簡易檢索 / 詳目顯示

研究生: 陳韋廷
Chen, Wei-Ting
論文名稱: 緩釋米諾地爾與薑黃素之植入型微針應用於雄性禿之治療
Sustained Release of Minoxidil and Curcumin from Implantable Microneedles for Androgenetic Alopecia Treatment
指導教授: 陳美瑾
Chen, Mei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 122
中文關鍵詞: 雄性禿微針貼片米諾地爾薑黃素氧化壓力
外文關鍵詞: Androgenetic alopecia, Microneedles, Minoxidil, Curcumin, Oxidative stress
相關次數: 點閱:37下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雄性禿為一種漸進式的多因性掉髮疾病,其發病受到年齡、性別、遺傳、激素與氧化壓力等因素所影響,由於超過50 %的年長男性與15 %更年期後女性罹患雄性禿,因此尋求有效的抗掉髮策略具有高度需求性,為了改良目前雄性禿外用塗抹米諾地爾與口服非那雄胺劑型須每日使用治療之不便,同時提高藥物傳遞效率並提升治療效益,本研究開發包覆米諾地爾(Minoxidil, MXD)/薑黃素(Curcumin, CUR)之聚乳酸甘醇酸[poly(lactic-co-glycolic acid),PLGA]植入式微針,希望透過微針劑型以降低給藥頻率與提升藥物傳遞效率,同時米諾地爾可刺激血管增生擴張,以改善雄性禿毛囊之血氧供給,而薑黃素可抑制自由基積累,藉此消除雄性禿發生區域之氧化壓力,最終聯合藥效與劑型之優勢以達到持續性改善、治療雄性禿之目的。為了瞭解微針應用於雄性禿治療之潛力,本研究針對包覆米諾地爾/薑黃素之PLGA微針(MXD/CUR MN)進行定性、定量分析,實驗結果顯示微針穿刺深度可達474 ± 146 μm (n = 8),穿刺傷口可於三天內完全癒合。每片微針含有51 ± 4 μg (n = 6)米諾地爾與32 ± 2 μg (n = 6)薑黃素;於模擬生理環境之條件下,微針內米諾地爾與薑黃素分別可達到9天與14天之持續釋放,並且微針置放一個月後仍保有原始抗氧化活性。藉由施打兩片MXD/CUR MN於雄性禿小鼠背部皮膚,經過四週治療後可有效改善雄性禿症狀、促進毛髮生長,其再生毛髮覆蓋率可達95.9 ± 4.8 % (n = 4),且高於外用塗抹米諾地爾之83.0 ± 8.8 % (n = 4),與健康組小鼠相比無明顯統計學差異;除了毛髮外觀、直徑與健康組相當之外,皮膚厚度與生長期毛囊密度與雄性禿誘導組相比具有明顯提升,並可觀察到新生毛囊細胞、血管分佈於毛囊微環境之現象;同時有效降低組織內氧化壓力積累,根據以上結果可證明MXD/CUR MN可持續且有效改善雄性禿症狀,有潛力成為未來雄性禿治療之新選擇。

    In this study, a [poly (lactic-co-glycolic acid, PLGA)] implantable microneedles loaded with minoxidil (MXD)/curcumin (CUR), abbreviated MXD/CUR MN, was developed. After being applied to the mouse skin for 6 minutes, the microneedle backing layer quickly dissolves. allowing the PLGA tips to embed at the border between the dermis and subcutis. These tips then release the drugs for up to two weeks. The microchannels formed by the microneedle puncture fully recover within 72 hours. The MXD/CUR MN still retains its original antioxidant activity after one month of storage. Two microneedle patches were administered to C57BL/6 male mice with androgenetic alopecia. alopecia. Significant hair regeneration was observed after 4 weeks of treatment, and the regenerated hair coverage rate was higher than that of topical minoxidil. No significant statistical differences were found when compared to healthy mice. Analysis of hair diameter, skin thickness, and hair follicle density during the anagen phase indicated that the MXD/CUR microneedles effectively improved the symptoms of androgenetic alopecia. There was also evidence of hair follicle cell proliferation and increased blood vessel distribution in the hair follicle microenvironment. Based on these results, MXD/CUR microneedles can sustainably and effectively improve the symptoms of androgenetic alopecia and has the potential to become a new option for the treatment of androgenetic alopecia in the future.

    摘要 I Extend Abstract II Abstract XII 致謝 XIV 目錄 XV 表目錄 XIX 圖目錄 XX 第一章 緒論 1 1.1. 外皮系統組成介紹 1 1.1.1. 毛囊結構剖析 2 1.1.2. 毛囊週期 4 1.2. 雄性禿疾病介紹與治療方式 6 1.2.1. 雄性禿致病原因、機制 8 1.2.2. 雄性禿之常規療法、新治療策略 10 1.2.2.1. 常規藥物、手術治療 11 1.2.2.2. 新治療策略 13 1.3. 氧化壓力於雄性禿發病之關聯 14 1.3.1. 氧化壓力上升加劇雄性禿之影響機制 14 1.3.2. 毛囊氧化壓力產生源分類 14 1.4. 天然植物藥應用於雄性禿治療之潛力 15 1.5. 微針應用於雄性禿之治療策略 16 1.5.1. 微針供給藥物之優勢 16 1.5.2. 微針治療相關研究之成效 17 1.6. 微針材料介紹 22 1.6.1. 聚乳酸-甘醇酸共聚物藥物載體 22 1.6.2. 聚乙烯吡咯烷酮 & 聚乙烯醇 23 1.6.3. 透明質酸 25 1.7. 雄性禿研究模型—C57BL/6公小鼠 26 1.8. 研究目的 28 1.9. 研究架構 31 第二章 實驗材料及方法 32 2.1. 實驗藥品 32 2.2. 實驗耗材與動物 33 2.3. 儀器設備、軟體 34 2.4. 包覆雄性禿治療藥物MXD&多酚類藥物CUR之PLGA微針貼片 36 2.4.1. PDMS微米級模具製備 36 2.4.2. 微針前端材料溶液之配製 38 2.4.3. 600 μm PLA presser之製備 38 2.4.4. 前後端黏著用HA水膠之配製 38 2.4.5. 水溶性微針後端材料溶液之配製 38 2.4.6. 微針貼片製程 39 2.5. 微針穿刺能力測試 41 2.5.1. 體外豬皮穿刺、切片實驗 41 2.5.2. 活體鼠皮穿刺、切片實驗 42 2.6. 微針含藥量分析 42 2.6.1. 米諾地爾定量 42 2.6.2. 微針內薑黃素定量 43 2.7. 微針藥物經皮傳遞效率 43 2.7.1. 體外豬皮藥物傳遞分析 44 2.7.2. 活體鼠皮藥物傳遞分析 44 2.8. 微針體外藥物釋放測試 44 2.9. DPPH自由基清除試驗 45 2.10. 皮膚穿刺傷口癒合測試 46 2.11. 包覆MXD/CUR 之PLGA微針應用於雄性禿C57BL/6小鼠之治療 47 2.11.1. 雄性禿治療之評估標準 49 2.11.2. 再生毛髮覆蓋率計算 49 2.11.3. 再生毛髮直徑量測 50 2.11.4. 小鼠皮膚組織石蠟包埋 50 2.11.5. 小鼠組織病理學分析 51 2.11.5.1. 蘇木紫-伊紅染色 51 2.11.5.2. CD31染色 52 2.11.5.3. Ki-67染色 53 2.11.6. 鼠皮組織活性氧分子檢測 53 第三章 結果與討論 56 3.1. 包覆米諾地爾/薑黃素之PLGA微針 56 3.1.1. 微針穿刺能力測試 58 3.1.2. 微針含藥量分析 60 3.1.3. 微針藥物經皮傳遞效率分析 61 3.1.4. 微針體外藥物釋放測試 63 3.1.5. DPPH自由基清除試驗 67 3.1.6. 皮膚穿刺傷口癒合測試 69 3.2. 包覆米諾地爾/薑黃素之PLGA微針應用於雄性禿C57BL/6小鼠之治療 70 3.2.1. 再生毛髮覆蓋率 71 3.2.2. 再生毛髮SEM影像 75 3.2.3. 皮膚組織化學染色分析 77 3.2.4. 免疫螢光染色分析 83 3.2.5. 鼠皮組織活性氧分子檢測 86 3.2.6. 小鼠體重變化趨勢—毒性試驗 88 第四章 結論 89 第五章 參考文獻 91

    1. Yuan, A., et al., Ceria nanozyme-integrated microneedles reshape the perifollicular microenvironment for androgenetic alopecia treatment. ACS nano, 2021. 15(8): p. 13759-13769.
    2. Zhang, C., et al., Machine learning guided discovery of superoxide dismutase nanozymes for androgenetic alopecia. Nano Letters, 2022. 22(21): p. 8592-8600.
    3. Chen, Y.-L., et al., Double-layered PLGA/HA microneedle systems as a long-acting formulation of polyphenols for effective and long-term management of atopic dermatitis. Biomaterials Science, 2023. 11(14): p. 4995-5011.
    4. Manual, P. OxiSelect™ In Vitro ROS/RNS Assay Kit (Green Fluorescence). Available from: https://www.cellbiolabs.com/in-vitro-ros-rns-assay.
    5. Kim, J.Y. and H. Dao, Physiology, integument. 2020.
    6. Medical, B., Medical gallery of Blausen medical 2014. WikiJournal of Medicine, 2014. 1(2): p. 1-79.
    7. Chanda, A. and G. Singh, Mechanical properties of human tissues. 2023: Springer.
    8. Simpson, C.L., D.M. Patel, and K.J. Green, Deconstructing the skin: cytoarchitectural determinants of epidermal morphogenesis. Nature reviews Molecular cell biology, 2011. 12(9): p. 565-580.
    9. Buffoli, B., et al., The human hair: from anatomy to physiology. International journal of dermatology, 2014. 53(3): p. 331-341.
    10. Martel, J.L., J.H. Miao, and T. Badri, Anatomy, hair follicle. 2017.
    11. Schneider, M.R., R. Schmidt-Ullrich, and R. Paus, The hair follicle as a dynamic miniorgan. Current biology, 2009. 19(3): p. R132-R142.
    12. Liu, D., et al., Status of research on the development and regeneration of hair follicles. International Journal of Medical Sciences, 2024. 21(1): p. 80.
    13. Mistriotis, P. and S.T. Andreadis, Hair follicle: a novel source of stem cells for cell and gene therapy. Emerging Trends in Cell and Gene Therapy, 2013: p. 97-118.
    14. Paus, R. and G. Cotsarelis, The biology of hair follicles. New England journal of medicine, 1999. 341(7): p. 491-497.
    15. Shapiro, J. and M. Hordinsky, Evaluation and diagnosis of hair loss. 2015, Up-to-Date.
    16. Ntshingila, S., et al., Androgenetic alopecia: An update. JAAD international, 2023. 13: p. 150-158.
    17. Lee, J.H. and S. Choi, Deciphering the molecular mechanisms of stem cell dynamics in hair follicle regeneration. Experimental & Molecular Medicine, 2024. 56(1): p. 110-117.
    18. Ishino, A., et al., Contribution of hair density and hair diameter to the appearance and progression of androgenetic alopecia in Japanese men. British journal of dermatology, 2014. 171(5): p. 1052-1059.
    19. Lolli, F., et al., Androgenetic alopecia: a review. Endocrine, 2017. 57: p. 9-17.
    20. Borowiecka, J.M., B. Dalewski, and Ł. Pałka, Effectiveness of Platelet-Rich Plasma in the Treatment of Androgenic Alopecia Compared to Placebo and Topical Minoxidil: A Systematic Review. Scientia Pharmaceutica, 2022. 91(1): p. 4.
    21. Ho, C.H., T. Sood, and P.M. Zito, Androgenetic alopecia. 2017.
    22. 蔡仁雨, et al., 台灣男性雄性基因禿治療現況與最新發展. 臺灣醫界, 2018. 61(9): p. 24-28.
    23. Gupta, M. and V. Mysore, Classifications of patterned hair loss: a review. Journal of cutaneous and aesthetic surgery, 2016. 9(1): p. 3-12.
    24. Asada, Y., et al., 5α-reductase type 2 is constitutively expressed in the dermal papilla and connective tissue sheath of the hair follicle in vivo but not during culture in vitro. The Journal of Clinical Endocrinology & Metabolism, 2001. 86(6): p. 2875-2880.
    25. Tsunemi, Y., et al., Long‐term safety and efficacy of dutasteride in the treatment of male patients with androgenetic alopecia. The Journal of dermatology, 2016. 43(9): p. 1051-1058.
    26. Davey, R.A. and M. Grossmann, Androgen receptor structure, function and biology: from bench to bedside. The clinical biochemist reviews, 2016. 37(1): p. 3.
    27. Kaliyadan, F., A. Nambiar, and S. Vijayaraghavan, Androgenetic alopecia: an update. Indian journal of dermatology, venereology and leprology, 2013. 79: p. 613.
    28. Xiong, H.-D., et al., Identification of immune microenvironment changes, immune-related pathways and genes in male androgenetic alopecia. Medicine, 2023. 102(38): p. e35242.
    29. Upadhyay, D.K., et al., Mechanism of androgenic alopecia: Addressing speculations through empirical evidences. Dermatologic Therapy, 2019. 32(6).
    30. Jimenez, F., et al., Hair transplantation: basic overview. Journal of the American Academy of Dermatology, 2021. 85(4): p. 803-814.
    31. Randolph, M. and A. Tosti, Oral minoxidil treatment for hair loss: A review of efficacy and safety. Journal of the American Academy of Dermatology, 2021. 84(3): p. 737-746.
    32. Shadi, Z., Compliance to topical minoxidil and reasons for discontinuation among patients with androgenetic alopecia. Dermatology and Therapy, 2023. 13(5): p. 1157-1169.
    33. Senthilnathan, A., et al., Topical Minoxidil Adherence in Patients With Alopecia. Journal of Drugs in Dermatology: JDD, 2023. 22(3): p. 252-255.
    34. Gupta, A., et al., Minoxidil: a comprehensive review. Journal of Dermatological Treatment, 2022. 33(4): p. 1896-1906.
    35. Sánchez-Díaz, M., et al., Systemic minoxidil accidental exposure in a paediatric population: A case series study of cutaneous and systemic side effects. Journal of clinical medicine, 2021. 10(18): p. 4257.
    36. Suchonwanit, P., S. Thammarucha, and K. Leerunyakul, Minoxidil and its use in hair disorders: a review. Drug design, development and therapy, 2019: p. 2777-2786.
    37. Patel, P., T.A. Nessel, and D. Kumar, Minoxidil, in StatPearls [Internet]. 2024, StatPearls Publishing.
    38. Irwig, M.S., Persistent sexual and nonsexual adverse effects of finasteride in younger men. Sexual Medicine Reviews, 2014. 2(1): p. 24-35.
    39. Traish, A.M., Post-finasteride syndrome: a surmountable challenge for clinicians. Fertility and sterility, 2020. 113(1): p. 21-50.
    40. Wu, M., Q. Yu, and Q. Li, Differences in reproductive toxicology between alopecia drugs: an analysis on adverse events among female and male cases. Oncotarget, 2016. 7(50): p. 82074.
    41. Zhou, Y., et al., Advances in microneedles research based on promoting hair regrowth. Journal of Controlled Release, 2023. 353: p. 965-974.
    42. Kincaid, C.M., et al., Is There a Role for Radiofrequency Devices in Hair? Skin Appendage Disorders, 2023. 9(3): p. 169-178.
    43. Stevens, J. and S. Khetarpal, Platelet-rich plasma for androgenetic alopecia: a review of the literature and proposed treatment protocol. International journal of women's dermatology, 2019. 5(1): p. 46-51.
    44. Bajoria, P.S., et al., Comparing current therapeutic modalities of androgenic alopecia: A literature review of clinical trials. Cureus, 2023. 15(7).
    45. Mao, Y., et al., Cell Therapy for Androgenetic Alopecia: Elixir or Trick? Stem Cell Reviews and Reports, 2023. 19(6): p. 1785-1799.
    46. Trüeb, R.M., Oxidative stress and its impact on skin, scalp and hair. International journal of cosmetic science, 2021. 43: p. S9-S13.
    47. Trüeb, R., The impact of oxidative stress on hair. International journal of cosmetic science, 2015. 37: p. 25-30.
    48. Bahta, A.W., et al., Premature senescence of balding dermal papilla cells in vitro is associated with p16INK4a expression. Journal of investigative dermatology, 2008. 128(5): p. 1088-1094.
    49. Upton, J.H., et al., Oxidative stress–associated senescence in dermal papilla cells of men with androgenetic alopecia. Journal of Investigative Dermatology, 2015. 135(5): p. 1244-1252.
    50. Khantham, C., et al., Antioxidation, anti-inflammation, and regulation of SRD5A gene expression of Oryza sativa cv. Bue Bang 3 CMU husk and bran extracts as androgenetic alopecia molecular treatment substances. Plants, 2022. 11(3): p. 330.
    51. Farris, P.K., et al., A novel multi-targeting approach to treating hair loss, using standardized nutraceuticals. J Drugs Dermatol, 2017. 16(11): p. S141-8.
    52. Sun, M., et al., Effects of natural polyphenols on skin and hair health: a review. Molecules, 2022. 27(22): p. 7832.
    53. Fuloria, S., et al., A comprehensive review on the therapeutic potential of Curcuma longa Linn. in relation to its major active constituent curcumin. Frontiers in Pharmacology, 2022. 13: p. 820806.
    54. Hewlings, S.J. and D.S. Kalman, Curcumin: A review of its effects on human health. Foods, 2017. 6(10): p. 92.
    55. Mohajeri, M., et al., Curcumin: a phytochemical modulator of estrogens and androgens in tumors of the reproductive system. Pharmacological Research, 2020. 156: p. 104765.
    56. Yang, Y., et al., Curcumin-zinc framework encapsulated microneedle patch for promoting hair growth. Theranostics, 2023. 13(11): p. 3675.
    57. Liu, S., et al., A comprehensive review on the benefits and problems of curcumin with respect to human health. Molecules, 2022. 27(14): p. 4400.
    58. Surma, S., et al., Curcumin-the nutraceutical with pleiotropic effects? Which cardiometabolic subjects might benefit the most? Frontiers in Nutrition, 2022. 9: p. 865497.
    59. Gu, Y., et al., Hair follicle-targeting drug delivery strategies for the management of hair follicle-associated disorders. Asian Journal of Pharmaceutical Sciences, 2022. 17(3): p. 333-352.
    60. Xue, Y., et al., Transdermal Drug Delivery System: Current Status and Clinical Application of Microneedles. ACS Materials Letters, 2024. 6: p. 801-821.
    61. Turner, J.G., et al., Hydrogel‐forming microneedles: current advancements and future trends. Macromolecular Bioscience, 2021. 21(2): p. 2000307.
    62. Yin, M., et al., Dissolving microneedle patch integrated with microspheres for long-acting hair regrowth therapy. ACS Applied Materials & Interfaces, 2023. 15(14): p. 17532-17542.
    63. Lombardo, D., M.A. Kiselev, and M.T. Caccamo, Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of nanomaterials, 2019. 2019.
    64. Dobhal, A., et al., Influence of lactide vs glycolide composition of poly (lactic-co-glycolic acid) polymers on encapsulation of hydrophobic molecules: molecular dynamics and formulation studies. Journal of Materials Science: Materials in Medicine, 2021. 32: p. 1-18.
    65. Yang, Y., et al., Recent advance in polymer based microspheric systems for controlled protein and peptide delivery. Current medicinal chemistry, 2019. 26(13): p. 2285-2296.
    66. Makadia, H.K. and S.J. Siegel, Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers, 2011. 3(3): p. 1377-1397.
    67. Lim, Y.W., et al., Challenges and complications of poly (lactic-co-glycolic acid)-based long-acting drug product development. Pharmaceutics, 2022. 14(3): p. 614.
    68. Franco, P. and I. De Marco, The Use of Poly (N-vinyl pyrrolidone) in the Delivery of Drugs: A Review. Polymers, 2020. 12(5): p. 1114.
    69. HEFEI TRENDCHEM CO., L. Molecular Weight of PVP K series. [cited 2024 May 22].
    70. Hallensleben, M.L., Polyvinyl compounds, others. Ullmann's Encyclopedia of Industrial Chemistry, 2000.
    71. Halima, N.B., Poly (vinyl alcohol): review of its promising applications and insights into biodegradation. RSC advances, 2016. 6(46): p. 39823-39832.
    72. Aruldass, S., et al., Factors affecting hydrolysis of polyvinyl acetate to polyvinyl alcohol. Journal of Environmental Chemical Engineering, 2019. 7(5): p. 103238.
    73. Teodorescu, M., M. Bercea, and S. Morariu, Biomaterials of PVA and PVP in medical and pharmaceutical applications: Perspectives and challenges. Biotechnology advances, 2019. 37(1): p. 109-131.
    74. Bukhari, S.N.A., et al., Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. International journal of biological macromolecules, 2018. 120: p. 1682-1695.
    75. Dovedytis, M., Z.J. Liu, and S. Bartlett, Hyaluronic acid and its biomedical applications: A review. Engineered Regeneration, 2020. 1: p. 102-113.
    76. Zhang, B., et al., Inhibitory activities of some traditional Chinese herbs against testosterone 5α-reductase and effects of Cacumen platycladi on hair re-growth in testosterone-treated mice. Journal of Ethnopharmacology, 2016. 177: p. 1-9.
    77. Shin, H.S., et al., The androgenic alopecia protective effects of forsythiaside‐A and the molecular regulation in a mouse model. Phytotherapy Research, 2015. 29(6): p. 870-876.
    78. Murata, K., et al., Effects of ginseng rhizome and ginsenoside Ro on testosterone 5α‐reductase and hair re‐growth in testosterone‐treated mice. Phytotherapy Research, 2012. 26(1): p. 48-53.
    79. Fu, D., et al., Dihydrotestosterone-induced hair regrowth inhibition by activating androgen receptor in C57BL6 mice simulates androgenetic alopecia. Biomedicine & Pharmacotherapy, 2021. 137: p. 111247.
    80. Alonso, L. and E. Fuchs, The hair cycle. Journal of cell science, 2006. 119(3): p. 391-393.
    81. Müller-Röver, S., et al., A Comprehensive Guide for the Accurate Classification of Murine Hair Follicles in Distinct Hair Cycle Stages. Journal of Investigative Dermatology, 2001. 117(1): p. 3-15.
    82. Ohn, J., K.H. Kim, and O. Kwon, Evaluating hair growth promoting effects of candidate substance: a review of research methods. Journal of dermatological science, 2019. 93(3): p. 144-149.
    83. Zheng, W., et al., An androgenetic alopecia remedy based on marine collagen peptide-incorporated dissolving microneedles. International Journal of Pharmaceutics, 2024. 650: p. 123629.
    84. Liang, A., et al., Signaling pathways in hair aging. Frontiers in cell and developmental biology, 2023. 11: p. 1278278.
    85. Takeuchi, I., Y. Hida, and K. Makino, Minoxidil-encapsulated poly (L-lactide-co-glycolide) nanoparticles with hair follicle delivery properties prepared using W/O/W solvent evaporation and sonication. Bio-Medical Materials and Engineering, 2018. 29(2): p. 217-228.
    86. Jeong, W.Y., et al., Transdermal delivery of Minoxidil using HA-PLGA nanoparticles for the treatment in alopecia. Biomaterials Research, 2019. 23(1): p. 16.
    87. Zarghi, A., et al., Rapid determination of minoxidil in human plasma using ion-pair HPLC. Journal of pharmaceutical and biomedical analysis, 2004. 36(2): p. 377-379.
    88. Kurniawan, A., et al., Biocompatibility and drug release behavior of curcumin conjugated gold nanoparticles from aminosilane-functionalized electrospun poly (N-vinyl-2-pyrrolidone) fibers. International journal of pharmaceutics, 2017. 516(1-2): p. 158-169.
    89. Liu, C., et al., Antioxidant capacities and main reducing substance contents in 110 fruits and vegetables eaten in China. Food and Nutrition Sciences, 2014. 2014.
    90. Scomoroscenco, C., et al., Synergistic antioxidant activity and enhanced stability of curcumin encapsulated in vegetal oil-based microemulsion and gel microemulsions. Antioxidants, 2022. 11(5): p. 854.
    91. Cao, S., et al., Microneedles mediated bioinspired lipid nanocarriers for targeted treatment of alopecia. Journal of Controlled Release, 2021. 329: p. 1-15.
    92. Truong, V.-L., et al., Hair regenerative mechanisms of red ginseng oil and its major components in the testosterone-induced delay of anagen entry in C57BL/6 mice. Molecules, 2017. 22(9): p. 1505.
    93. He, X., L. Jia, and X. Zhang, The effect of different preoperative depilation ways on the healing of wounded skin in mice. Animals, 2022. 12(5): p. 581.
    94. Australia, T.U.o.W. Blue Histology - Integumentary System. 2000; Available from: http://lecannabiculteur.free.fr/SITES/UNIV%20W.AUSTRALIA/mb140/CorePages/Integumentary/Integum.htm.
    95. O'Neil, M.J., The Merck index: an encyclopedia of chemicals, drugs, and biologicals. 2013: RSC Publishing.
    96. Suresh, K. and A. Nangia, Curcumin: Pharmaceutical solids as a platform to improve solubility and bioavailability. CrystEngComm, 2018. 20(24): p. 3277-3296.
    97. Kim, M.J., et al., Minoxidil-loaded hyaluronic acid dissolving microneedles to alleviate hair loss in an alopecia animal model. Acta Biomaterialia, 2022. 143: p. 189-202.
    98. Gugulothu, D., C. Fernandes, and V. Patravale, A versatile high performance liquid chromatography method for simultaneous determination of three curcuminoids in pharmaceutical dosage forms. Pharm. Anal. Acta, 2012. 3(04).
    99. Tamani, F., et al., Mechanistic explanation of the (up to) 3 release phases of PLGA microparticles: Diprophylline dispersions. International journal of pharmaceutics, 2019. 572: p. 118819.
    100. Xu, Y., et al., Polymer degradation and drug delivery in PLGA‐based drug–polymer applications: A review of experiments and theories. Journal of biomedical materials research part B: applied biomaterials, 2017. 105(6): p. 1692-1716.
    101. Yoo, J. and Y.-Y. Won, Phenomenology of the initial burst release of drugs from PLGA microparticles. ACS Biomaterials Science & Engineering, 2020. 6(11): p. 6053-6062.
    102. Hines, D.J. and D.L. Kaplan, Poly (lactic-co-glycolic) acid− controlled-release systems: experimental and modeling insights. Critical Reviews™ in Therapeutic Drug Carrier Systems, 2013. 30(3).
    103. Jaipakdee, N., E. Limpongsa, and T. Pongjanyakul, Optimization of minoxidil microemulsions using fractional factorial design approach. Pharmaceutical development and technology, 2016. 21(1): p. 86-97.
    104. Appendino, G., et al., Shedding light on curcumin stability. Fitoterapia, 2022. 156: p. 105084.
    105. Kharat, M., et al., Physical and chemical stability of curcumin in aqueous solutions and emulsions: impact of pH, temperature, and molecular environment. Journal of agricultural and food chemistry, 2017. 65(8): p. 1525-1532.
    106. Lahiji, S.F., et al., Transcutaneous implantation of valproic acid-encapsulated dissolving microneedles induces hair regrowth. Biomaterials, 2018. 167: p. 69-79.
    107. Chu, S.-Y., et al., Mechanical stretch induces hair regeneration through the alternative activation of macrophages. Nature communications, 2019. 10(1): p. 1524.
    108. Wortsman, X., R. Guerrero, and J. Wortsman, Hair morphology in androgenetic alopecia: sonographic and electron microscopic studies. Journal of Ultrasound in Medicine, 2014. 33(7): p. 1265-1272.
    109. Zeltzer, A.A., et al., Topical Minoxidil Rejuvenates Hair Follicles from Men with Androgenetic Alopecia in Vivo. Acta Dermato-Venereologica, 2024. 104.

    無法下載圖示 校內:2029-08-30公開
    校外:2029-08-30公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE