| 研究生: |
張庭煒 Chang, Ting-Wei |
|---|---|
| 論文名稱: |
質子交換膜燃料電池水生成與泛溢現象之數值分析 Numerical Analysis of Water Formation and Flooding Phenomena in Proton Exchange Membrane Fuel Cells |
| 指導教授: |
鄭金祥
Cheng, Chin-Hsiang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 質子交換膜燃料電池 、水管理 、VOF方法 |
| 外文關鍵詞: | PEMFC, Water management, VOF method |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在質子交換膜燃料電池中的操作過程中,液態水會不斷的生成凝結,若是無法有效的排除液態水,則會造成液態水泛溢的問題而影響燃料電池的性能,因此水管理的問題在燃料電池中顯得相當重要。但由於很難從實驗操作中,觀測到燃料電池內部液態水的生成與移動,特別是在孔質材料中的凝結和移動。因此本研究利用數值方法,整合熱流場分析與VOF方法,模擬燃料電池中液態水的生成與凝結,對電池性能造成的影響。建構完成兩種數值分析模式,擬暫態模式和暫態模式。研究發現,在液態水生成的區域,因為部份的孔隙被液態水佔據,造成氧氣無法有效的提供至觸媒層進行電化學反應,電池的性能會因此而下降。另一方面,為了減緩液態水在多孔性材質中的泛溢現象,本研究建構完成液態水在局部氣體擴散層中的運動模式之數值模擬模組,探討燃料電池氣體擴散層內孔洞尺寸變化對液態水傳輸的影響。研究結果顯示,具有孔洞尺寸變化的氣體擴散層,有比較好的排水效果。適當改變孔隙與液態水的接觸角,可以加速排除孔隙中的液態水,以減緩液態水泛溢的情形。
When proton exchange membrane fuel cell (PEMFC) is in use, liquid water is usually formed in the catalyst layers. If the liquid water is not able to be removed smoothly, liquid water flooding may take place and the performance of PEMFC will be remarkably reduced. Therefore, water management in the PEMFC is critical. However, it is not easy to observe the liquid water formation and transport in these thin catalyst or gas diffusion layers by means of the experimental methods. For this reason, this study performs a numerical analysis of the liquid water formation and condensation in the channels by integrating the thermofluidic analysis and the VOF method, and evaluates the influence of liquid water formation on the performance of the PEMFC. In the present study, two numerical models, namely quasi-steady and unsteady models, are built and parametric studies have been attempted. It is found that when the pores of the porous layers are filled with liquid water in the liquid flooding situation, the reactant gases are not able to pass through the layers, and this causes a reduction in current density in the liquid flooding area. In addition, the effects of capillary force and the pore size gradient on liquid water transport in the gas diffusion layers (GDL) are investigated. Results show that the pore size gradient formed in the GDL helps remove the liquid water significantly. Meanwhile, the effect of the contact angle is also examined. It is observed that a proper adjustment for the contact angel in the GDL may accelerate the movement of the liquid water.
[1] F. Barbir, H. Gorgun, X. Wang, “Relationship between pressure drop and cell resistance as a diagnostic tool for PEM fuel cells,"Journal of Power Sources, 141 (2005) 96–101.
[2] H. Li ,Y. Tang, Z. Wang, Z. Shi , S. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang, H. Wang, Z. Liu, R. Abouatallah, A. Mazza, “A review of water flooding issues in the proton exchange membrane fuel cell,"Journal of Power Sources , 178 (2008) 103–117.
[3] X. Li, I. Sabir, J. Park, “A flow channel design procedure for PEM fuel cells with effective water removal,"Journal of Power Sources, 163 (2007) 933–942.
[4] J. Soler, E. Hontanon, L. Daza, “Electrode permeability and flow-fleld conflguration: influence on the performance of a PEMFC,"Journal of Power Sources, 118 (2003) 172-178.
[5] Z. Qi, A. Kaufman, “Improvement of water management by a microporous sublayer for PEM fuel cells,"Journal of Power Sources, 109 (2002) 38-64.
[6] X. G. Yang, F. Y. Zhang, A. L. Lubawy, C. Y. Wang, “Visualization of liquid water transport in a PEFC,"electrochemical and Solid-State Letters, 7 (2004) 408-411.
[7] H. Yang, T.S. Zhao, Q. Ye, “Pressure drop behavior in the anode flow field of liquid feed dire ct methanol fuel cells,"Journal of Power Sources, 142 (2005) 117-124.
[8] X. Yu, B. Zhou, A. Sobiesiak, “Water and thermal management for BallardPEM fuel cell stack,"Journal of Power Sources, 147(2005) 184–195.
[9] B. Zhou, W. Huang, Y. Zong, A. Sobiesiak, “Water and pressure effects on a single PEM fuel cell,"Journal of Power Sources, 155(2006) 190–202.
[10] P. Quan , B. Zhou , A. Sobiesiak, Z.S. Liu, “Water behavior in serpentine micro-channel for proton exchange membrane fuel cell cathode, "Journal of Power Sources, 152 (2005) 131–145.
[11] K. Jiao, B. Zhou, P. Quan, “Liquid water transport in parallel serpentine channels with manifolds on cathode side of a PEM fuel cell stack,"Journal of Power Sources, 154 (2006) 124–137.
[12] K. Jiao, B. Zhou, P. Quan, “Liquid water transport in straight micro-parallel-channels with manifolds for PEM fuel cell cathode, "Journal of Power Sources, 157 (2006) 226–243.
[13] A. Dinh Le, B. Zhou, “A general model of proton exchange membrane fuel cell,"Journal of Power Sources, 182(2008) 197–222.
[14] 韓瑋珊,排除燃料電池凝結水過程中之水滴動態研究,國立成功大學航空太空工程學系碩士論文,台南,民國99年。
[15] H. Tang, S. Wang, M. Pan, Ru. Yuan, “Porosity-graded micro-porous layers for polymerelectrolyte membrane fuel cells,"Journal of Power Sources, 166 (2007) 41–46.
[16] Y.X. Huang, C.H. Cheng, “Effects of porosity gradient in Gas Diffusion Layers on Performance of Proton Exchange Membrane Fuel Cells,"Journal of Energy, 35(2010) 4786-4794.
[17] D.B. Kothe, W.J. Rider, S.J. Mosso, J.S. Brock, J.I. Hochstein, “Volume tracking of interfaces having surface tension in two and three dimensions,"AIAA Meeting Papers on Disc, (1996) 96-0859.
[18] C. W. Hirt, B. D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,"Journal of Computational Physics, 39(1981) 201-225.
[19] T.E. Springer, T.A. Zawodinski,S. Gottesfeld, “Polymer. Electrolyte Fuel Cell Model,"Journal of The Electrochemical Society, 138(1991)2334-2342.
[20] R.B. Bird, W.E. Stewart, E.N. Lightfoot, ” Transport phenomena,” Wiley, New York, 1960.
[21] W. He, J.S. Yi, T. V. Nguye, “Two-Phase Flow Model of the Cathode of PEMFuel Cells Using Interdigitated Flow Fields,” Journal of AIChE, 46(2004)10.
[22] C.H. Cheng, H.H. Lin, G.J. Lai, “Numerical optimization of proton exchange membrane fuel cell cathodes,” Journal of Power Sources 165(2007) 803-813.
[23] J. Larminie, A. Dicks, “Fuel Cell Systems Explained,"John Wiley, Second Edition , 2003.
[24] 吳一鳴,整合商用CFD軟體及簡易型共軛梯度法進行燃料電池堆之最佳化設計,國立成功大學航空太空工程學系碩士論文,台南,民國97年。
[25] S.V. Patankar, “Numerical heat transfer and fluid flow,"Washington, Hemisphere Publishing Corporation, 1980.
[26] S. Mazumder, J. V.Cole, “Rigorous 3-D mathematical modeling of PEM fuel cells, II. Model Predictions with Liquid Water,"Journal of The Electrochemical Society, 150 (2003) A1510-A1517.
[27] J. Crank, “The Mathematics of Diffusion,"Clarendon, Second Edition, 1975.
[28] C.H. Cheng, M.H. Chang, “Non-destructive inverse method for determination of irregular internal temperature distribution in PEMFCs,"Journal of Power Sources 142 (2005) 200-210.
[29] J.P. Doormaal, G.D. Raithby, “Enhancements of the SIMPLE method for predicting incompressible fluid flows," Numerical Heat Transfer, 7 (1984) 147-163.
[30] 林仕文,在流體體積法中使用高解析離散法計算兩相流,國立交通大學機械工程學系碩士論文,新竹,民國97年7月。
[31] C.H. Cheng, M.H. Chang, “Predictions of internal temperature distribution of PEMFC by non-destructive inverse method," Journal of Power Sources, 139 (2005) 115-125.
[32] S. Mazumder, J.V. Cole, “Rigorous 3-D mathematical modeling of PEM fuel cells I. Model Predictions without Liquid Water Transport," Journal of The Electrochemical Society, 150(2003)A1503-A1509.
[33] C.W. Hirt, B.D. Nichols, “Volume of fluid (VOF) method for the dynamics of free boundaries,"Journal of computational physics, 39(1981) 201.
[34] 黃育賢,燃料電池及氫氣重組器三維熱質傳分析及流道最佳化設計,國立成功大學機械工程學系博士論文,台南,民國99年。