value. The present estimates of the heat transfer coefficient under the isothermal condition in natural and force convection agrees with those were obtained from textbooks. In order to evidence the accuracy and reliability of the present inverse scheme, A comparison between the present results estimated and previous results will be made.

    摘要---------------------------------------------------- -Ⅱ ABSTRACT-------------------------------------------------Ⅲ 致謝------------------------------------------------------Ⅳ 目錄------------------------------------------------------Ⅴ 表目錄----------------------------------------------------Ⅷ 圖目錄----------------------------------------------------IX 符號說明--------------------------------------------------XV 第一章 緒論------------------------------------------------1 1-1研究背景-----------------------------------------------1 1-2 文獻回顧----------------------------------------------3 1-3 研究目的----------------------------------------------7 1-4 研究重點與本文架構-------------------------------------7 第二章 二維穩態熱傳導理論分析--------------------------------10 2-1 簡介-------------------------------------------------10 2-2數學模式的建立------------------------------------------10 2-3 數值分析方法------------------------------------------13 2-4 逆向熱傳導問題----------------------------------------15 2-5 結論-------------------------------------------------19 第三章 自然對流之實驗操作與數據分析---------------------------23 3-1簡介--------------------------------------------------23 3-2實驗設備----------------------------------------------23 3-3實驗步驟----------------------------------------------25 3-4實驗組別----------------------------------------------26 3-5結果與討論---------------------------------------------26 第四章 強制對流之實驗操作與預測值----------------------------49 4-1簡介---------------------------------------------------49 4-2 實驗設備----------------------------------------------49 4-3 實驗步驟----------------------------------------------50 4-4 實驗組別----------------------------------------------51 4-5 實驗結果與數值分析--------------------------------------52 第五章 綜合結論與未來展望-----------------------------------77 5-1 數值模擬結果-------------------------------------------77 5-2 實驗結果----------------------------------------------77 5-2-1 自然對流之實驗結果------------------------------------77 5-2-2 強制對流之實驗結果------------------------------------78 5-3 綜合結論----------------------------------------------79 5-4 未來發展方向與建議--------------------------------------80 參考文獻--------------------------------------------------82 自述------------------------------------------------------86

    [1] Kays, W. M., and London, A. L., “Compact Heat Exchangers,” 3rd ed., McGraw-Hill, New York, 1984.

    [2] Kraus, A. D., Aziz, A. and Welty, J., “Extended Surface Heat Transfer,” John Wiley and Sons, Inc., 2001.

    [3] Raithby, G. D., and Hollands, K. G. T., “Natural Convection,” in Handbook of Heat Transfer Fundamentals, 2nd ed., Rohsenow, W. M., Hartnett, J. P., and Ganic, E. N., eds, McGraw-Hill, New York, 1985.

    [4] Lage, J. L., “Tube-to-tube Heat Transfer Degradation Effect on Finned-Tube Heat Exchangers,” Numerical Heat Transfer Part A, vol.39, pp.321-337, 2001.

    [5] Chen, H. T., Song, J.P. and Wang, Y. T., “Prediction of Heat Transfer Coefficient on The Fin Inside One-Tube Plate Finned-Tube Heat Exchangers,” International Journal of Heat and Mass Transfer, vol.48, pp.2697-2707, 2005.

    [6] Chen, H. T., and Chou, J. C., “Investigation of Natural-Convection Heat Transfer Coefficient on A Vertical Square Fin of Finned-Tube Heat Exchangers,” International Journal of Heat and Mass Transfer, pp.3034-3044, 2006..

    [7] Webb, R. L., “Principles of Enhanced Heat Transfer,” Wiley, New York, pp.125-153, 1994.

    [8] Özisik, M. N., “Heat Conduction,” 2nd ed., Wiley, New York, Chapter 14, 1993.

    [9] Kurpisz, K. and Nowak, A. J., “Inverse Thermal Problems,” Computational Mechanics Publications, Southampton, UK, 1995.

    [10] Lin, J. H, Chen, C. K., and Yang, Y. T., “An Inverse Estimation of The Thermal Boundary Behavior of A Heated Cylinder Normal to A Laminar Air Ttream,” International Journal of Heat and Mass Transfer, vol.43, pp.3991-4001, 2000.

    [11] Saboya, F. E. M., and Sparrow, E. M., “Local And Average Heat Transfer Coefficients for One-Row Plate Fin And Tube Heat Exchanger Configurations,” ASME Journal of Heat Transfer, vol.96, pp.265-272, 1974.

    [12] Rosman, E. C., Carajilescov, P. and Saboya, F. E. M., “Performance of One- And Two-Row Tube And Plate Fin Heat Exchangers,” ASME Journal of Heat Transfer, vol.106, pp.627-632, 1984.

    [13] Ay, H., Jang, J. Y., and Yeh, J. N., “Local Heat Transfer Measurements of Plate Finned-Tube Heat Exchangers by Infrared Thermography,” International Journal of Heat and Mass Transfer, vol.45, pp.4069-4078, 2002.

    [14] Huang, C. H., Yuan, I. C., and Ay, H., “A Three-Dimensional Inverse Problem in Imaging The Local Heat Transfer Coefficients for Plate Finned-Tube Heat Exchangers,” International Journal of Heat and Mass Transfer, vol.46, pp. 3629-3638, 2003.

    [15] Yildiz, Ş. and Yüncü, H., “An Experimental Investigation on Performance of Annular Fins on a Horizontal Cylinder in Free Convection Heat Transfer,” Heat and Mass Transfer, vol.40, pp.239-251, 2004.

    [16] Morgan, V. T., “The Overall Convective Heat Transfer from Smooth Circular Cylinder,” In Advanced Heat Transfer, vol.11, pp.199-264, Irvine, T. F., and Harnett, J. P., eds., Academic Press, New York, 1975.

    [17] Churchill, S. W., and Chu, H. H. S., “Correlating Equations for Laminar and Turbulent Free Convection from Horizontal Cylinder,” International Journal of Heat and Mass Transfer, vol.18, pp.1049-1053, 1975.

    [18] Mon, M. S., and Gross, U., “Numerical Study of Fin-Spacing Effects in Annular-Finned Tube Heat Exchangers,” International Journal of Heat and Mass Transfer, vol.47, pp.1953-1964, 2004.

    [19] Kreith, F. and Bohn, M. S., “Principles of Heat Transfer,” 5th ed., West Publishing Company, New York, pp.347-348, 1993.

    [20] Jang, J.Y., Chen, H.T. and Ay, H., “The Development of High Efficiency Air-Cooled Stream Condenser for the Power plant (2/2),” Report of National Council Science, Taiwan, NSC 92-2622-E-006-146, 2005.

    [21] Bejan, A., “Heat Transfer,” John Wiley & Sons, Inc., New York, pp. 53-62, 1993.

    [22] Arpaci, V.S., Kao, S.H. and Selamet, A., “Introduction to Heat Transfer,” Prentice-Hall, pp.588, 1999.

    [23] Jones, C. D., and Smith, L. F., “Optimum Arrangement of Rectangular Fins on Horizontal Surfaces for Free Convection Heat Transfer,” ASME Journal of Heat Transfer vol.92, pp.6-10, 1970.

    [24] Incropera, F. P., and Dewitt, D. P., “Introduction to Heat Transfer,” 3rd ed., John Wiley & Sons, table1.1, pp.8, 1996.

    [25] Çengel, Y. A., “Heat Transfer-A Practical Approach,” 2nd ed., McGraw-Hill, New York, pp.486-488, 2004.

    [26] Chen, H. T., and Hsu, W. L., “Estimation of Heat Transfer on the Fin of Annular-Finned Tube Exchangers in Natural Convection for Various Fin Spacings,” International Journal of Heat and Mass Transfer, vol.50, pp.1750-1761, 2006.

    [27] Yang, Y. T., and Peng, H. S., “Investigation of Planted Pin Fins for Heat Transfer Enhancement in Plate Fin Heat Sink,” Microelectronics Reliability, vol.49, pp.163-169, 2009.

    [28] Chen, W. L., Yung, Y. C., and Lee, H. L., “Inverse Problem in Determining Convection Heat Transfer Coefficient of an Annular Fin,” Energy Conversion and Management, vol.48, pp.1081-1088, 2007.

    [29] 王俊仁, 逆算法應用於探討鰭片最佳形狀, 逢甲大學機械所, 碩士論文, 2008.

    [30] Chen, H. T., and Hsu, W. L., “Estimation of Heat Transfer Characteristics on a Vertical Annular Circular Fin of Finned-Tube Heat Exchangers in forced Convection,” International Journal of Heat and Mass Transfer, vol.51, pp.1920-1932, 2008.

    下載圖示 校內:2012-08-04公開
    校外:2013-08-04公開
    QR CODE