| 研究生: |
蔡尉駿 Tsai, Wei-Jiun |
|---|---|
| 論文名稱: |
A 型鏈球菌致病機制中 NADase-SLO 協同作用的結構見解 Structural Insights into the NADase-SLO Synergism in Group A Streptococcus Pathogenesis |
| 指導教授: |
王淑鶯
Wang, Shu-Ying |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
醫學院 - 基礎醫學研究所 Institute of Basic Medical Sciences |
| 論文出版年: | 2024 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 168 |
| 中文關鍵詞: | A 型鏈球菌 、NADase 、SLO 、X 射線晶體繞射 、小角度散射 、蛋白質交互作用 、液-液相分離 |
| 外文關鍵詞: | Group A Streptococcus (GAS), NADase, SLO, X-ray crystallography, small-angle scattering, protein-protein interaction, liquid-liquid phase separation (LLPS) |
| 相關次數: | 點閱:34 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
1 Walker, M. J. et al. Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin Microbiol Rev 27, 264-301, doi:10.1128/CMR.00101-13 (2014).
2 Brouwer, S. et al. Pathogenesis, epidemiology and control of group A Streptococcus infection. Nat Rev Microbiol 21, 431-447, doi:10.1038/s41579-023-00865-7 (2023).
3 Mustafa, Z. & Ghaffari, M. Diagnostic methods, clinical guidelines, and antibiotic treatment for group A streptococcal pharyngitis: a narrative review. Front Cell Infect Microbiol 10, 563627, doi:10.3389/fcimb.2020.563627 (2020).
4 Johnson, A. F. & LaRock, C. N. Antibiotic treatment, mechanisms for failure, and adjunctive therapies for infections by group A Streptococcus. Front Microbiol 12, 760255, doi:10.3389/fmicb.2021.760255 (2021).
5 Tse, H. et al. Molecular characterization of the 2011 Hong Kong scarlet fever outbreak. J Infect Dis 206, 341-351, doi:10.1093/infdis/jis362 (2012).
6 Lynskey, N. N. et al. Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: a population-based molecular epidemiological study. Lancet Infect Dis 19, 1209-1218, doi:10.1016/S1473-3099(19)30446-3 (2019).
7 Bagcchi, S. Surge of invasive group A Streptococcus disease. Lancet Infect Dis 23, 284, doi:10.1016/S1473-3099(23)00043-9 (2023).
8 Johnson, D. R., Stevens, D. L. & Kaplan, E. L. Epidemiologic analysis of group A streptococcal serotypes associated with severe systemic infections, rheumatic fever, or uncomplicated pharyngitis. J Infect Dis 166, 374-382, doi:10.1093/infdis/166.2.374 (1992).
9 Shea, P. R. et al. Group A Streptococcus emm gene types in pharyngeal isolates, Ontario, Canada, 2002-2010. Emerg Infect Dis 17, 2010-2017, doi:10.3201/eid1711.110159 (2011).
10 Llor, C. Streptococcal pharyngitis. N Engl J Med 364, 2366; doi:10.1056/NEJMc1104263 (2011).
11 Henningham, A., Barnett, T. C., Maamary, P. G. & Walker, M. J. Pathogenesis of group A streptococcal infections. Discov Med 13, 329-342 (2012).
12 Yung, C. F. & Thoon, K. C. A 12 year outbreak of scarlet fever in Singapore. Lancet Infect Dis 18, 942, doi:10.1016/S1473-3099(18)30464-X (2018).
13 Park, D. W. et al. Incidence and characteristics of scarlet fever, South Korea, 2008-2015. Emerg Infect Dis 23, 658-661, doi:10.3201/eid2304.160773 (2017).
14 Lamagni, T. et al. Resurgence of scarlet fever in England, 2014-16: a population-based surveillance study. Lancet Infect Dis 18, 180-187, doi:10.1016/S1473-3099(17)30693-X (2018).
15 Hartman-Adams, H., Banvard, C. & Juckett, G. Impetigo: diagnosis and treatment. Am Fam Physician 90, 229-235 (2014).
16 Gahlawat, G. et al. Emerging treatment strategies for impetigo in endemic and nonendemic settings: a systematic review. Clin Ther 43, 986-1006, doi:10.1016/j.clinthera.2021.04.013 (2021).
17 Guilherme, L. et al. Rheumatic heart disease: proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am J Pathol 165, 1583-1591, doi:10.1016/S0002-9440(10)63415-3 (2004).
18 Carapetis, J. R., Steer, A. C., Mulholland, E. K. & Weber, M. The global burden of group A streptococcal diseases. Lancet Infect Dis 5, 685-694, doi:10.1016/S1473-3099(05)70267-X (2005).
19 Satoskar, A. A., Parikh, S. V. & Nadasdy, T. Epidemiology, pathogenesis, treatment and outcomes of infection-associated glomerulonephritis. Nat Rev Nephrol 16, 32-50, doi:10.1038/s41581-019-0178-8 (2020).
20 Ralph, A. P. & Carapetis, J. R. Group a streptococcal diseases and their global burden. Curr Top Microbiol Immunol 368, 1-27, doi:10.1007/82_2012_280 (2013).
21 Lamagni, A. E. a. T. Epidemiology of Streptococcus pyogenes. Basic biology to clinical manifestations (2022).
22 2019 Global Burden of disease (GBD) study. Global health data exchange: http://ghdx .healthdata .org/gbd-results-tool (2019).
23 Nanduri, S. A. et al. Challenges in surveillance for streptococcal toxic shock syndrome: active bacterial core surveillance, United States, 2014-2017. Public Health Rep 137, 687-694, doi:10.1177/00333549211013460 (2022).
24 Andrejko, K., Whittles, L. K. & Lewnard, J. A. Health-economic value of vaccination against group A Streptococcus in the United States. Clin Infect Dis 74, 983-992, doi:10.1093/cid/ciab597 (2022).
25 Tyrrell, G. J., Bell, C., Bill, L. & Fathima, S. Increasing incidence of invasive group A Streptococcus disease in first nations population, Alberta, Canada, 2003-2017. Emerg Infect Dis 27, 443-451, doi:10.3201/eid2702.201945 (2021).
26 Thean, L. J. et al. Prospective surveillance for invasive Staphylococcus aureus and group A Streptococcus infections in a setting with high community burden of scabies and impetigo. Int J Infect Dis 108, 333-339, doi:10.1016/j.ijid.2021.05.041 (2021).
27 Ferretti, J. J., Stevens, D. L. & Fischetti, V. A. Secreted extracellular virulence factors. Basic biology to clinical manifestations (2016).
28 Ruiz, N., Wang, B., Pentland, A. & Caparon, M. Streptolysin O and adherence synergistically modulate proinflammatory responses of keratinocytes to group A streptococci. Mol Microbiol 27, 337-346, doi:10.1046/j.1365-2958.1998.00681.x (1998).
29 Shewell, L. K. et al. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity. Proc Natl Acad Sci U S A 111, E5312-5320, doi:10.1073/pnas.1412703111 (2014).
30 Parks, T., Barrett, L. & Jones, N. Invasive streptococcal disease: a review for clinicians. Br Med Bull 115, 77-89, doi:10.1093/bmb/ldv027 (2015).
31 Timmer, A. M. et al. Streptolysin O promotes group A Streptococcus immune evasion by accelerated macrophage apoptosis. J Biol Chem 284, 862-871, doi:10.1074/jbc.M804632200 (2009).
32 Uchiyama, S. et al. Streptolysin O rapidly impairs neutrophil oxidative burst and antibacterial responses to group A Streptococcus. Front Immunol 6, 581, doi:10.3389/fimmu.2015.00581 (2015).
33 O'Seaghdha, M. & Wessels, M. R. Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from Xenophagic killing. PLoS Pathog 9, e1003394, doi:10.1371/journal.ppat.1003394 (2013).
34 Bastiat-Sempe, B., Love, J. F., Lomayesva, N. & Wessels, M. R. Streptolysin O and NAD-glycohydrolase prevent phagolysosome acidification and promote group A Streptococcus survival in macrophages. mBio 5, e01690-01614, doi:10.1128/mBio.01690-14 (2014).
35 Limbago, B., Penumalli, V., Weinrick, B. & Scott, J. R. Role of streptolysin O in a mouse model of invasive group A streptococcal disease. Infect Immun 68, 6384-6390, doi:10.1128/IAI.68.11.6384-6390.2000 (2000).
36 Michos, A. et al. Enhancement of streptolysin O activity and intrinsic cytotoxic effects of the group A streptococcal toxin, NAD-glycohydrolase. J Biol Chem 281, 8216-8223, doi:10.1074/jbc.M511674200 (2006).
37 Nobbs, A. H., Lamont, R. J. & Jenkinson, H. F. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73, 407-450, doi:10.1128/MMBR.00014-09 (2009).
38 Stevens, D. L., Salmi, D. B., McIndoo, E. R. & Bryant, A. E. Molecular epidemiology of nga and NAD glycohydrolase/ADP-ribosyltransferase activity among Streptococcus pyogenes causing streptococcal toxic shock syndrome. J Infect Dis 182, 1117-1128, doi:10.1086/315850 (2000).
39 Bricker, A. L., Cywes, C., Ashbaugh, C. D. & Wessels, M. R. NAD+-glycohydrolase acts as an intracellular toxin to enhance the extracellular survival of group A streptococci. Mol Microbiol 44, 257-269, doi:10.1046/j.1365-2958.2002.02876.x (2002).
40 Chandrasekaran, S. & Caparon, M. G. The Streptococcus pyogenes NAD(+) glycohydrolase modulates epithelial cell PARylation and HMGB1 release. Cell Microbiol 17, 1376-1390, doi:10.1111/cmi.12442 (2015).
41 Chandrasekaran, S. & Caparon, M. G. The NADase-negative variant of the Streptococcus pyogenes toxin NAD(+) glycohydrolase induces JNK1-mediated programmed cellular necrosis. mBio 7, e02215-02215, doi:10.1128/mBio.02215-15 (2016).
42 Sharma, O., O'Seaghdha, M., Velarde, J. J. & Wessels, M. R. NAD+-glycohydrolase promotes intracellular survival of group A Streptococcus. PLoS Pathog 12, e1005468, doi:10.1371/journal.ppat.1005468 (2016).
43 Zhu, L. et al. Contribution of secreted NADase and Streptolysin O to the pathogenesis of epidemic serotype M1 Streptococcus pyogenes infections. Am J Pathol 187, 605-613, doi:10.1016/j.ajpath.2016.11.003 (2017).
44 Hsieh, C. L. et al. NAD-glycohydrolase depletes intracellular NAD(+) and inhibits acidification of autophagosomes to enhance multiplication of group A Streptococcus in endothelial cells. Front Microbiol 9, 1733, doi:10.3389/fmicb.2018.01733 (2018).
45 Hsieh, C. L. et al. Nicotinamide increases intracellular NAD(+) content to enhance autophagy-mediated group A streptococcal clearance in endothelial cells. Front Microbiol 11, 117, doi:10.3389/fmicb.2020.00117 (2020).
46 Bricker, A. L., Carey, V. J. & Wessels, M. R. Role of NADase in virulence in experimental invasive group A streptococcal infection. Infect Immun 73, 6562-6566, doi:10.1128/IAI.73.10.6562-6566.2005 (2005).
47 Meehl, M. A., Pinkner, J. S., Anderson, P. J., Hultgren, S. J. & Caparon, M. G. A novel endogenous inhibitor of the secreted streptococcal NAD-glycohydrolase. PLoS Pathog 1, e35, doi:10.1371/journal.ppat.0010035 (2005).
48 Velarde, J. J., O'Seaghdha, M., Baddal, B., Bastiat-Sempe, B. & Wessels, M. R. Binding of NAD(+)-glycohydrolase to Streptolysin O stabilizes both toxins and promotes virulence of group A Streptococcus. mBio 8, doi:10.1128/mBio.01382-17 (2017).
49 Madden, J. C., Ruiz, N. & Caparon, M. Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in gram-positive bacteria. Cell 104, 143-152, doi:10.1016/s0092-8674(01)00198-2 (2001).
50 Caparon, M. G., Stephens, D. S., Olsen, A. & Scott, J. R. Role of M protein in adherence of group A streptococci. Infect Immun 59, 1811-1817, doi:10.1128/iai.59.5.1811-1817.1991 (1991).
51 Carlsson, F., Berggard, K., Stalhammar-Carlemalm, M. & Lindahl, G. Evasion of phagocytosis through cooperation between two ligand-binding regions in Streptococcus pyogenes M protein. J Exp Med 198, 1057-1068, doi:10.1084/jem.20030543 (2003).
52 McMillan, D. J. et al. Updated model of group A Streptococcus M proteins based on a comprehensive worldwide study. Clin Microbiol Infect 19, E222-229, doi:10.1111/1469-0691.12134 (2013).
53 Courtney, H. S., Hasty, D. L. & Dale, J. B. Anti-phagocytic mechanisms of Streptococcus pyogenes: binding of fibrinogen to M-related protein. Mol Microbiol 59, 936-947, doi:10.1111/j.1365-2958.2005.04977.x (2006).
54 Laabei, M. & Ermert, D. Catch me if you can: Streptococcus pyogenes complement evasion strategies. J Innate Immun 11, 3-12, doi:10.1159/000492944 (2019).
55 Ermert, D. et al. Binding of complement inhibitor C4b-binding protein to a highly virulent Streptococcus pyogenes M1 strain is mediated by protein H and enhances adhesion to and invasion of endothelial cells. J Biol Chem 288, 32172-32183, doi:10.1074/jbc.M113.502955 (2013).
56 Happonen, L. et al. A quantitative Streptococcus pyogenes-human protein-protein interaction map reveals localization of opsonizing antibodies. Nat Commun 10, 2727, doi:10.1038/s41467-019-10583-5 (2019).
57 Steer, A. C., Law, I., Matatolu, L., Beall, B. W. & Carapetis, J. R. Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect Dis 9, 611-616, doi:10.1016/S1473-3099(09)70178-1 (2009).
58 Chiang-Ni, C. & Wu, J. J. Effects of streptococcal pyrogenic exotoxin B on pathogenesis of Streptococcus pyogenes. J Formos Med Assoc 107, 677-685, doi:10.1016/S0929-6646(08)60112-6 (2008).
59 Kuo, C. F. et al. Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect Immun 66, 3931-3935, doi:10.1128/IAI.66.8.3931-3935.1998 (1998).
60 Sierig, G., Cywes, C., Wessels, M. R. & Ashbaugh, C. D. Cytotoxic effects of streptolysin o and streptolysin s enhance the virulence of poorly encapsulated group A streptococci. Infect Immun 71, 446-455, doi:10.1128/IAI.71.1.446-455.2003 (2003).
61 Molloy, E. M., Cotter, P. D., Hill, C., Mitchell, D. A. & Ross, R. P. Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol 9, 670-681, doi:10.1038/nrmicro2624 (2011).
62 Miyoshi-Akiyama, T. et al. Cytocidal effect of Streptococcus pyogenes on mouse neutrophils in vivo and the critical role of streptolysin S. J Infect Dis 192, 107-116, doi:10.1086/430617 (2005).
63 Timothy Barnett, A. I., and Martina Sanderson-Smith. Secreted virulence factors of Streptococcus pyogenes. Basic biology to clinical manifestations (2022).
64 Magassa, N., Chandrasekaran, S. & Caparon, M. G. Streptococcus pyogenes cytolysin-mediated translocation does not require pore formation by streptolysin O. EMBO Rep 11, 400-405, doi:10.1038/embor.2010.37 (2010).
65 Ghosh, J. & Caparon, M. G. Specificity of Streptococcus pyogenes NAD(+) glycohydrolase in cytolysin-mediated translocation. Mol Microbiol 62, 1203-1214, doi:10.1111/j.1365-2958.2006.05430.x (2006).
66 Meehl, M. A. & Caparon, M. G. Specificity of streptolysin O in cytolysin-mediated translocation. Mol Microbiol 52, 1665-1676, doi:10.1111/j.1365-2958.2004.04082.x (2004).
67 Lu, S. L. et al. Insufficient acidification of autophagosomes facilitates group A Streptococcus survival and growth in endothelial cells. mBio 6, e01435-01415, doi:10.1128/mBio.01435-15 (2015).
68 Cheng, Y. L. et al. Group A Streptococcus induces LAPosomes via SLO/beta1 Integrin/NOX2/ROS pathway in endothelial cells that are ineffective in bacterial killing and suppress xenophagy. mBio 10, doi:10.1128/mBio.02148-19 (2019).
69 Hancz, D. et al. Inhibition of inflammasome-dependent interleukin 1beta production by streptococcal NAD(+)-glycohydrolase: evidence for extracellular activity. mBio 8, doi:10.1128/mBio.00756-17 (2017).
70 Smith, C. L. et al. Structural basis of Streptococcus pyogenes immunity to its NAD+ glycohydrolase toxin. Structure 19, 192-202, doi:10.1016/j.str.2010.12.013 (2011).
71 Yoon, J. Y. et al. High-resolution crystal structure of Streptococcus pyogenes beta-NAD(+) glycohydrolase in complex with its endogenous inhibitor IFS reveals a highly water-rich interface. J Synchrotron Radiat 20, 962-967, doi:10.1107/S0909049513020803 (2013).
72 Velarde, J. J. et al. Structure of the Streptococcus pyogenes NAD(+) glycohydrolase translocation domain and its essential role in toxin binding to Oropharyngeal Keratinocytes. J Bacteriol 204, e0036621, doi:10.1128/JB.00366-21 (2022).
73 Morton, C. J., Sani, M. A., Parker, M. W. & Separovic, F. Cholesterol-dependent cytolysins: membrane and protein structural requirements for pore formation. Chem Rev 119, 7721-7736, doi:10.1021/acs.chemrev.9b00090 (2019).
74 Cole, J. N., Barnett, T. C., Nizet, V. & Walker, M. J. Molecular insight into invasive group A streptococcal disease. Nat Rev Microbiol 9, 724-736, doi:10.1038/nrmicro2648 (2011).
75 Stevens, D. L. Invasive group A Streptococcus infections. Clin Infect Dis 14, 2-11, doi:10.1093/clinids/14.1.2 (1992).
76 Zhu, L. et al. A molecular trigger for intercontinental epidemics of group A Streptococcus. J Clin Invest 125, 3545-3559, doi:10.1172/JCI82478 (2015).
77 Feil, S. C., Ascher, D. B., Kuiper, M. J., Tweten, R. K. & Parker, M. W. Structural studies of Streptococcus pyogenes streptolysin O provide insights into the early steps of membrane penetration. J Mol Biol 426, 785-792, doi:10.1016/j.jmb.2013.11.020 (2014).
78 Tweten, R. K. Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73, 6199-6209, doi:10.1128/IAI.73.10.6199-6209.2005 (2005).
79 Mozola, C. C. & Caparon, M. G. Dual modes of membrane binding direct pore formation by Streptolysin O. Mol Microbiol 97, 1036-1050, doi:10.1111/mmi.13085 (2015).
80 Mozola, C. C., Magassa, N. & Caparon, M. G. A novel cholesterol-insensitive mode of membrane binding promotes cytolysin-mediated translocation by Streptolysin O. Mol Microbiol 94, 675-687, doi:10.1111/mmi.12786 (2014).
81 van Pee, K. et al. CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin. Elife 6, doi:10.7554/eLife.23644 (2017).
82 Sun, X. et al. Interactions of bacterial toxin CNF1 and host JAK1/2 Driven by liquid-liquid phase separation enhance macrophage polarization. mBio 13, e0114722, doi:10.1128/mbio.01147-22 (2022).
83 Hura, G. L. et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6, 606-612, doi:10.1038/nmeth.1353 (2009).
84 Dyer, K. N. et al. High-throughput SAXS for the characterization of biomolecules in solution: a practical approach. Methods Mol Biol 1091, 245-258, doi:10.1007/978-1-62703-691-7_18 (2014).
85 Rosenberg, D. J., Hura, G. L. & Hammel, M. Size exclusion chromatography coupled small angle X-ray scattering with tandem multiangle light scattering at the SIBYLS beamline. Methods Enzymol 677, 191-219, doi:10.1016/bs.mie.2022.08.031 (2022).
86 Manalastas-Cantos, K. et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J Appl Crystallogr 54, 343-355, doi:10.1107/S1600576720013412 (2021).
87 Svergun, D. I., Petoukhov, M. V. & Koch, M. H. Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80, 2946-2953, doi:10.1016/S0006-3495(01)76260-1 (2001).
88 Fiser, A. & Sali, A. ModLoop: automated modeling of loops in protein structures. Bioinformatics 19, 2500-2501, doi:10.1093/bioinformatics/btg362 (2003).
89 Pelikan, M., Hura, G. L. & Hammel, M. Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys 28, 174-189, doi:10.4149/gpb_2009_02_174 (2009).
90 Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys J 105, 962-974, doi:10.1016/j.bpj.2013.07.020 (2013).
91 Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A. FoXS, FoXSDock and MultiFoXS: Single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res 44, W424-429, doi:10.1093/nar/gkw389 (2016).
92 Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676-682, doi:10.1038/nmeth.2019 (2012).
93 Murthy, A. C. et al. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat Struct Mol Biol 26, 637-648, doi:10.1038/s41594-019-0250-x (2019).
94 Zheng Wang, G. Z., Hong Zhang. Protocol for analyzing protein liquid–liquid phase separation. Biophysics Reports, 5(1): 1-9 (2019).
95 Tsai, W. J. et al. Structural basis underlying the synergism of NADase and SLO during group A Streptococcus infection. Commun Biol 6, 124, doi:10.1038/s42003-023-04502-0 (2023).
96 Borcherds, W., Bremer, A., Borgia, M. B. & Mittag, T. How do intrinsically disordered protein regions encode a driving force for liquid-liquid phase separation? Curr Opin Struct Biol 67, 41-50, doi:10.1016/j.sbi.2020.09.004 (2021).
97 Wang, B. et al. Liquid-liquid phase separation in human health and diseases. Signal Transduct Target Ther 6, 290, doi:10.1038/s41392-021-00678-1 (2021).
98 Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123-133, doi:10.1016/j.cell.2015.09.015 (2015).
99 Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241-245, doi:10.1038/nature22989 (2017).
100 Alberti, S. & Dormann, D. Liquid-liquid phase separation in disease. Annu Rev Genet 53, 171-194, doi:10.1146/annurev-genet-112618-043527 (2019).
101 Nesterov, S. V., Ilyinsky, N. S. & Uversky, V. N. Liquid-liquid phase separation as a common organizing principle of intracellular space and biomembranes providing dynamic adaptive responses. Biochim Biophys Acta Mol Cell Res 1868, 119102, doi:10.1016/j.bbamcr.2021.119102 (2021).
102 Bergeron-Sandoval, L. P. et al. Endocytic proteins with prion-like domains form viscoelastic condensates that enable membrane remodeling. Proc Natl Acad Sci U S A 118, doi:10.1073/pnas.2113789118 (2021).
103 Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K. & Uversky, V. N. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804, 996-1010, doi:10.1016/j.bbapap.2010.01.011 (2010).
104 Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589, doi:10.1038/s41586-021-03819-2 (2021).
105 Hardenberg, M., Horvath, A., Ambrus, V., Fuxreiter, M. & Vendruscolo, M. Widespread occurrence of the droplet state of proteins in the human proteome. Proc Natl Acad Sci U S A 117, 33254-33262, doi:10.1073/pnas.2007670117 (2020).
校內:不公開