簡易檢索 / 詳目顯示

研究生: 伍碧玲
Wu, Pi-Ling
論文名稱: 聚酯類高分子系之熔融行為、結晶型態及多晶態機制
Melting Behavior, Crystalline Morphology, Polymorphism in Polyesters
指導教授: 吳逸謨
Woo, Ea-Mor
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 英文
論文頁數: 120
中文關鍵詞: 多晶態機制聚酯類高分子熔融行為結晶型態
外文關鍵詞: polymorphism, Polyesters, melting behavior, crystalline morphology
相關次數: 點閱:144下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用微分掃描熱卡計、偏光顯微鏡、掃描式電子顯微鏡、原子力顯微鏡及廣角X光繞射分析儀研究聚酯類高分子系的熔融行為、球晶型態及多晶態機制。聚對苯二甲酸二丙酯(poly(trimethylene terephthalate), PTT)因具備優異的機械及加工性質在近幾年引起注意。本研究第一部份探討PTT之多熔融峰、環狀球晶與晶板型態的關係。當PTT於150~215°C熔融結晶時,多熔融峰及環狀球晶可同時被觀察;但在220°C結晶時,只可觀察到單一熔融峰且球晶中並無環狀消光環的生成。PTT一旦形成環狀消光環後,再升溫至更高溫度結晶時,環狀消光環不但不會消失反而變得更明顯,這是因為在更高溫度結晶時晶板發生再重組現象。因此,可知PTT的環狀消光環與球晶中多重晶板型態的存在相關。意謂單一晶板型態或單一熔融峰存在時將不會生成環狀球晶,此結果在PTT與聚醚醯亞胺(poly(ether imide), PEI)的摻合系統中亦可被印證。再者,利用線性及非線性的Hoffman-Weeks (H-W)方程式計算PTT及PTT/PEI摻合體的平衡熔點,並比較此兩種方法的差異。
    第二部分主要目的是比較不同碳數的聚酯類高分子是否會影響熔融行為及環狀球晶的生成機制。因此,利用聚縮合反應分別合成五及六個碳的聚對苯二甲酸二戊酯(poly(pentamethylene terephthalate), PPT)及聚對苯二甲酸二己酯(poly(hexamethylene terephthalate), PHT)。討論從熔融態(熔融結晶)及玻璃態(冷結晶)或其他實驗條件結晶時,熔融行為及球晶型態的差異。但由於此兩個高分子皆具有多晶態,PPT在熔融結晶及冷結晶時皆為a晶態,而環狀球晶只生成於100至110°C間。PHT在90至135°C熔融結晶時皆為a及b晶態共存,且具有兩種不同的球晶型態;但在140°C結晶,則只能得到單一的b晶態,此時亦只有一種球晶型態。PHT在冷結晶時亦可觀察到相同晶體結構與溫度相依的結果,但球晶型態並不同。此多晶態的存在與熔融行為或球晶型態在不同實驗條件下的關係,為此部份的另一重點,並與已被廣泛研究之聚對苯二甲酸二乙酯(poly(ethylene terephthalate), PET)及聚對苯二甲酸二丁酯(poly(butylene terephthalate), PBT)作比較。在結晶動力方面,利用Lauritzen-Hoffman (L-H)二級成核理論分析描述PPT之球晶成長動力, 並計算PPT之摺疊側表面及上表面的界面自由能(se ,s)、分子鏈的摺疊功(q),進而將所決定的PPT熱力學參數與文獻上報導的PET、PTT及PBT的熱力學參數比較,並由化學結構說明彼此的差異及計算結果的合理性。同時,更針對PET及PET/PEI摻合體的環狀球晶生成機制作進一步的解釋。
    此外,脂肪族聚酯類高分子聚己二酸二乙酯(poly(ethylene adipate), PEA)亦具有環狀消光的球晶型態,但生成的溫度範圍非常狹窄,只在25至30°C。因此,第三部份探討PEA環狀球晶生成機制與熔融行為的關係,並與同樣具有環狀球晶的PET、PTT及PPT比較。同時,將PEA於特定條件結晶,再緩慢升溫但不完全破壞PEA的晶體結構,保留部分的晶核;此殘存晶核的存在會影響PEA的球晶型態。亦即,保留環狀球晶的晶核則可在本來不會生成環狀球晶的溫度觀察到明顯的環狀消光環,並藉由晶板分佈的重組及熔融行為的改變來解釋。

    The melting behavior, spherulitic morphology, and polymorphism of polyesters were investigated by means of differential scanning calorimetry (DSC), polarized-light microscopy (PLM), scanning electron microscopy (SEM), atomic force microscopy (AFM) and wide-angle X-ray diffraction (WAXD) analysis. In recent years, poly(trimethylene terephthalate) (PTT) has received systematic attention owing to its attractive properties on mechanical performances. The first part of this thesis is to understand the correlation among the multiple melting peaks, ringed spherulites and the lamellar types of PTT. If PTT is melt-crystallized at the temperature ranging from 150 to 215°C, it shows multiple melting peaks and rings in PTT. However, for PTT is melt-crystallized at 220°C, it shows only one melting peak but no rings in PTT. Once rings are formed in the original melt-crystallized PTT, they do not disappear but persist and become even more apparent upon postcrystallization annealing at higher temperatures. Reorganization took place upon postcrysatllization scanning or annealing to or at higher temperatures. Therefore, rings in PTT may be related to multiple lamellae in the spherulites. Consequently, if a temperature of crystallization is selected so that there is only one type of lamellae in the spherulites, then there should be no rings. This result is also evidenced from PTT blend system with poly(ether imide) (PEI). In addition, the linear and nonlinear Hoffman-Weeks (H-W) extrapolations were applied to estimate the equilibrium melting temperature of PTT and PTT/PEI blend. The relative validity of these two methods is discussed.
    The second part of this thesis is to understand whether the variation in number of methylene group affect the melting behavior and the possible mechanisms of ringed spherulites. Therefore, poly(pentamethylene terephthalate) (PPT) and poly(hexamethylene terephthalate) (PHT) were synthesized by polycondensation. The difference of melting behavior and spherulitic morphology in PPT and PHT samples under isothermal melt-crystallization, cold-crystallization, or other thermal histories was examined. Moreover, polymorphism has been found in PPT and PHT. The a-crystal packing can be found in PPT melt- and cold-crystallization at various temperatures. Ring spherulities in PPT only occur at the temperature ranging from 100 to 110°C. Melt-crystallization at most accessible temperatures (90-135°C) produces solidified PHT containing mixed a- and b-type crystals of various fractions, but a higher temperature of 140°C tends to favor b-type crystal. Furthermore, two different spherulitic types appear in PHT melt-crystallized at 90-135°C, whereas only one single spherulite occur at 140°C. The similar polymorphic crystals in PHT under cold-crystallization was observed; however, the spherulitic type is completely different. Polymorphism and effects on melting behavior and spherulitic types of PPT and PHT under different experimental conditions are also explored and discussed. These results of the three polyesters mentioned above are comparable to poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT), which have been investigated extensively. The kinetics of spherulitic growth of PPT were analyzed using the Lauritzen-Hoffman (L-H) secondary nucleation theory, and the lateral surface free energy (s), the fold surface free energy (se), and the works of chain folding (q) were estimated. These thermodynamic properties of PPT are comparable to the series of homologous aryl polyesters reported in the literatures. Meanwhile, further examination and interpretation of ringed spherulites in PET and PET/PEI blend was also carried out.
    Additionally, an aliphatic polyester, poly(ethylene adipate) (PEA), exhibit ringed spherulites under melt-crystallization of a very narrow temperature range from 25 to 30°C. The last part of this thesis focuses on the correlation between melting behavior and ringed spherulites in PEA, and the results are compared with PET, PTT, and PPT, which exhibiting ringed spherulites. If PEA samples were melt-crystallized under some specific conditions, and then further scanned to a temperature equal to or slightly higher than the average melting temperature of PEA, but not to melt all PEA crystals only destroy some PEA crystals, so that some nuclei can be remained in PEA. The existence of residual nuclei will affect the final spherulitic morphology of PEA. That is, if we keep the residual ringed nuclei in PEA, and then subject to crystallization at the temperature that no rings form in original melt-crystallization PEA, ringed spherulites can be apparently seen. This behavior can be interpreted in relation with the demonstrated thermal behavior in PEA.

    1.Introduction 1 1.1Multiple Melting Behavior 3 1.2Crystal Structure 3 1.3Morphological Changes of Polymer Blends 5 1.4Equilibrium Melting Temperature 5 1.5Crystallization Kinetics 6 2.Theoretical Background 7 2.1 Melting Temperature Depression in Polymer Blends 7 2.2 Determination of The Equilibrium Melting Temperature 7 2.2.1 Linear Hoffman-Weeks Extrapolation 7 2.2.2 Nonlinear Hoffman-Weeks Extrapolation 8 2.3 Avrami Theory 8 2.4 Keith-Padden Kinetics of Spherulitic Crystallization 9 2.5 Hoffman’s Nucleation Theory 9 2.6 Lauritzen-Hoffman (L-H) Secondary Nucleation Theory 10 3.Experimental Section 12 3.1 Material 12 3.2 Preparation of Polymer Blends 12 3.3 Apparatus 12 4.Results and Discussion 15 4.1 Correlation Between Melting Behavior and Ringed Spherulites in PTT 15 4.1.1 Melting Behavior of PTT 15 4.1.2 Peak Shifting at Higher Scanning Rates 19 4.1.3 Comparison with Other Semicrystallilne Polymers 22 4.1.4 Ringed Spherulites of PTT 23 4.1.5 Effect of Post-crystallization Ammealing on Rings 25 4.1.6 Postulatins and Discussions 25 4.1.7 Summary 28 4.2 Effect of PEI on Crystalline Ring-Banded Morphology of PTT 29 4.2.1 Spherulitic Morphology 29 4.2.2 Multiple Melting Behavior 31 4.2.3 Intermolecular Interactions Between PTT and PEI 34 4.2.4 Summary 34 4.3 Linear vs. Onolinear Determinations of Equilibrium Melting Temperatures of PTT and PTT/PEU 36 4.3.1 Isothermal Crystallization of PTT and PTT/PEI(9/1) 36 4.3.2 Corrected Melting Point 41 4.3.3 Linear vs. Nonlinear Extrapolation 44 4.3.4 Summary 47 4.4 Crystallizatin Regime Behavior of PPT 47 4.4.1Characterization of PPT 47 4.4.2 Avrami Analysis 50 4.4.3 Lauritzen-Hoffman (L-H) Secondary Nucleation Theory Analysis 52 4.4.4 Comparison with Other Terephthalic Polyesters 56 4.4.5 Summary 56 4.5 Analyses of Multiple Melting and Ring-Banded Crystal Morphology in PPT 57 4.5.1 Multiple Melting Peaks in PPT 57 4.5.2 Morphology 62 4.5.3 Summary 65 4.6 Multiple Melting Behavior, Polymorphism, and Spherulitic Morphology in PHT 69 4.6.1 Polymer Characterization 69 4.6.2 Complex Melting Peaks in Melt-crystallization PHT 69 4.6.3.Crystal Forms and Spherulitic Morphology of Melt-crystallization PHT 75 4.6.4 Melting Behavior, Crystal Forms and Spherulitic Morphology of Cold-crystallization PHT 77 4.6.5 The Effect of Maximum Annealing Temperature and Crystallization Time 79 4.6.6 Miscibility, Polymorphism, and Melting Behavior of PHT/PPT Blends 81 4.6.7 Summary 84 4.7 Spherulitic Morphology of PET and Its Blend with PEI 85 4.7.1 The Effect of PEI 86 4.7.2 Summary 90 4.8 Correlation Between Multiple Melting and Ringed Spherulites in PEA 90 4.8.1 The Influence of Nonequilibrium Nuclei on Two-Step Crystallization 97 4.8.2 The Influence of Nonequilibrium Nuclei on One-Step Crystallization 102 4.8.3 Summary 105 5.Conclusion 110 6.Future Work 113

    1. Jakeways, R.; Ward, I. M.; Wilding, M. A.; Hall, I. H.; Desborough, I. J.; Pass, M. G. J Polym Sci Part B: Polym Phys 1975, 13, 799.

    2. Ward, I. M.; Wilding, M. A.; Brody, H. J Polym Sci, Polym Phys Ed 1976, 14, 263.

    3. Bassett, D. C.; Olley, R. H.; Al Raheil, A. M. Polymer 1988, 29, 1745.

    4. Ko, T. Y.; Woo, E. M. Polymer 1996, 37, 1167.

    5. Marand, H.; Prasad, A. Macromolecules 1992, 25, 1731.

    6. Chung, J. S.; Cebe, P. J Polym Sci Polym Phys Ed 1992, 30, 163.

    7. Phillips, R. A.; Jones, R. L. Macromol Chem Phys 1999, 200, 1912.

    8. Lefebvre, A.; Koch, M. H. I.; Reynaers, H.;
    Davis, C. J Polym Sci Polym Phys Ed 1999, 37, 1.

    9. Gardner, K. H.; Hsiao, B. S.; Matheson Jr, R. R.; Wood, B. A. Polymer 1992, 33, 2483.

    10. Ho, R. M.; Cheng, S. Z. D.; Hsiao, B. S.; Gardner, K. H. Macromolecules 1995, 28, 1938.

    11. Ho, R. M.; Ke, K. Z.; Chen, M. Macromolecules 2000, 33, 7529.

    12. Wang, B.; Li, C. Y.; Hanzlicek, J.; Cheng, S. Z. D.; Geil, P. H.; Grebowicz, J.; Ho, R. M. Polymer 2001, 42, 7171.

    13. Hong, P. D.; Chung, W. T.; Hsu, C. F. Polymer 2002, 43, 3335.

    14. Sun, Y. S.; Woo, E. M. Macromolecules, 1999, 32, 7836.

    15. Keller, A. J Polym Sci 1955, 17, 291.

    16. Keller, A. J Polym Sci 1959, 39, 151.

    17. Keith, H. D.; Padden, Jr., F. J. J Polym Sci 1959, 39, 101.

    18. Keith, H. D.; Padden, Jr., F. J. J Polym Sci 1959, 39, 123.

    19. Fujiwara, Y. J Polym Sci 1960, 4, 10.

    20. Keith, H. D.; Padden, Jr., F. J. Polymer 1984, 25, 28.

    21. Keith, H. D.; Padden, Jr., F. J. Polymer 1986, 27, 1463

    22. Bassett, D. C.; Hodge, A. M. Polymer 1978, 19, 469.

    23. Wang, Z.; An, L.; Jiang, W.; Jiang, B.; Wang, X. J Polym Sci Polym Phys Ed 1999, 37, 2682.

    24. Lovinger, A. J.; Keith, H. D. Macromolecules 1996, 29, 8541.

    25. Keith, H. D.; Padden, Jr., F. J. Macromolecules 1996, 29, 7776.

    26. Abo el Maaty, Bassett, D. C. Polymer 2001, 42, 4957.

    27. Chiu, G. J Polym Sci Polym Phys Ed 1990, 28, 1207.

    28. Keith, H. D. Macromolecules 1982, 15, 114.

    29. Keith, H. D. Macromolecules 1982, 15, 122.

    30. Keith, H. D.; Padden, Jr., F. J.; Russell, T. P. Macromolecules 1989, 22, 666.

    31. Abe, H.; Doi, Y.; Satkowski, M. M; Noda, I. Macromolecules 1994, 27, 50.

    32. Nojima, S.; Wang, D.; Ashida, T. Polymer J. 1991,
    23, 1473.

    33. An, J. B.; Saito, H.; Inoue, T.; Ougizawa, T.; Kim, B. S. Kobunshi Ronbunshu 1999, 56, 635.

    34. Geil, P. H. private communications.

    35. Bassett, D.C. private communications.

    36. Cheng, S. Z. D.; Cho, M. -Y.; Wunderlich, B. Macromolecules 1986, 19, 1868.

    37. Bassett, D. C.; Olley, R. H.; Al Raheil, A. M. Polymer 1988, 29, 1745.

    38. Ko, T. Y.; Woo, E. M. Polymer 1996, 37, 1167.

    39. Marand, H.; Prasad, A. Macromolecules 1992, 25, 1731.

    40. Chung, J. S.; Cebe, P. J Polym Sci, Polym Phys Ed 1992, 30, 163.

    41. Phillips, R. A.; Jones, R. L. Macromol. Chem. Phys. 1992, 200, 1912.

    42. Sun, Y. S.; Woo, E. M. J Polym Sci, Polym Phys Ed 2000, 38, 3210.

    43. Woo, E. M.; Ko, T. Y. Colloid Polym. Sci. 1996, 274, 309.

    44. Stein, R. S.; Misra, A. J Polym Sci, Polym Phys Ed 1980, 18, 327.

    45. Yeh, J. Y.; Runt, J. J Polym Sci, Polym Phys Ed 1989, 27, 1543.

    46. Ludwig, H. J.; Eyerer, P. Polym. Eng. Sci. 1988, 28, 143.

    47. Traub, H. L. Die Angew Makromol Chem 1995, 179, 4055.

    48. Desborough, I. J.; Hall, I. H.; Neisser, J. Z. Polymer 1979, 20, 545.

    49. Dandurand, S. P.; Perez, S.; Revol, J. F.; Brisse, F. Polymer 1979, 20, 19.

    50. Jakeways, R.; Ward, I. M.; Wilding, M. A.; Hall, I. H. J Polym Sci, Polym Phys Ed 1975, 13, 799.

    51. Ward, I. M.; Wilding, M. A.; Brody, H. J Polym Sci, Polym Phys Ed 1976, 14, 263.

    52. Gonzales, C. C.; Perena. J. M.; Bello, A. J Polym Sci, Polym Phys Ed 1988, 26, 1397.

    53. Pyda, M.; Boller, A.; Grebowicz, J.; Chuah, H.; Lebedev, B. V.; Wunderlich, B. J Polym Sci, Polym Phys Ed 1998, 36, 2499.

    54. Huang, J. M.; Chang, F. C. J Polym Sci, Polym Phys Ed 2000, 38, 934.

    55. Hoffman, J. D.; Miller, R. L. Polymer 1997, 38, 3151.

    56. Marand, H; Xu, J; Srinivas, S. Macromolecules 1998, 31, 8219.

    57. Xu, J; Srinivas, S.; Marand, H; Agarwal, P. Macromolecules 1998, 31, 8230.

    58. Wu, P. L.; Woo, E. M. “Melting Behavior and Ringed Lamellae in Poly(trimethylene terephthalate)”, in preparation (2001)

    59. Kuo, Y. H.; Woo, E. M.; Kuo, T. Y. Polym. J. 2001, 33, 920.

    60. Hoffman, J. D.; Davis, G.T.; Lauritzen, J. I. In Treatise on Solid State Chemistry; Hannay, N. B. Ed.; Plenum Press: New York, 1976; Vol. 3, Chapter 7.

    61. Flory, P. J.; Vrij, A. J. Am. Chem. Soc. 1963, 85, 3548.

    62. Hoffman, J. D.; Weeks, J. J. J. Res. Natl. Bur. Stand. (US) 1962, A66, 13.

    63. Huang, J.; Prasad, A.; Marand, H. Polymer 1994, 35, 1896.

    64. Cebe, P.; Chung, J. S. Polym. Compos. 1990, 11, 265.

    65. Chung, J. S.; Cebe, P. Polymer 1992, 33, 2312.

    66. Illers, K. H. Eur. Polym. J. 1974, 10, 911.

    67. Ho, R. H.; Lin, C. P.; Tsai, H. Y.; Woo, E. M. Macromolecules 2000, 33, 6517.

    68. Rim, P. B.; Runt, J. P. Macromolecules 1984, 17, 1520

    69. Sohn, S.; Alizadeh, A.; Marand, H. Polymer 2000, 8879.

    70. Huo, P. P.; Cebe, P. Macromolecules 1993, 26, 3127.

    71. Flory, P. J. J. Chem. Phys. 1949, 17, 223.

    72. Albrecht, T.; Strobl, G. Macromolecules 1996, 29, 783.

    73. Jakeways, R.; Ward, I. M.; Wilding, M. A.; Hall, I. H.; Desborough, I. J.; Pass, M. G. J Polym Sci Part B: Polym Phys 1975, 13, 799.

    74. Ward, I. M.; Wilding, M. A.; Brody, H. J Polym Sci Part B: Polym Phys 1976, 14, 263.

    75. Yokouchi, M.; Sakakibara, Y.; Chatani, Y.; Tadokoro, H.; Tanaka, T.; Yoda, K. Macromolecules 1976, 9, 266.

    76. Wang, Z. G.: Hsiao, B. S.; Sauer, B. B.; Kampert, W. G. Polymer 1999, 40, 4615.

    77. Chuah, H. H. Macromolecules 2001, 34, 6985.

    78. Wang, B.; Li, C. Y.; Hanzlicek, J.; Cheng, S. Z. D.; Geil, P. H.; Grebowicz, J.; Ho, R. M. Polymer 2001,
    42, 7171.

    79. Wu, P. L.; Woo, E. M. J Polym Sci Part B: Polym Phys 2003, 41, 80.

    80. Pyda, M.; Boller, A.; Grebowicz, J.; Chuah, H.; Lebedav, B. V.; Wunderlich, B. J Polym Sci Part B: Polym Phys 1998, 36, 2499.

    81. Ho, R. M.; Ke, K. Z.; Chen, M. Macromolecules 2000, 33, 7529.

    82. Hong, P. D.; Chung, W. T.; Hsu, C. F. Polymer 2002, 43, 3335.

    83. Huang, J. M.; Chang, F. C. J Polym Sci Part B: Polym Phys 2000, 38, 934.

    84. Wu, G.; Li, H.; Wu, Y.; Cuclo, J. A. Polymer 2002, 43, 4915.

    85. Wu, J.; Schultz, J. M.; Samon; J. M.; Pangelinan, A. B.; Chauh, H. H. Polymer 2001, 42, 7141.

    86. Cho, J. W.; Woo, K. S. J Polym Sci Part B: Polym Phys 2001, 39, 1920.

    87. Hall, I. H.; Pass, M. G.; Rammo, N. N J Polym Sci Part B: Polym Phys 1978, 16, 1409.

    88. Hall, I. H.; Rammo, N. N J Polym Sci Part B: Polym Phys 1978, 16, 2189.

    89. Bicerano, J. J. Macromol Sci Rev 1998, C38, 391.

    90. Long, Y.; Shanks, R. A.; Stachurski, Z. H. Prog Polym Sci 1995, 20, 651.

    91. Wunderich, B. Macromolcular Physics, New York: Academic Press, 1976.

    92. Gilbert, M.; Hybart, F. J. Polymer 1972, 13, 327.

    93. Chisholm, B. J.; Zimmer, J. G.; J Appl Polym Sci 2000, 76, 1296.

    94. Chuah, H. H. Polym Eng Sci 2001, 41, 308.

    95. Woo, E. M.; Yau, S. N. Polym Eng Sci 1998, 38, 583.

    96. Phillips, P. J.; Tseng, H. T. Macromolecules 1989, 22, 1649.

    97. Runt, J.; Miley, D. M.; Zhang, X.; Gallagher, K. P.; McFeaters, K.; Fishburn, J. Macromolecules 1992, 25, 1929.

    98. Hoffman, J. D.; Davis, G. T.; Lauritzen, J. I. In Treatise on Solid State Chemistry, Hannay, N. B., Ed.; Plenum Press: New York, 1976, Vol. 3, Chapter 7.

    99. Ng, T. H.; Williams H. L. Makromol Chem 1981, 182, 3323.

    100. Avrami, M. J Chem Phys 1949, 9, 177.

    101. Hoffman, J. D.; Miller, R. L. Macromolecules 1988, 21, 3038.

    102. Hoffman, J. D.; Miller, R. L. Polymer 1997, 38, 3151.

    103. Hoffman, J. D.; Weeks, J. J. J. Res. Natl. Bur. Stand., Sect. A 1962, 66A, 113.

    104. Huang, J.; Prasad, A.; Marand, H. Polymer 1994, 35, 1996.

    105. Huang, J.; Marand, H. Macromolecules 1997, 30, 1069.

    106. Xu, J.; Srinivas, S.; Marand, H.; Agarwal, P. Macromolecules 1998, 31, 8230.

    107. Marand, H; Xu, J; Srinivas, S. Macromolecules 1998, 31, 8219.

    108. Medellín-Rodríguez, F. J.; Phillips, P. J.; Lin, J. S. Macromolecules 1995, 28, 7744.

    109. Mandelkern, L.; Fatou, J. G.; Marco, C. Polymer 1990, 31, 1685.

    110. Roitman, D. B.; Marand, H.; Miller, R. L.; Hoffman, J. D. J Phys Chem 1989, 93, 6929.

    110. Lovinger, A. J.; Davis, D. D.; Padden, F. J. Polymer 1985, 26, 1595.

    111. Lauritzen, J. I.; Hoffman, J. D. J. Res. Natl. Bur. Stand., Sect. A 1960, 64A, 73.

    112. van Antwerpen, F.; van Krevelen, D. W. J Polym
    Sci Part B: Polym Phys 1972, 10, 2423.

    113. Runt, J.; Miley, D. M.; Zhang, X.; Gallagher, K. P.; McFeaters, K.; Fishburn J. Macromolecules 1992, 25,
    1929.

    114. Woo, E. M.; Ko, T. Y. Colloid Polym. Sci. 1996, 274, 309.

    115. Stein, R. S.; Misra, A. J. Polym. Sci., Polym. Phys. Ed 1980, 18, 327.

    116. Yeh, J. Y.; Runt, J. J. Polym. Sci., Polym. Phys. Ed 1989, 27, 1543.

    117. Yokouchi, M.; Sakakibara, Y.; Vhatani, Y.; Tadokoro, H.; Tanaka, T.; Yado, K. Macromolecules 1976, 9, 266.

    118. Blundell, D. J.; Osborn, B. N. Polymer 1983, 24, 953.

    119. Blundell, D. J. Polymer 1987, 28, 2248.

    120. Cebe. P.; Chung, S.; Hong, S. D. J. Appl. Polym. Sci. 1987, 33, 487.

    121. Cheng, S. Z. D.; Cao, M. Y.; Wunderlich, B. Macromolecules 1986, 19, 1868.

    122. Hsiao, B. S.; Gardner, K. H.; Wu, D. Q.; Chu, B. Polymer 1993, 34, 3986.

    123. Hsiao, B. S.; Gardner, K. H.; Wu, D. Q. Polymer 1993, 34, 3996.

    124. Wu, P. L.; Woo, E. M. J. Polym. Sci., Polym. Phys. Ed 2002, 40, 1571.

    125. Sun, Y. S.; Woo, E. M. Macromolecules 1999, 32, 7836.

    下載圖示 校內:2004-07-15公開
    校外:2004-07-15公開
    QR CODE