簡易檢索 / 詳目顯示

研究生: 蔡尉駿
Tsai, Wei-Jiun
論文名稱: A 型鏈球菌致病機制中 NADase-SLO 協同作用的結構見解
Structural Insights into the NADase-SLO Synergism in Group A Streptococcus Pathogenesis
指導教授: 王淑鶯
Wang, Shu-Ying
學位類別: 博士
Doctor
系所名稱: 醫學院 - 基礎醫學研究所
Institute of Basic Medical Sciences
論文出版年: 2024
畢業學年度: 113
語文別: 英文
論文頁數: 168
中文關鍵詞: A 型鏈球菌NADaseSLOX 射線晶體繞射小角度散射蛋白質交互作用液-液相分離
外文關鍵詞: Group A Streptococcus (GAS), NADase, SLO, X-ray crystallography, small-angle scattering, protein-protein interaction, liquid-liquid phase separation (LLPS)
相關次數: 點閱:34下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要 I Abstract III Contents V List of Tables IX List of Figures X List of Appendices XIII Abbreviation XIV Chapter 1 Introduction 1 1.1 Group A Streptococcus 1 1.2 Diseases caused by GAS 1 1.2.1 Pharyngitis 2 1.2.2 Scarlet fever 2 1.2.3 Impetigo 3 1.2.4 Acute rheumatic fever (ARF) and rheumatic heart disease (RHD) 4 1.2.5 Acute poststreptococcal glomerulonephritis (APSGN) 4 1.2.6 Invasive diseases and streptococcal toxic shock syndrome (STSS) 5 1.3 The global disease burden of group A Streptococcus 5 1.4 The virulence factors and the immune evasion of GAS 6 1.4.1 Streptolysin O (SLO) 7 1.4.2 NAD+-glycohydrolase (NADase) 8 1.4.3 M Protein 9 1.4.4 Streptococcal exotoxins, SpeA and SpeB 11 1.4.5 Streptolysin S (SLS) 12 1.4.6 DNases 13 1.5 The synergistic effects of NADase and SLO 14 1.5.1 Cytolysin-mediated translocation and the synergistic effect of NADase and SLO 14 1.5.2 Structure and functions of the NADase 15 1.5.3 Structure and functions of SLO 16 1.5.4 Interaction between NADase and SLO 17 1.6 Liquid-liquid phase separation (LLPS) of bacterial proteins 19 Rationale and Specific aims 21 Chapter 2 Materials and Methods 23 2.1 Materials 23 2.1.1 Bacterial strains 23 2.1.2 Cell line 27 2.1.3 Plasmids 27 2.1.4 Antibodies 28 2.1.5 Chemicals and other materials 29 2.2 Methods 34 2.2.1 Construction of nga and slo overexpression plasmids 34 2.2.2 Transformation of slo and nga plasmids 34 2.2.3 Overexpression of SLO and NADase 35 2.2.4 Purification of NADase 36 2.2.5 Purification of SLO 37 2.2.6 Size-exclusion chromatography (SEC) of NADase/SLO complex 38 2.2.7 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 38 2.2.8 Thermal shift assay 39 2.2.9 Hemolytic activity of recombinant SLO 39 2.2.10 Enzymatic assay of recombinant NADase 40 2.2.11 Crystallization, crystallographic data collection and structural determination 40 2.2.12 SAXS data collection 41 2.2.13 SAXS modeling 42 2.2.14 Size-Exclusion Chromatography coupled with Multi-Angle Light Scattering (SEC-MALS) 43 2.2.15 Bacterial culture 44 2.2.16 Measurement of NADase activity in GAS supernatants 44 2.2.17 Cytolysin-mediated translocation (CMT) assay 44 2.2.18 Cytotoxicity assay 45 2.2.19 Intracellular survival assay 45 2.2.20 LLPS assay of SLO 46 2.2.21 Fluorescence recovery after photobleaching (FRAP) assays of SLO 46 2.2.22 Quantification of phase separation 47 Chapter 3 Results 50 3.1 Overexpression and purification of NADase and SLO 50 3.1.1 Induction of NADase/IFS complex 50 3.1.2 Overexpression and purification of NADase/IFS 50 3.1.3 Purification of IFS-free NADase 51 3.1.4 Induction of His-tagged SLO 52 3.1.5 Overexpression and purification of His-tagged SLO 52 3.2 Binding of NADase and SLO 53 3.2.1 Reconstitution of NADase/SLO complex in vitro 53 3.2.2 Binding analysis of NADase/SLO complex 54 3.2.3 Binding of NADase to SLO enhances the stability of the toxins 55 3.3 Structure of NADase193-451,G330D/SLO106-574 complex 56 3.3.1 Crystallization of NADase/SLO complex 56 3.3.2 Structural determination of NADase193-451,G330D/SLO106-574 complex 57 3.3.3 Structural validation of NADase193-451,G330D/SLO106-574 complex 58 3.4 Small-angle scattering studies on the NADase/SLO complex 59 3.4.1 Solution architecture of NADase /SLO complex 59 3.4.2 Solution structure of NADase and NADase/SLO complex 60 3.4.3 Small-angle neutron-scattering of NADase/SLO complex 61 3.4.4 Conformational ensemble of NADase/SLO/IFS complex 62 3.5 Functional study of NADase/SLO complex in cell infection models 63 3.5.1 Understanding NADase-SLO interaction in SLO-mediated NADase translocation 63 3.5.2 Unraveling the significance of NADase-SLO interaction in GAS cytotoxicity. 65 3.5.3 Role of NADase-SLO interaction in intracellular survival of GAS 66 3.6 Understanding the importance of the NADase/SLO complex in GAS pathogenesis through murine infection model 67 3.7 Liquid-liquid phase separation (LLPS) of SLO 67 3.7.1 The N-terminal IDR of SLO is essential for forming SLO’s liquid-like droplets in solution 68 3.7.2 SLO's liquid-like droplets exhibit dynamic characteristics in solution 69 3.7.3 The amino acid composition of SLO's N-terminal IDR is crucial for maintaining its behavior in LLPS conditions 70 3.7.4 SLO’s N-terminal IDR functionally associates to LLPS and the translocation of NADase during GAS infection 71 Chapter 4 Conclusion 74 Chapter 5 Discussion 75 References 82 Tables 95 Figures 98 Appendices 142

    1          Walker, M. J. et al. Disease manifestations and pathogenic mechanisms of group A Streptococcus. Clin Microbiol Rev 27, 264-301, doi:10.1128/CMR.00101-13 (2014).
    2          Brouwer, S. et al. Pathogenesis, epidemiology and control of group A Streptococcus infection. Nat Rev Microbiol 21, 431-447, doi:10.1038/s41579-023-00865-7 (2023).
    3          Mustafa, Z. & Ghaffari, M. Diagnostic methods, clinical guidelines, and antibiotic treatment for group A streptococcal pharyngitis: a narrative review. Front Cell Infect Microbiol 10, 563627, doi:10.3389/fcimb.2020.563627 (2020).
    4          Johnson, A. F. & LaRock, C. N. Antibiotic treatment, mechanisms for failure, and adjunctive therapies for infections by group A Streptococcus. Front Microbiol 12, 760255, doi:10.3389/fmicb.2021.760255 (2021).
    5          Tse, H. et al. Molecular characterization of the 2011 Hong Kong scarlet fever outbreak. J Infect Dis 206, 341-351, doi:10.1093/infdis/jis362 (2012).
    6         Lynskey, N. N. et al. Emergence of dominant toxigenic M1T1 Streptococcus pyogenes clone during increased scarlet fever activity in England: a population-based molecular epidemiological study. Lancet Infect Dis 19, 1209-1218, doi:10.1016/S1473-3099(19)30446-3 (2019).
    7          Bagcchi, S. Surge of invasive group A Streptococcus disease. Lancet Infect Dis 23, 284, doi:10.1016/S1473-3099(23)00043-9 (2023).
    8          Johnson, D. R., Stevens, D. L. & Kaplan, E. L. Epidemiologic analysis of group A streptococcal serotypes associated with severe systemic infections, rheumatic fever, or uncomplicated pharyngitis. J Infect Dis 166, 374-382, doi:10.1093/infdis/166.2.374 (1992).
    9          Shea, P. R. et al. Group A Streptococcus emm gene types in pharyngeal isolates, Ontario, Canada, 2002-2010. Emerg Infect Dis 17, 2010-2017, doi:10.3201/eid1711.110159 (2011).
    10        Llor, C. Streptococcal pharyngitis. N Engl J Med 364, 2366; doi:10.1056/NEJMc1104263 (2011).
    11        Henningham, A., Barnett, T. C., Maamary, P. G. & Walker, M. J. Pathogenesis of group A streptococcal infections. Discov Med 13, 329-342 (2012).
    12        Yung, C. F. & Thoon, K. C. A 12 year outbreak of scarlet fever in Singapore. Lancet Infect Dis 18, 942, doi:10.1016/S1473-3099(18)30464-X (2018).
    13        Park, D. W. et al. Incidence and characteristics of scarlet fever, South Korea, 2008-2015. Emerg Infect Dis 23, 658-661, doi:10.3201/eid2304.160773 (2017).
    14        Lamagni, T. et al. Resurgence of scarlet fever in England, 2014-16: a population-based surveillance study. Lancet Infect Dis 18, 180-187, doi:10.1016/S1473-3099(17)30693-X (2018).
    15        Hartman-Adams, H., Banvard, C. & Juckett, G. Impetigo: diagnosis and treatment. Am Fam Physician 90, 229-235 (2014).
    16        Gahlawat, G. et al. Emerging treatment strategies for impetigo in endemic and nonendemic settings: a systematic review. Clin Ther 43, 986-1006, doi:10.1016/j.clinthera.2021.04.013 (2021).
    17        Guilherme, L. et al. Rheumatic heart disease: proinflammatory cytokines play a role in the progression and maintenance of valvular lesions. Am J Pathol 165, 1583-1591, doi:10.1016/S0002-9440(10)63415-3 (2004).
    18        Carapetis, J. R., Steer, A. C., Mulholland, E. K. & Weber, M. The global burden of group A streptococcal diseases. Lancet Infect Dis 5, 685-694, doi:10.1016/S1473-3099(05)70267-X (2005).
    19       Satoskar, A. A., Parikh, S. V. & Nadasdy, T. Epidemiology, pathogenesis, treatment and outcomes of infection-associated glomerulonephritis. Nat Rev Nephrol 16, 32-50, doi:10.1038/s41581-019-0178-8 (2020).
    20        Ralph, A. P. & Carapetis, J. R. Group a streptococcal diseases and their global burden. Curr Top Microbiol Immunol 368, 1-27, doi:10.1007/82_2012_280 (2013).
    21        Lamagni, A. E. a. T. Epidemiology of Streptococcus pyogenes. Basic biology to clinical manifestations (2022).
    22        2019 Global Burden of disease (GBD) study. Global health data exchange: http://ghdx .healthdata .org/gbd-results-tool (2019).
    23        Nanduri, S. A. et al. Challenges in surveillance for streptococcal toxic shock syndrome: active bacterial core surveillance, United States, 2014-2017. Public Health Rep 137, 687-694, doi:10.1177/00333549211013460 (2022).
    24        Andrejko, K., Whittles, L. K. & Lewnard, J. A. Health-economic value of vaccination against group A Streptococcus in the United States. Clin Infect Dis 74, 983-992, doi:10.1093/cid/ciab597 (2022).
    25        Tyrrell, G. J., Bell, C., Bill, L. & Fathima, S. Increasing incidence of invasive group A Streptococcus disease in first nations population, Alberta, Canada, 2003-2017. Emerg Infect Dis 27, 443-451, doi:10.3201/eid2702.201945 (2021).
    26        Thean, L. J. et al. Prospective surveillance for invasive Staphylococcus aureus and group A Streptococcus infections in a setting with high community burden of scabies and impetigo. Int J Infect Dis 108, 333-339, doi:10.1016/j.ijid.2021.05.041 (2021).
    27        Ferretti, J. J., Stevens, D. L. & Fischetti, V. A. Secreted extracellular virulence factors. Basic biology to clinical manifestations (2016).
    28        Ruiz, N., Wang, B., Pentland, A. & Caparon, M. Streptolysin O and adherence synergistically modulate proinflammatory responses of keratinocytes to group A streptococci. Mol Microbiol 27, 337-346, doi:10.1046/j.1365-2958.1998.00681.x (1998).
    29        Shewell, L. K. et al. The cholesterol-dependent cytolysins pneumolysin and streptolysin O require binding to red blood cell glycans for hemolytic activity. Proc Natl Acad Sci U S A 111, E5312-5320, doi:10.1073/pnas.1412703111 (2014).
    30        Parks, T., Barrett, L. & Jones, N. Invasive streptococcal disease: a review for clinicians. Br Med Bull 115, 77-89, doi:10.1093/bmb/ldv027 (2015).
    31        Timmer, A. M. et al. Streptolysin O promotes group A Streptococcus immune evasion by accelerated macrophage apoptosis. J Biol Chem 284, 862-871, doi:10.1074/jbc.M804632200 (2009).
    32        Uchiyama, S. et al. Streptolysin O rapidly impairs neutrophil oxidative burst and antibacterial responses to group A Streptococcus. Front Immunol 6, 581, doi:10.3389/fimmu.2015.00581 (2015).
    33        O'Seaghdha, M. & Wessels, M. R. Streptolysin O and its co-toxin NAD-glycohydrolase protect group A Streptococcus from Xenophagic killing. PLoS Pathog 9, e1003394, doi:10.1371/journal.ppat.1003394 (2013).
    34        Bastiat-Sempe, B., Love, J. F., Lomayesva, N. & Wessels, M. R. Streptolysin O and NAD-glycohydrolase prevent phagolysosome acidification and promote group A Streptococcus survival in macrophages. mBio 5, e01690-01614, doi:10.1128/mBio.01690-14 (2014).
    35        Limbago, B., Penumalli, V., Weinrick, B. & Scott, J. R. Role of streptolysin O in a mouse model of invasive group A streptococcal disease. Infect Immun 68, 6384-6390, doi:10.1128/IAI.68.11.6384-6390.2000 (2000).
    36        Michos, A. et al. Enhancement of streptolysin O activity and intrinsic cytotoxic effects of the group A streptococcal toxin, NAD-glycohydrolase. J Biol Chem 281, 8216-8223, doi:10.1074/jbc.M511674200 (2006).
    37        Nobbs, A. H., Lamont, R. J. & Jenkinson, H. F. Streptococcus adherence and colonization. Microbiol Mol Biol Rev 73, 407-450, doi:10.1128/MMBR.00014-09 (2009).
    38        Stevens, D. L., Salmi, D. B., McIndoo, E. R. & Bryant, A. E. Molecular epidemiology of nga and NAD glycohydrolase/ADP-ribosyltransferase activity among Streptococcus pyogenes causing streptococcal toxic shock syndrome. J Infect Dis 182, 1117-1128, doi:10.1086/315850 (2000).
    39        Bricker, A. L., Cywes, C., Ashbaugh, C. D. & Wessels, M. R. NAD+-glycohydrolase acts as an intracellular toxin to enhance the extracellular survival of group A streptococci. Mol Microbiol 44, 257-269, doi:10.1046/j.1365-2958.2002.02876.x (2002).
    40        Chandrasekaran, S. & Caparon, M. G. The Streptococcus pyogenes NAD(+) glycohydrolase modulates epithelial cell PARylation and HMGB1 release. Cell Microbiol 17, 1376-1390, doi:10.1111/cmi.12442 (2015).
    41        Chandrasekaran, S. & Caparon, M. G. The NADase-negative variant of the Streptococcus pyogenes toxin NAD(+) glycohydrolase induces JNK1-mediated programmed cellular necrosis. mBio 7, e02215-02215, doi:10.1128/mBio.02215-15 (2016).
    42        Sharma, O., O'Seaghdha, M., Velarde, J. J. & Wessels, M. R. NAD+-glycohydrolase promotes intracellular survival of group A Streptococcus. PLoS Pathog 12, e1005468, doi:10.1371/journal.ppat.1005468 (2016).
    43        Zhu, L. et al. Contribution of secreted NADase and Streptolysin O to the pathogenesis of epidemic serotype M1 Streptococcus pyogenes infections. Am J Pathol 187, 605-613, doi:10.1016/j.ajpath.2016.11.003 (2017).
    44        Hsieh, C. L. et al. NAD-glycohydrolase depletes intracellular NAD(+) and inhibits acidification of autophagosomes to enhance multiplication of group A Streptococcus in endothelial cells. Front Microbiol 9, 1733, doi:10.3389/fmicb.2018.01733 (2018).
    45        Hsieh, C. L. et al. Nicotinamide increases intracellular NAD(+) content to enhance autophagy-mediated group A streptococcal clearance in endothelial cells. Front Microbiol 11, 117, doi:10.3389/fmicb.2020.00117 (2020).
    46        Bricker, A. L., Carey, V. J. & Wessels, M. R. Role of NADase in virulence in experimental invasive group A streptococcal infection. Infect Immun 73, 6562-6566, doi:10.1128/IAI.73.10.6562-6566.2005 (2005).
    47        Meehl, M. A., Pinkner, J. S., Anderson, P. J., Hultgren, S. J. & Caparon, M. G. A novel endogenous inhibitor of the secreted streptococcal NAD-glycohydrolase. PLoS Pathog 1, e35, doi:10.1371/journal.ppat.0010035 (2005).
    48        Velarde, J. J., O'Seaghdha, M., Baddal, B., Bastiat-Sempe, B. & Wessels, M. R. Binding of NAD(+)-glycohydrolase to Streptolysin O stabilizes both toxins and promotes virulence of group A Streptococcus. mBio 8, doi:10.1128/mBio.01382-17 (2017).
    49        Madden, J. C., Ruiz, N. & Caparon, M. Cytolysin-mediated translocation (CMT): a functional equivalent of type III secretion in gram-positive bacteria. Cell 104, 143-152, doi:10.1016/s0092-8674(01)00198-2 (2001).
    50        Caparon, M. G., Stephens, D. S., Olsen, A. & Scott, J. R. Role of M protein in adherence of group A streptococci. Infect Immun 59, 1811-1817, doi:10.1128/iai.59.5.1811-1817.1991 (1991).
    51        Carlsson, F., Berggard, K., Stalhammar-Carlemalm, M. & Lindahl, G. Evasion of phagocytosis through cooperation between two ligand-binding regions in Streptococcus pyogenes M protein. J Exp Med 198, 1057-1068, doi:10.1084/jem.20030543 (2003).
    52        McMillan, D. J. et al. Updated model of group A Streptococcus M proteins based on a comprehensive worldwide study. Clin Microbiol Infect 19, E222-229, doi:10.1111/1469-0691.12134 (2013).
    53        Courtney, H. S., Hasty, D. L. & Dale, J. B. Anti-phagocytic mechanisms of Streptococcus pyogenes: binding of fibrinogen to M-related protein. Mol Microbiol 59, 936-947, doi:10.1111/j.1365-2958.2005.04977.x (2006).
    54        Laabei, M. & Ermert, D. Catch me if you can: Streptococcus pyogenes complement evasion strategies. J Innate Immun 11, 3-12, doi:10.1159/000492944 (2019).
    55        Ermert, D. et al. Binding of complement inhibitor C4b-binding protein to a highly virulent Streptococcus pyogenes M1 strain is mediated by protein H and enhances adhesion to and invasion of endothelial cells. J Biol Chem 288, 32172-32183, doi:10.1074/jbc.M113.502955 (2013).
    56        Happonen, L. et al. A quantitative Streptococcus pyogenes-human protein-protein interaction map reveals localization of opsonizing antibodies. Nat Commun 10, 2727, doi:10.1038/s41467-019-10583-5 (2019).
    57        Steer, A. C., Law, I., Matatolu, L., Beall, B. W. & Carapetis, J. R. Global emm type distribution of group A streptococci: systematic review and implications for vaccine development. Lancet Infect Dis 9, 611-616, doi:10.1016/S1473-3099(09)70178-1 (2009).
    58        Chiang-Ni, C. & Wu, J. J. Effects of streptococcal pyrogenic exotoxin B on pathogenesis of Streptococcus pyogenes. J Formos Med Assoc 107, 677-685, doi:10.1016/S0929-6646(08)60112-6 (2008).
    59        Kuo, C. F. et al. Role of streptococcal pyrogenic exotoxin B in the mouse model of group A streptococcal infection. Infect Immun 66, 3931-3935, doi:10.1128/IAI.66.8.3931-3935.1998 (1998).
    60        Sierig, G., Cywes, C., Wessels, M. R. & Ashbaugh, C. D. Cytotoxic effects of streptolysin o and streptolysin s enhance the virulence of poorly encapsulated group A streptococci. Infect Immun 71, 446-455, doi:10.1128/IAI.71.1.446-455.2003 (2003).
    61        Molloy, E. M., Cotter, P. D., Hill, C., Mitchell, D. A. & Ross, R. P. Streptolysin S-like virulence factors: the continuing sagA. Nat Rev Microbiol 9, 670-681, doi:10.1038/nrmicro2624 (2011).
    62        Miyoshi-Akiyama, T. et al. Cytocidal effect of Streptococcus pyogenes on mouse neutrophils in vivo and the critical role of streptolysin S. J Infect Dis 192, 107-116, doi:10.1086/430617 (2005).
    63        Timothy Barnett, A. I., and Martina Sanderson-Smith. Secreted virulence factors of Streptococcus pyogenes. Basic biology to clinical manifestations (2022).
    64        Magassa, N., Chandrasekaran, S. & Caparon, M. G. Streptococcus pyogenes cytolysin-mediated translocation does not require pore formation by streptolysin O. EMBO Rep 11, 400-405, doi:10.1038/embor.2010.37 (2010).
    65        Ghosh, J. & Caparon, M. G. Specificity of Streptococcus pyogenes NAD(+) glycohydrolase in cytolysin-mediated translocation. Mol Microbiol 62, 1203-1214, doi:10.1111/j.1365-2958.2006.05430.x (2006).
    66        Meehl, M. A. & Caparon, M. G. Specificity of streptolysin O in cytolysin-mediated translocation. Mol Microbiol 52, 1665-1676, doi:10.1111/j.1365-2958.2004.04082.x (2004).
    67        Lu, S. L. et al. Insufficient acidification of autophagosomes facilitates group A Streptococcus survival and growth in endothelial cells. mBio 6, e01435-01415, doi:10.1128/mBio.01435-15 (2015).
    68        Cheng, Y. L. et al. Group A Streptococcus induces LAPosomes via SLO/beta1 Integrin/NOX2/ROS pathway in endothelial cells that are ineffective in bacterial killing and suppress xenophagy. mBio 10, doi:10.1128/mBio.02148-19 (2019).
    69        Hancz, D. et al. Inhibition of inflammasome-dependent interleukin 1beta production by streptococcal NAD(+)-glycohydrolase: evidence for extracellular activity. mBio 8, doi:10.1128/mBio.00756-17 (2017).
    70        Smith, C. L. et al. Structural basis of Streptococcus pyogenes immunity to its NAD+ glycohydrolase toxin. Structure 19, 192-202, doi:10.1016/j.str.2010.12.013 (2011).
    71        Yoon, J. Y. et al. High-resolution crystal structure of Streptococcus pyogenes beta-NAD(+) glycohydrolase in complex with its endogenous inhibitor IFS reveals a highly water-rich interface. J Synchrotron Radiat 20, 962-967, doi:10.1107/S0909049513020803 (2013).
    72        Velarde, J. J. et al. Structure of the Streptococcus pyogenes NAD(+) glycohydrolase translocation domain and its essential role in toxin binding to Oropharyngeal Keratinocytes. J Bacteriol 204, e0036621, doi:10.1128/JB.00366-21 (2022).
    73        Morton, C. J., Sani, M. A., Parker, M. W. & Separovic, F. Cholesterol-dependent cytolysins: membrane and protein structural requirements for pore formation. Chem Rev 119, 7721-7736, doi:10.1021/acs.chemrev.9b00090 (2019).
    74        Cole, J. N., Barnett, T. C., Nizet, V. & Walker, M. J. Molecular insight into invasive group A streptococcal disease. Nat Rev Microbiol 9, 724-736, doi:10.1038/nrmicro2648 (2011).
    75        Stevens, D. L. Invasive group A Streptococcus infections. Clin Infect Dis 14, 2-11, doi:10.1093/clinids/14.1.2 (1992).
    76        Zhu, L. et al. A molecular trigger for intercontinental epidemics of group A Streptococcus. J Clin Invest 125, 3545-3559, doi:10.1172/JCI82478 (2015).
    77        Feil, S. C., Ascher, D. B., Kuiper, M. J., Tweten, R. K. & Parker, M. W. Structural studies of Streptococcus pyogenes streptolysin O provide insights into the early steps of membrane penetration. J Mol Biol 426, 785-792, doi:10.1016/j.jmb.2013.11.020 (2014).
    78        Tweten, R. K. Cholesterol-dependent cytolysins, a family of versatile pore-forming toxins. Infect Immun 73, 6199-6209, doi:10.1128/IAI.73.10.6199-6209.2005 (2005).
    79        Mozola, C. C. & Caparon, M. G. Dual modes of membrane binding direct pore formation by Streptolysin O. Mol Microbiol 97, 1036-1050, doi:10.1111/mmi.13085 (2015).
    80        Mozola, C. C., Magassa, N. & Caparon, M. G. A novel cholesterol-insensitive mode of membrane binding promotes cytolysin-mediated translocation by Streptolysin O. Mol Microbiol 94, 675-687, doi:10.1111/mmi.12786 (2014).
    81        van Pee, K. et al. CryoEM structures of membrane pore and prepore complex reveal cytolytic mechanism of Pneumolysin. Elife 6, doi:10.7554/eLife.23644 (2017).
    82       Sun, X. et al. Interactions of bacterial toxin CNF1 and host JAK1/2 Driven by liquid-liquid phase separation enhance macrophage polarization. mBio 13, e0114722, doi:10.1128/mbio.01147-22 (2022).
    83        Hura, G. L. et al. Robust, high-throughput solution structural analyses by small angle X-ray scattering (SAXS). Nat Methods 6, 606-612, doi:10.1038/nmeth.1353 (2009).
    84        Dyer, K. N. et al. High-throughput SAXS for the characterization of biomolecules in solution: a practical approach. Methods Mol Biol 1091, 245-258, doi:10.1007/978-1-62703-691-7_18 (2014).
    85        Rosenberg, D. J., Hura, G. L. & Hammel, M. Size exclusion chromatography coupled small angle X-ray scattering with tandem multiangle light scattering at the SIBYLS beamline. Methods Enzymol 677, 191-219, doi:10.1016/bs.mie.2022.08.031 (2022).
    86        Manalastas-Cantos, K. et al. ATSAS 3.0: expanded functionality and new tools for small-angle scattering data analysis. J Appl Crystallogr 54, 343-355, doi:10.1107/S1600576720013412 (2021).
    87        Svergun, D. I., Petoukhov, M. V. & Koch, M. H. Determination of domain structure of proteins from X-ray solution scattering. Biophys J 80, 2946-2953, doi:10.1016/S0006-3495(01)76260-1 (2001).
    88        Fiser, A. & Sali, A. ModLoop: automated modeling of loops in protein structures. Bioinformatics 19, 2500-2501, doi:10.1093/bioinformatics/btg362 (2003).
    89        Pelikan, M., Hura, G. L. & Hammel, M. Structure and flexibility within proteins as identified through small angle X-ray scattering. Gen Physiol Biophys 28, 174-189, doi:10.4149/gpb_2009_02_174 (2009).
    90        Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A. Accurate SAXS profile computation and its assessment by contrast variation experiments. Biophys J 105, 962-974, doi:10.1016/j.bpj.2013.07.020 (2013).
    91        Schneidman-Duhovny, D., Hammel, M., Tainer, J. A. & Sali, A. FoXS, FoXSDock and MultiFoXS: Single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res 44, W424-429, doi:10.1093/nar/gkw389 (2016).
    92        Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat Methods 9, 676-682, doi:10.1038/nmeth.2019 (2012).
    93        Murthy, A. C. et al. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain. Nat Struct Mol Biol 26, 637-648, doi:10.1038/s41594-019-0250-x (2019).
    94        Zheng Wang, G. Z., Hong Zhang. Protocol for analyzing protein liquid–liquid phase separation. Biophysics Reports, 5(1): 1-9 (2019).
    95        Tsai, W. J. et al. Structural basis underlying the synergism of NADase and SLO during group A Streptococcus infection. Commun Biol 6, 124, doi:10.1038/s42003-023-04502-0 (2023).
    96        Borcherds, W., Bremer, A., Borgia, M. B. & Mittag, T. How do intrinsically disordered protein regions encode a driving force for liquid-liquid phase separation? Curr Opin Struct Biol 67, 41-50, doi:10.1016/j.sbi.2020.09.004 (2021).
    97        Wang, B. et al. Liquid-liquid phase separation in human health and diseases. Signal Transduct Target Ther 6, 290, doi:10.1038/s41392-021-00678-1 (2021).
    98        Molliex, A. et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163, 123-133, doi:10.1016/j.cell.2015.09.015 (2015).
    99        Strom, A. R. et al. Phase separation drives heterochromatin domain formation. Nature 547, 241-245, doi:10.1038/nature22989 (2017).
    100      Alberti, S. & Dormann, D. Liquid-liquid phase separation in disease. Annu Rev Genet 53, 171-194, doi:10.1146/annurev-genet-112618-043527 (2019).
    101      Nesterov, S. V., Ilyinsky, N. S. & Uversky, V. N. Liquid-liquid phase separation as a common organizing principle of intracellular space and biomembranes providing dynamic adaptive responses. Biochim Biophys Acta Mol Cell Res 1868, 119102, doi:10.1016/j.bbamcr.2021.119102 (2021).
    102      Bergeron-Sandoval, L. P. et al. Endocytic proteins with prion-like domains form viscoelastic condensates that enable membrane remodeling. Proc Natl Acad Sci U S A 118, doi:10.1073/pnas.2113789118 (2021).
    103      Xue, B., Dunbrack, R. L., Williams, R. W., Dunker, A. K. & Uversky, V. N. PONDR-FIT: a meta-predictor of intrinsically disordered amino acids. Biochim Biophys Acta 1804, 996-1010, doi:10.1016/j.bbapap.2010.01.011 (2010).
    104      Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589, doi:10.1038/s41586-021-03819-2 (2021).
    105      Hardenberg, M., Horvath, A., Ambrus, V., Fuxreiter, M. & Vendruscolo, M. Widespread occurrence of the droplet state of proteins in the human proteome. Proc Natl Acad Sci U S A 117, 33254-33262, doi:10.1073/pnas.2007670117 (2020).

    無法下載圖示 校內:不公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE