| 研究生: |
古鎮豪 Ku, Chen-Hao |
|---|---|
| 論文名稱: |
以CCl4/H2於熱燈絲化學氣相沉積系統中
成長奈米鑽石薄膜之研究 Growth of Nanocrystalline Diamond Films by Hot Filament Chemical Vapor Deposition Using CCl4/H2 Gases |
| 指導教授: |
吳季珍
Wu, Jih-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2002 |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 119 |
| 中文關鍵詞: | 低溫成長 、奈米鑽石 、熱燈絲 、四氯化碳 、表面粗糙度 |
| 外文關鍵詞: | low temperature growth, carbon tetrachloride, surface roughness, nanocrystalline diamond, hot filament |
| 相關次數: | 點閱:144 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本論文乃利用CCl4/H2混合氣體作為反應物,以熱燈絲化學氣相沉積法沉積奈米鑽石薄膜。本研究之成長條件為熱燈絲溫度1900℃~2000℃,CCl4濃度([CCl4])為1.5%~3.5%,基板溫度(Ts)為530℃~730℃,基板距鎢絲距離(d)為4 mm~7 mm。本研究利用SEM分析薄膜之表面與截面型態,並由截面估算薄膜之厚度。薄膜之鍵結型態則以Raman光譜儀分析,而薄膜之結晶成分與微結構分別以XRD和TEM分析之,除此也以AFM分析薄膜之表面粗糙度。
本研究結果顯示,在其他成長條件固定而分別以[CCl4]、Ts、及d為鍍膜變數時,隨[CCl4]或Ts提高,抑或是d值的降低,1小時成長之薄膜厚度有著先增加後下降繼而再增加的一般趨勢。而由進一步的鍵結及結構分析可知在厚度先增加的鍍膜條件範圍內成長的薄膜可分為鑽石薄膜(成長區域I)及奈米鑽石薄膜(成長區域II)兩區域,在厚度下降的鍍膜條件範圍內成長的亦為奈米鑽石薄膜(成長區域III);而厚度繼而增加的範圍則為成長非晶形碳膜或石墨(成長區域IV)。當將鍍膜時間增長為獲得較厚之奈米鑽石薄膜時,則發現區域II成長的薄膜內,鑽石晶粒有隨厚度增加而增加之趨勢;即使在成長區域III的成長條件下,也必須在鍍膜變數達某一臨界值後沉積的奈米鑽石薄膜才能隨厚度增加時仍維持奈米級的晶粒大小。由AFM表面粗糙度之分顯示,在d=5 mm,基板溫度為610℃~730℃範圍內成長1 hr之奈米鑽石薄膜,薄膜之表面粗糙度皆小於30 nm(rms),於2.0% CCl4,610℃的條件下甚至可成長出表面粗糙度約為6 nm之奈米鑽石薄膜。而根據XRD與TEM之分析也顯示,在此鍍膜條件範圍內,薄膜內鑽石之平均晶粒大小約介於10-30 nm之間。
Abstract
The growth characteristics of the nanodiamond films deposited using CCl4/H2 in a hot-filament chemical vapor deposition reactor were investigated in this study. Film growth was studied under the following conditions: filament temperature, concentration of CCl4 ([CCl4]), substrate temperature (Ts), distance between substrate and filament (d) in ranges 1900℃-2000℃, 1.5%-3.5%, 530℃-730℃ and 4 mm- 7 mm, respectively. Film thickness and surface morphology studies were conducted by scanning electron microscopy. The surface roughness of the diamond film was measured using atomic force microscopy. Raman spectroscopy and glancing incident angle X-ray diffraction were employed to evaluate the bonding and crystalline structures of the films, respectively. The microstructure of the diamond films was studied using transmission electron microscopy.
The thickness of the film deposited for 1 hr first increased and decreased afterwards, then increased again when [CCl4] and Ts were increased and d was decreased, respectively. Bonding and structural analyses reveal that diamond films were synthesized in the first thickness increasing region (growth region I) and only amorphous carbon films or graphitic carbon films were obtained in the second thickness increasing region (growth region IV). Nanodiamond films were grown in the near maximum thickness region (growth region II) as well as in the thickness decreasing region (growth region III). As the growth times were elongated further, however, the grain sizes of the diamond films deposited in the growth region II were increased with film thickness. Thick nanodiamond films with uniform grain size over entire film were only successfully grown beyond a critical point in the growth region III. AFM analyses show that the nanodiamond films grown for 1 hr at substrate temperatures of 610℃-730℃ and a distance between substrate and filament of 5 mm possess typical rms surface roughness of 10-15 nm. An optimal rms surface roughness of 6 nm has been achieved. Furthermore, XRD and TEM analyses show that the average grain size in ranges 10-30 nm under these conditions.
參考文獻
1. http://cnst.rice.edu/images/allotropes.tif
2. J. C. Angus, Thin Solid Films 216, 126(1992).
3. M. N. Yoder, Synthetic Diamond: Emerging CVD Science and Technology, edited by K. E. Spear and J. P. Didmukes(John Wiley & Son, 1993).
4. S.-T. Lee, Z. Lin and X. Jiang, Materials Science and Engineering R25, 123(1999).
5. 宋健民,工業材料,1995年4月,第58頁。
6. B. V. Deryaguin and B. V. Spitsyn,USSR Inv. Certif. 33, 9134(1956).
7. W. G. Eversole, U. S. Patent 3030, 188(1958).
8. J. C. Angus, J. Appl. Phys. 39, 2915(1968).
9. B. V. Spitsyn, L. L. Bouilov, and B. V. Deryaguin, J. Cryst. Growth 52, 219(1981).
10. 廖建勛,化工資訊,1998年2月,第20頁。
11. P. Keblinski, D. Wolf, S. R. Phillipot, and H. J. Gleiter, J. Mater. Res. 13, 2077(1998).
12. Jih-Jen Wu, Shih-Hsien Yeh, Chin-Ta Su, and Franklin Chau-Nan Hong, Appl. Phys. Lett. 68, 3254(1996).
13. Jih-Jen Wu and Franklin Chau-Nan Hong, Appl. Phys. Lett. 70, 186(1997).
14. Jih-Jen Wu and Franklin Chau-Nan Hong, J. Appl. Phys. 81, 3652(1997).
15. Jih-Jen Wu and Franklin Chau-Nan Hong, J. Appl. Phys. 81, 3647(1997).
16. Jih-Jen Wu and Franklin Chau-Nan Hong, J. Mater. Res. 13, 2498(1998).
17. R. C. Weast, CRC Handbook of Chemistry and Physics, CRC, Boca Raton, Florid, 1998.
18. F. Westly, D. H. Frizzell, J. T. Herron, R. F. Hampson, and W. G. Mallard, NIST Chemical Kinetics Database, Version 6.01, U.S. Department of Commerce, Technology Administration, National Institute of Standards and Technology, Standard Reference Data Program: Gaithersburg, MD.
19. P. K. Bachmann and R. Messier, May 15, 1989 C&EN.
20. P. E. Pehresson, F. G. Celii, and J. E. Butler, Diamond Films And Coatings, edited by R. F. Davis (Noyes, 1993) p.69.
21. P. K. Bachmann, in Thin Film Diamond, edited by A. Lettington and J. W. Steeds (Champman & Hall, London, 1994) p.31-53.
22. R. Kern, G. L. Lay, and J. J. Metois, Current Topics in Material Science 3, 135(1979).
23. H. Liu and D. S. Dandy, Diamond Related Mater. 4, 1173(1995).
24. X. Jiang, W. J. Zhang, M. paul, and C. P. Klages, Appl. Phys. Lett. 68, 1927(1996).
25. W. J. Zhang and X. Jiang, Appl. Phys. Lett. 68, 2195(1996).
26. S. Iijima, Y. Aikawa, and K. Baba, Appl. Phys. Lett. 57,2646(1990).
27. M. Ihara, H. Komiyama, and T. Okubo, Appl. Phys. Lett. 65, 1192(1994).
28. P. A. Denning, D. A. Stevenson, Appl. Phys. Lett. 59,1562(1992).
29. M. Frenklach(1991), in Diamond and Diamond-like Films and Coating, edited by R. E. Clausing, L. L. Horton, J. C. Angus, and P. Koidl, NATO ASI Series B: physics, Vol. 266. Plenum, New York, p. 499-524.
30. P. A. Dennig, H. Shiomi, and D. A. Stevenson, Thin Solid Films 212, 63(1992).
31. A. Sawabe, T. Inuzuka, Thin Solid Films 137, 89(1986).
32. K. Suzuki, A. Sawabe, H. Yasuda, and T. Inuzuka, Appl. Phys. Lett. 50, 728(1987).
33. S. J. Harris, Appl. Phys. Lett. 56, 2298(1990).
34. B. J. Garrison, E. J. Dawnkaski, D. Srivastava, and D. W. Brenner, Science 255, 835-838(1992).
35. D. Huang, M. Frenklach, J. Phys. Chem. 96, 1868(1992).
36. D. Huang, M. Frenklach, J. Phys. Chem. 95, 3692(1991).
37. M. Tsuda, M. Nakajima, S. Oikawa, J. Am. Chem. Soc. 108, 5780(1986).
38. M. Frenklach, K. E. Spear, J. Mater. Res. 3, 133(1988).
39. D. N. Belton, S. J. Harris, J. Chem. Phys. 96, 2371(1992).
40. M. Frenklach, J. Chem. Phys. 97, 5794(1992).
41. D. M. Gruen, Annu. Rev. Mater. Sci., 29, 211, 1999.
42. (a) I. Gouzman et al., Diamond Related Materials, 7, 209, 1998. (b) A. Heiman et al., J. Appl. Phys., 89, 2622, 2001.
43. T. Sharda et al., Diamond Related Materials, 10, 1592, 2001.
44. H. Yoshikawa et al., Diamond Related Materials, 10, 1588, 2001.
45. V. V. Zhirnov et al., J. Vac. Sci. Technol. B 17, 666, 1999.
46. A. Gohl et al., J. Vac. Sci. Technol. B 17, 670, 1999.
47. B. Gunther et al., J. Vac. Sci. Technol. B 19, 942, 2001.
48. D. M. Bhusari et al., Mater. Lett. 36, 279, 1998.
49. D. M. Bhusari et al., J. Mater. Res. 13, 1769, 1998.
50. Y. K. Chang et al., Phys. Rev. Lett. 82, 5377, 1999.
51. L. C. Chen et al., J. Appl. Phys. 89, 753, 2001.
52. Y. Yu et al., J. Vac. Sci. Technol. B 19, 975, 2001.
53. A. Erdemir et al., Diamond Related Materials, 5, 923, 1996.
54. D. Zhou et al., J. Appl. Phys., 82, 4546, 1997.
55. S. Jiao et al., J. Appl. Phys., 90, 118, 2001.
56. A. R. Krauss et al., Diamond Related Materials, 10, 1952, 2001.
57. A. V. Sumant et al., Mat. Res. Soc. Symp. Proc. 657, EE5.33.1, 2001.
58. D. M. Gruen, MRS Bulletin, 26, 771, 2001.
59. C. J. Chu, R. H. Hauge, J. L. Margrave, and M. P. D’Evelyn, Appl. Phys. Lett. 61,1393(1992).
60. P. C. Redfern, D. A. Honer, L. A. Curtiss, D. M. Gruen, J. Phys. Chem. 100, 11654(1996).
61. M. Sternberg, M. Kaukonen, R. M. Nieminen, and Th. Frauenheim, Phys. Rev. B 63,165414(2001).
62. D. M. Gruen, P. C. Redfern, D. A. Horner, Peter Zapol, and L. A. Curtiss, J. Phys. Chem. B 103, 5459(1999).
63. A. R. Badzian, De Vries, and R. C. Mater. Res. Bull. 23,385(1988).
64. S Okoli, R. Aubner, and B. Lux, Surf. Coat. Technol. 47, 585(1991).
65. G. Binnig, C. F. Quate and Ch. Gerber, Phys. Rev. Lett. 56, 930(1986).
66. http://www.topometrix.com/spmguide/1-2-1.htm
67. B. D. Cullity, Elements of X-ray Diffraction, second edition, Addison-Wesley Publishing Company, INC, p.102.
68. R. J. Nemanish, J. T. Glass, G. Lucovsky, R. E. Shroder, J. Vac. Sci. Techol. A 6,1783(1988).
69. B. Marcus, L. Fayette, M. Mermoux, L. Abello, G. Lucazeau, J. Appl. Phys. 76, 3463(1994).
70. E. D. Obraztsova, K. G. Korotushenko, S. M. Pimenov, V. G. Ralchenko, A. A. Smolin, V. I. Konov, and E. N. Loubnin, NanoStructured Mater. 6, 827(1995).
71. S. Prawer, K. W. Nugent, D. N.Jamieson, J. O. Orwa, L.A. Bursill, and J. L. Peng, Chem. Phys. Lett. 332, 93(2000).
72. Z. Sun, J. R. Shi, B. K. Tay, and S. P. Lau, Diamond Related Mater. 9, 1979(2000).
73. Van Der Drift A. Philips Res. Rep. 22, 267(1996).
74. K. Nakamura, M. Fujitsuka, and M. Kitajima, Phys. Rev. B 41, 12260(1990).
75. Magnis J. Lipp, Phys. Rev. B 56, 565978(1997).
76. S.-K. Sze, N. Siddique, J. J. Sloan, and R. Escribano, Atmospheric Environment 35, 561(2001).
77. R. E. Vietzke, Surface and Coatings Technology 47, 156(1991).
78. L. Schafer, C. P. Klages, U. Meier, and K. K. Hoinghaus, Appl. Phys. Lett. 58, 571(1991).
79. U. Meier, K. K. Hoinghaus, L. Schafer, C. P. Klages, Appl. Opt. 29, 4993 (1990).
80. K. H. Chen, M. C. Chuang, C. M. Penney, and W. F. Banholzer, J. Appl. Phys. 71, 1485(1992).
81. L. L. Connell, J. W. Fleming, H.-N. Chu, D. J. Vestyck, Jr., E. Jensen, and J. E. Butler, J. Appl. Phys. 78, 3622(1995).
82. F. G. Celii, and J. E. Butler, Appl. Phys. Lett. 54, 1031(1989).