簡易檢索 / 詳目顯示

研究生: 彭聖芳
Peng, Sheng-Fang
論文名稱: 含蒽、咔唑及1,3,4-噁二唑基團之雙極主體發光材料的合成、鑑定與光電性質
Bipolar Host Materials Composed of Anthracene, Carbazole and 1,3,4-Oxadiazole Derivatives: Synthesis, Characterization and Optoelectronic Properties
指導教授: 陳雲
Chen, Yun
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 61
中文關鍵詞: 螢光主發光材料咔唑噁二唑
外文關鍵詞: Fluorescent light emitting material, anthracene, carbazole, oxadiazole
相關次數: 點閱:71下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 有機發光二極體(Organic Light-Emitting Diode)因具有自發光性、廣視角、高對比、低耗電、高反應速率、全彩化及製程簡單等優點,目前受到許多人的重視。對於發光層中,主發光材料常會摻雜具有螢光性質的客體發光材料,會隨摻雜濃度過高,而造成螢光淬熄造成效率降低,所以發展出非摻雜型的主發光體材料是OLED中重要的一環。本研究所合成的含具有螢光性質的蒽(Anthracene)導入並導入有親電洞的咔唑基團(carbazole)以及具有親電子特性的1,3,4-噁二唑基團(1,3,4-oxadiazole),成功地合成出具有雙極性的主發光體材料AC2O,導入雙極性質材料能有效調整匹配能階,並且可以有效的穩定激子的形成,以及平衡電子與電洞在發光層的傳輸以及對於應用於元件中能夠有效平衡電荷傳輸,以利未來元件的表現。
    經由研究結果發現,AC2O在熱性質方面,俱有高熱裂解溫度(>250 oC)與玻璃轉移溫度(>90oC),因此俱有良好的熱穩定性及耐熱性質。在電化學性質方面,AC2O的HOMO與LUMO能階,其值分別為-5.72eV與-2.79eV。

    Organic light-emitting diodes (OLEDs) have drawn scientific a lot of attention, due to their potential applications in full-color, flat-displays as well as solid-state lighting. It is well known that OLED devices can be significantly improved with the use of a doped emitter. However, when the dopant concentration of doped emitter increased, always causing the fluorescence quenching and effects devices performance. Now, many Researcher devoted to develop a non-doped emitter materials.
    In this study, we prepared a series of anthracence derivatives appended with bipolar func-tional groups for use as emitters in OLEDs. Direct substitution of a strong hole transport-ing groups (carbaole) at the 9-position of anthracene ring, and then incorporating a strong electron transporting groups (oxadiazole) at the 3- and 6-positions of carbazole, success-fully synthesized 5,5'-((9-(anthracen-9-yl)-9H-carbazole-3,6-diyl)- bis(3,1-phenylene))bis(2-(4-(tert-butyl)phenyl)-1,3,4-oxadiazole) (AC2O) having bipolar properties material can be balance electrons and holes transport in the light-emitting layer.
    AC2O exhibited good thermal stability (Td > 250 ℃, Tg > 90 ℃), therefore AC2O have good thermal stability and thermal properties. And in electrochemical properties, it has suitable HOMO and LUMO energy levels, -5.72eV and -2.79eV respectively, that energy levels would be good for application in fluorescence devices for future.

    摘要......................................................I 致謝...................................................VIII 目錄....................................................IX 流程目錄................................................XI 表目錄...............................................XII 圖目錄................................................XIII 第一章 緒論.....................................1 1-1 前言........................................1 1-2 有機共軛材料..............................2 1-3 螢光理論[3] ................................5 1-4 影響螢光強度變數.....................7 1-5 分子間激發態............................9 1-6 OLEDs電機發光原理[9] ...........................11 1-7 元件結構及材料......................13 1-7-1 元件結構........................13 1-7-2 元件常用材料....................15 1-8 OLED的發光效率[14]..........................18 第二章 文獻回顧.................................19 2-1 螢光發光材料[15] .........................19 2-1-1 紅色螢光材料..................19 2-1-2 綠色螢光材料.................24 2-1-3 藍色螢光材料.................26 2-2 具有雙極特性的蒽衍生物作為主體發光材料.................32 2-3 研究動機................................34 第三章 實驗內容.................................35 3-1 鑑定儀器..................................35 3-2 物性與光電量測儀器....................36 3-3 實驗藥品與材料....................39 3-4 合成流程與步驟.....................40 第四章 結果與討論............................43 4-1 結構鑑定.............................43 4-1-1 1H-NMR核磁共振光譜.................................43 4-1-2 H,H-COSY核磁共振光譜...............................44 4-1-3 質譜儀鑑定.....................48 4-2 熱性質分析.............................49 4-3 光學性質.........................................52 4-4 電化學性質分析......................54 第五章 結論.....................................57 參考文獻........................................58

    [1] 周蓁宜, 含部份水解亞磷酯基之聚芴:合成、鑑定及應用於提昇高分子發光二極體的效率, 碩士論文, 2013.
    [2] 楊佳文, 含咔唑及1,3,4-噁二唑或1,2,4-三唑基團之電激磷光雙極主體發光材料的合成、鑑定與光電應用, 碩士論文, 2014.
    [3] D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis, 1998.
    [4] B. K. Sharma, Instrumental Methods of Chemical Analysis, 2000.
    [5] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Third Edition ed, 2006.
    [6] V. Tran, B. J. Schwartz, Role of Nonpolar Forces in Aqueous Solvation: Computer Simulation Study of Solvation Dynamics in Water Following Changes in Solute Size, Shape, and Charge, The Journal of Physical Chemistry B, vol. 103, p. 5570, 1999.
    [7] L. Akcelrud, Electroluminescent polymers, Progress in Polymer Science, vol. 28, p. 875, 2003.
    [8] J. Guillet, Polymer Photophysics and Photochemistry: An Introduction to the Study of Photoprocesses in Macromolecules: Cambridge University Press, 1985.
    [9] 蘇水祥, 橫山明聰, 朱健慈, and 江俊德, 電激發光新視界, 科學發展, p. 38, 2002.
    [10] 曾信榮 and 許千樹, 發光二極體, 科學發展, p. 32, 2010.
    [11] 吳峻志, 高效率紅光及高效率單層全波段白光有機電激發光元件之研究, 博士論文, 2008.
    [12] A. Elschner, F. Bruder, H. W. Heuer, F. Jonas, A. Karbach, S. Kirchmeyer, S. Thurm, R. Wehrmann, PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes, Synthetic Metals, vol. 111-112, p. 139, 2000.
    [13] M. Stößel, J. Staudigel, F. Steuber, J. Blässing, J. Simmerer, A. Winnacker, Space-charge-limited electron currents in 8-hydroxyquinoline aluminum, Applied Physics Letters, vol. 76, p. 115, 2000.
    [14] M. Wohlgenannt, K. Tandon, S. Mazumdar, S. Ramasesha, Z. V. Vardeny, Formation cross-sections of singlet and triplet excitons in pi-conjugated polymers, Nature, vol. 409, p. 494, 2001.
    [15] 陳金鑫 and 黃孝文, OLED有機電機發光材料與元件, 2007.
    [16] C. H. Chen, C. W. Tang, J. Shi, K. P. Klubek, Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence, Thin Solid Films, vol. 363, p. 327, 2000.
    [17] C. W. Tang, S. A. VanSlyke, C. H. Chen, Electroluminescence of doped organic thin films, Journal of Applied Physics, vol. 65, p. 3610, 1989.
    [18] C. H. Chen, C. W. Tang, Chemistry of Functional Dyes, 1993.
    [19] B. Chen, X. Lin, L. Cheng, C. S. Lee, W. A. Gambling, S. T. Lee, Improvement of efficiency and colour purity of red-dopant organic light-emitting diodes by energy levels matching with the host materials, Journal of Physics D: Applied Physics, vol. 34, p. 30, 2001.
    [20] K. Okumoto, H. Kanno, Y. Hamada, H. Takahashi, K. Shibata1, High efficiency red organic light-emitting devices using tetraphenyldibenzoperiflanthene-doped rubrene as an emitting layer, Applied Physics Letters, vol. 89, p. 013502, 2006.
    [21] R. M. Dupeyre, A. Rassat, J. Ronzaud, Nitroxides. LII. Synthesis and Electron Spin Resonance Studies of N,N'-Dioxy-2,6-diazaadamantane, a Symmetrical Ground State Triplet, Journal of the American Chemical Society, vol. 96, p. 6559, 1974.
    [22] R. Murayama, US5,227,252, 1993.
    [23] J. Shi, C. W. Tang, Anthracene derivatives for stable blue-emitting organic electroluminescence devices, Applied Physics Letters, vol. 80, p. 3201, 2002.
    [24] C. Hosokawa, H. Higashi, H. Nakamura, T. Kusumoto, Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant, Applied Physics Letters, vol. 67, p. 3853, 1995.
    [25] M. Mazzeo, J. Thompson, R. I. R. Blyth, M. Anni, G. Gigli, R. Cingolani, White light from blue: white emitting organic LEDs based on spin coated blends of blue-emitting molecules, Physica E, vol. 13, p. 1243, 2002.
    [26] I. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules Second Edition ed., 1971.
    [27] A. Chaskar, H. F. Chen, K. T. Wong, Bipolar Host Materials: A Chemical Approach for Highly Efficient Electrophosphorescent Devices, Advanced Materials, vol. 23, p. 3876, 2011.
    [28] J. Huang, J. H. Su, X. Li, M. K. Lam, K. M. Fung, H. H. Fan, K. W. Cheah, C. H. Chen, H. Tian, Bipolar anthracene derivatives containing hole- and electron-transporting moieties for highly efficient blue electroluminescence devices, Journal of Materials Chemistry, vol. 21, p. 2957, 2011.
    [29] J. Huang, J. H. Sua, H. Tian, The development of anthracene derivatives for organic light-emitting diodes, Journal of Materials Chemistry, p. 10977, 2012.
    [30] M. Zhu, Q. Wang, Y. Gu, X. Cao, C. Zhong, D. Ma, J. Qin, C. Yang, Efficient deep-blue emitters comprised of an anthracene core and terminal bifunctional groups for nondoped electroluminescence, Journal of Materials Chemistry, vol. 21, p. 6409, 2011.
    [31] M. Zhu, T. Ye, C. G. Li, X. Cao, C. Zhong, D. Ma, J. Qin, C. Yang, Efficient Solution-Processed Nondoped Deep-Blue Organic Light-Emitting Diodes Based on Fluorene-Bridged Anthracene Derivatives Appended with Charge Transport Moieties, The Journal of Physical Chemistry C vol. 115, p. 17965, 2011.
    [32] M. T. Lee, C. H. Liao, C. H. Tsai, C. H. Chen, Highly Efficient, Deep-Blue Doped Organic Light-Emitting Devices, Advanced Materials, vol. 17, p. 2493, 2005.
    [33] M. Berggren, O. Inganäs, G. Gustafsson, J. Rasmusson, M. R. Andersson, T. Hjertberg, O. Wennerström, Light-emitting diodes with variable colours from polymer blends, Nature, vol. 372, p. 444, 1994.
    [34] C. I. Chao, S. A. Chen, White light emission from exciplex in a bilayer device with two blue light-emitting polymers, Applied Physics Letters, vol. 73, p. 426, 1998.
    [35] X. Gong, W. Ma, J. C. Ostrowski, G. C. Bazan, D. Moses, A. J. Heeger, White Electrophosphorescence from Semiconducting Polymer Blends, Advanced Materials, vol. 16, p. 615, 2004.
    [36] J. Kido, K. Hongawa, K. Okuyama, K. Nagai, White light‐emitting organic electroluminescent devices using the poly(N‐vinylcarbazole) emitter layer doped with three fluorescent dyes, Applied Physics Letters vol. 64, p. 815, 1994.
    [37] S. Tasch, E. J. W. List, O. Ekström, W. Graupner, G. Leising, P. Schlichting, U. Rohr, Y. Geerts, U. Scherf, K. Müllen, Efficient white light-emitting diodes realized with new processable blends of conjugated polymers, Applied Physics Letters, vol. 71, p. 2883, 1997.
    [38] Y. Kawamura, S. Yanagida, S. R. Forrest, Energy transfer in polymer electrophosphorescent light emitting devices with single and multiple doped luminescent layers, Journal of Applied Physics vol. 92, p. 87, 2002.
    [39] J. H. Kim, P. Herguth, M. S. Kang, A. K.-Y. Jen, Y. H. Tseng, C. F. Shu, Bright white light electroluminescent devices based on a dye-dispersed polyfluorene derivative, Applied Physics Letters, vol. 85, p. 1116, 2004.
    [40] Q. Xu, H. M. Duong, F. Wudl, Y. Yang, Efficient single-layer “twistacene”-doped polymer white light-emitting diodes, Applied Physics Letters, vol. 85, p. 3357, 2004.
    [41] H. A. A. Attar, A. P. Monkman, M. Tavasli, S. Bettington, M. R. Bryce, White polymeric light-emitting diode based on a fluorene polymer∕Ir complex blend system, Applied Physics Letters, vol. 86, p. 121101, 2005.
    [42] Y. Xu, J. Peng, Y. Mo, Q. Hou, Y. Cao, Efficient polymer white-light-emitting diodes, Applied Physics Letters, vol. 86, p. 163502, 2005.
    [43] H. Muddasir, Z. m. Wang, B. Yang, P. Lu, Y. g. Ma, Thermal and optoelectronic properties of anthracene and dibenz[a,c]anthracene, Chemical Research in Chinese Universities, vol. 29, p. 110, 2013.

    無法下載圖示 校內:2018-08-25公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE