簡易檢索 / 詳目顯示

研究生: 張佳琳
Chang, Chia-Lin
論文名稱: 利用斑馬魚之動物模式研究凝血酶調節素在胚胎發育中扮演的角色
Thrombomodulin Plays an Important Role in Zebrafish Embryonic Development
指導教授: 施桂月
Shi, Guey-Yueh
學位類別: 碩士
Master
系所名稱: 醫學院 - 生物化學暨分子生物學研究所
Department of Biochemistry and Molecular Biology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 101
中文關鍵詞: 凝血酶調節素斑馬魚胚胎發育
外文關鍵詞: thrombomodulin, zebrafish, embryonic development
相關次數: 點閱:84下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   人類凝血酶調節素(thrombomodulin, TM)是一種廣泛表現在內皮細胞的第一型穿膜醣蛋白,在生理上扮演參與活化蛋白質C抗凝血路徑上的重要角色。然而在人類鮮少發現因為基因突變使TM功能降低的個體,暗示著TM缺失在胚胎發育過程中可能會導致胚胎死亡。過去的研究指出,同源性TM基因剔除小鼠在胎盤發育至第8.5天時即出現無法發育而死亡的現象。更進一步的研究顯示剔除TM影響胎盤巨滋胚層母細胞的成熟及導致分化的滋胚層細胞死亡,最終影響到母體與胚胎間血液的交換而導致胚胎缺乏養分致死。利用胎盤特異TM剔除技術產生的TM剔除小鼠可以在母鼠子宮內存活超過8.5天,但是在第16.5天以前仍然造成胚胎死亡的現象,這個時期小鼠的死因是由於致死的耗損性凝血病變。相反的,蛋白質C剔除的小鼠卻可以正常發育且出生,暗示著胚胎正常發育是不需要經由蛋白質C參與的抗凝血路徑。這些觀察表示TM在胚胎發育時期除了參與蛋白質C的抗凝血路徑之外,還扮演著其他更重要的角色。目前科學家雖然已建立了許多TM突變及組織特異性剔除TM動物模式,TM剔除小鼠發生死亡之前器官發育的外觀上似乎正常,但是TM在胚胎發育過程中扮演的角色尚未清楚。在本篇研究,我們期望利用斑馬魚當做動物研究模式,探討TM在脊椎動物早期胚胎發育中所扮演的角色。由於斑馬魚有行體外受精、胚胎個體可以不依賴母體提供養分而獨立的發育的特點,提供一個可排除掉胎盤對於胚胎影響的動物模式。我們利用RT-PCR來偵測斑馬魚TM在胚胎發育時期表現的時間,發現斑馬魚TM由胚胎發育至受精後8小時(hours post fertilization, hpf)時期開始微量出現,由10 hpf至12 hpf表現量漸漸增加,自12 hpf到96 hpf都持續大量表現。利用嗎啉基反義代寡核苷酸來降低斑馬魚TM蛋白質的產生,延遲胚胎原腸胚時期的外包作用,而在胚胎心臟開始跳動後發現其圍心膜腫大與心跳、血液循環變慢的症狀與可能影響到血管的通透性。此外,這些胚胎在原腸胚時期的存活率隨著嗎啉基劑量的增加而下降。總結來說,由本論文所觀察到的現象顯示TM在胚胎發育的過程中,可能對於心血管系統功能的健全具有一定的影響力。

    Thrombomodulin (TM) is a type I transmembrane glycoprotein receptor and widely expressed on the surface of endothelial cells. It involves in the protein C mediated anticoagulant pathway. So far, there was no report indicated almost or complete deficiency of TM in humans. It implied that loss of TM may cause death during embryogenesis. Some studies showed that homologous knockout of TM in mice caused embryonic lethality at day 8.5 post coitum. Further study indicated that abortion of TM knockout mouse is growth arrest of immature trophoblast cells and at the same time the elicitation of apoptotic cell death of differentiated trophoblast cells, ultimately causing embryonic lethality due to destroying the exchange of nutrient between fetal and maternal circulation in the placenta. Otherwise, TM-deficient mice which had tissue-restricted expression of TM in the placenta can survive beyond 8.5 post coitum, but encountered a secondary development block and died before 16.5 post coitum owing to lethal consumptive coagulopathy. In contrast, protein C deficient mice presented normal embryonic development and survived after birth. It implies that the protein C mediated anticoagulant pathway is not required for embryonic development. These observations also suggest that TM may serve an essential developmental function not only involving in the initiation of the protein C mediated anticoagulant pathway. So far, a series of mouse strains with TM mutation and conditional knockout was available. However, TM knockout embryos showed normal organogenesis before lethality, the biological function of TM in embryonic development remains largely unclear. In this study we aimed at investigating the roles of TM in early vertebrate embryogenesis by using the zebrafish model. The features of using zebrafish as the experimental model included its ex utero development and growth up without the nutrient of maternal supplies. It is suitable to study function of TM in early embryogenesis and the effect of TM function in the placenta can also be excluded. At first, we explored the gene expression patterns and functions of zebrafish TM (zTM) in embryonic development. The results showed that zTM expression can be detected at the 8-9 hours post-fertilization (hpf) and strongly expression at the 12-96 hpf. Knocking down of zTM by injecting morpholino antisense oligonucleotides yielded epiboly delay during gastrulation. After heart beating, stringent knockdown of TM resulted in abnormal cardiac morphology with edema in pericardial sac in a dose-dependent manner, decrease of heart beat, deteriorated blood circulation, and abnormal vessel permeability. Moreover, the survival rate of zTM knockdown embryos also showed a dose-dependent decrease during gastrula period. Taken together, TM expression is involved in the cardiovascular cardiac function during embryonic development in zebrafish.

    中文摘要…………………………………………………………1 英文摘要 ………………………………………………………3 誌謝………………………………………………………………5 目錄 ………………………………………………………………7 圖、表、附錄目錄 ………………………………………………9 縮寫檢索表………………………………………………………11 緒論 一、 人類凝血酶調節素的結構……………………………12 二、 人類凝血酶調節素的表現位置………………………12 三、 人類凝血酶調節素的功能……………………………12 四、 人類凝血酶調節素-蛋白質C抗凝血路徑上消失的突變基因…………13 五、 凝血酶調節素在胚胎發育上的文獻探討……………14 六、 利用斑馬魚研究凝血酶調節素對於胚胎發育影響的優點…………16 材料與方法 斑馬魚(Danio rerio)的照顧與維持…………………………17 斑馬魚胚胎的收集……………………………………………18 瓊脂膠電泳分析………………………………………………………………18 中量質體製備………………………………………………………………19 RNA萃取、RT-PCR、PCR、Q-PCR與整體原位雜交(WISH)……21 A. RNA 萃取 B. 反轉錄聚合酶連鎖反應(reverse transcriptase polymerase chain reaction, RT-PCR) C. 聚合酶連鎖反應(polymerase chain reaction, PCR) D. 即時定量反轉錄聚合酶連鎖反應(Real-time Quantitative reverse transcriptase polymerase chain reaction, Q-PCR) E. 整體原位雜交(whole-mount in situ hybridization, WISH) 顯微注射…………………………………………………………32 MO專一性測試……………………………………………………32 MO knockdown……………………………………………………33 A. 9 hpf 外包作用之觀察與分類 B. 24 hpf 胚胎外觀之觀察 C. 48 hpf之心跳次數計數 D. 72 hpf之morphant觀察與拍照 E. 72 hpf morphant之血液循環能力與血管通透性測試 F. Morphant存活率 結果 一、 分析斑馬魚基因體中與人類TM相似的基因……………36 二、 定序分析斑馬魚TM相似基因-DNA與蛋白質結構………37 三、 比對斑馬魚TM相似基因與其他物種的TM基因…………38 四、 斑馬魚TM相似基因在胚胎發育時期的表現……………39 五、 利用MO針對斑馬魚TM相似基因進行knockdown所造成的影響……………………………………………………………………40 六、 觀察zTM-2 knockdown胚胎的血液循環能力與血管通透性……………………………………………………………………42 七、 觀察zTM-2 knockdown對胚胎存活率的影響…………42 討論…………………………………………………………………43 參考文獻……………………………………………………………47 結果圖………………………………………………………………52 結果表………………………………………………………………83 附錄…………………………………………………………………85 自述…………………………………………………………………101

    1 Sadler, J. E., Lentz, S. R., Sheehan, J. P., Tsiang, M. & Wu, Q. Structure-function relationships of the thrombin-thrombomodulin interaction. Haemostasis 23 Suppl 1, 183-193 (1993).
    2 Jackman, R. W., Beeler, D. L., VanDeWater, L. & Rosenberg, R. D. Characterization of a thrombomodulin cDNA reveals structural similarity to the low density lipoprotein receptor. Proceedings of the National Academy of Sciences of the United States of America 83, 8834-8838 (1986).
    3 Petersen, T. E. The amino-terminal domain of thrombomodulin and pancreatic stone protein are homologous with lectins. FEBS letters 231, 51-53 (1988).
    4 Christian, S. et al. Molecular cloning and characterization of endosialin, a C-type lectin-like cell surface receptor of tumor endothelium. The Journal of biological chemistry 276, 7408-7414 (2001).
    5 Weisel, J. W., Nagaswami, C., Young, T. A. & Light, D. R. The shape of thrombomodulin and interactions with thrombin as determined by electron microscopy. The Journal of biological chemistry 271, 31485-31490 (1996).
    6 Bourin, M. C., Boffa, M. C., Bjork, I. & Lindahl, U. Functional domains of rabbit thrombomodulin. Proceedings of the National Academy of Sciences of the United States of America 83, 5924-5928 (1986).
    7 Boffa, M. C., Burke, B. & Haudenschild, C. C. Preservation of thrombomodulin antigen on vascular and extravascular surfaces. J Histochem Cytochem 35, 1267-1276 (1987).
    8 Imada, S. et al. Identification of fetomodulin, a surface marker protein of fetal development, as thrombomodulin by gene cloning and functional assays. Dev Biol 140, 113-122 (1990).
    9 Kennel, S. J., Lankford, T., Hughes, B. & Hotchkiss, J. A. Quantitation of a murine lung endothelial cell protein, P112, with a double monoclonal antibody assay. Lab Invest 59, 692-701 (1988).
    10 Dittman, W. A. & Majerus, P. W. Structure and function of thrombomodulin: a natural anticoagulant. Blood 75, 329-336 (1990).
    11 Sadler, J. E. Thrombomodulin structure and function. Thrombosis and haemostasis 78, 392-395 (1997).
    12 Esmon, C. T. The regulation of natural anticoagulant pathways. Science 235, 1348-1352 (1987).
    13 Huang, H. C. et al. Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. The Journal of biological chemistry 278, 46750-46759 (2003).
    14 Kao, Y. C. et al. Downregulation of thrombomodulin, a novel target of Snail, induces tumorigenesis through epithelial-mesenchymal transition. Mol Cell Biol 30, 4767-4785 (2010).
    15 Weiler, H. Mouse models of thrombosis: thrombomodulin. Thrombosis and haemostasis 92, 467-477 (2004).
    16 Lane, D. A. & Grant, P. J. Role of hemostatic gene polymorphisms in venous and arterial thrombotic disease. Blood 95, 1517-1532 (2000).
    17 Griffin, J. H., Evatt, B., Wideman, C. & Fernandez, J. A. Anticoagulant protein C pathway defective in majority of thrombophilic patients. Blood 82, 1989-1993 (1993).
    18 Abu-Amero, K. K., Owaidah, T. M. & Al-Mahed, M. Severe type I protein C deficiency with neonatal purpura fulminans due to a novel homozygous mutation in exon 6 of the protein C gene. J Thromb Haemost 4, 1152-1153 (2006).
    19 Bereczky, Z., Kovacs, K. B. & Muszbek, L. Protein C and protein S deficiencies: similarities and differences between two brothers playing in the same game. Clin Chem Lab Med 48 Suppl 1, S53-66 (2010).
    20 Hajjar, K. A. Factor V Leiden--an unselfish gene? N Engl J Med 331, 1585-1587 (1994).
    21 Majerus, P. W. Human genetics. Bad blood by mutation. Nature 369, 14-15 (1994).
    22 Kerlin, B. A. et al. Survival advantage associated with heterozygous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood 102, 3085-3092 (2003).
    23 Kunz, G. et al. Naturally occurring mutations in the thrombomodulin gene leading to impaired expression and function. Blood 99, 3646-3653 (2002).
    24 Healy, A. M., Rayburn, H. B., Rosenberg, R. D. & Weiler, H. Absence of the blood-clotting regulator thrombomodulin causes embryonic lethality in mice before development of a functional cardiovascular system. Proc Natl Acad Sci U S A 92, 850-854 (1995).
    25 Weiler-Guettler, H., Aird, W. C., Rayburn, H., Husain, M. & Rosenberg, R. D. Developmentally regulated gene expression of thrombomodulin in postimplantation mouse embryos. Development 122, 2271-2281 (1996).
    26 Imada, M. et al. Fetomodulin: marker surface protein of fetal development which is modulatable by cyclic AMP. Dev Biol 122, 483-491 (1987).
    27 Isermann, B. et al. The thrombomodulin-protein C system is essential for the maintenance of pregnancy. Nat Med 9, 331-337 (2003).
    28 Isermann, B., Hendrickson, S. B., Hutley, K., Wing, M. & Weiler, H. Tissue-restricted expression of thrombomodulin in the placenta rescues thrombomodulin-deficient mice from early lethality and reveals a secondary developmental block. Development 128, 827-838 (2001).
    29 Isermann, B. et al. Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J Clin Invest 108, 537-546 (2001).
    30 Jalbert, L. R. et al. Inactivation of the gene for anticoagulant protein C causes lethal perinatal consumptive coagulopathy in mice. The Journal of clinical investigation 102, 1481-1488 (1998).
    31 Stainier, D. Y. & Fishman, M. C. The zebrafish as a model system to study cardiovascular development. Trends Cardiovasc Med 4, 207-212 (1994).
    32 Stainier, D. Y. Zebrafish genetics and vertebrate heart formation. Nat Rev Genet 2, 39-48 (2001).
    33 Stainier, D. Y., Weinstein, B. M., Detrich, H. W., 3rd, Zon, L. I. & Fishman, M. C. Cloche, an early acting zebrafish gene, is required by both the endothelial and hematopoietic lineages. Development 121, 3141-3150 (1995).
    34 Sehnert, A. J. et al. Cardiac troponin T is essential in sarcomere assembly and cardiac contractility. Nat Genet 31, 106-110 (2002).
    35 Pelster, B. & Burggren, W. W. Disruption of hemoglobin oxygen transport does not impact oxygen-dependent physiological processes in developing embryos of zebra fish (Danio rerio). Circulation research 79, 358-362 (1996).
    36 Jin, S. W., Beis, D., Mitchell, T., Chen, J. N. & Stainier, D. Y. Cellular and molecular analyses of vascular tube and lumen formation in zebrafish. Development 132, 5199-5209 (2005).
    37 Karlsson, J., von Hofsten, J. & Olsson, P. E. Generating transparent zebrafish: a refined method to improve detection of gene expression during embryonic development. Mar Biotechnol (NY) 3, 522-527 (2001).
    38 Kimmel, C. B., Ballard, W. W., Kimmel, S. R., Ullmann, B. & Schilling, T. F. Stages of embryonic development of the zebrafish. Dev Dyn 203, 253-310 (1995).
    39 Westerfield, M., Doerry, E., Kirkpatrick, A. E. & Douglas, S. A. Zebrafish informatics and the ZFIN database. Methods Cell Biol 60, 339-355 (1999).
    40 Nasevicius, A. & Ekker, S. C. Effective targeted gene 'knockdown' in zebrafish. Nat Genet 26, 216-220 (2000).
    41 Sun, C. et al. Expression and function on embryonic development of lissencephaly-1 genes in zebrafish. Acta Biochim Biophys Sin (Shanghai) 41, 677-688 (2009).
    42 Kim, S. H. et al. Zebrafish type XVII collagen: gene structures, expression profiles, and morpholino "knock-down" phenotypes. Matrix Biol 29, 629-637 (2010).
    43 Ma, A. C., Chung, M. I., Liang, R. & Leung, A. Y. A DEAB-sensitive aldehyde dehydrogenase regulates hematopoietic stem and progenitor cells development during primitive hematopoiesis in zebrafish embryos. Leukemia : official journal of the Leukemia Society of America, Leukemia Research Fund, U.K 24, 2090-2099 (2010).
    44 Herzog, W., Muller, K., Huisken, J. & Stainier, D. Y. Genetic evidence for a noncanonical function of seryl-tRNA synthetase in vascular development. Circulation research 104, 1260-1266 (2009).
    45 Saria, A. & Lundberg, J. M. Evans blue fluorescence: quantitative and morphological evaluation of vascular permeability in animal tissues. J Neurosci Methods 8, 41-49 (1983).
    46 Gering, M., Rodaway, A. R., Gottgens, B., Patient, R. K. & Green, A. R. The SCL gene specifies haemangioblast development from early mesoderm. The EMBO journal 17, 4029-4045 (1998).
    47 Li, Y. H. et al. Thrombomodulin is upregulated in cardiomyocytes during cardiac hypertrophy and prevents the progression of contractile dysfunction. J Card Fail 16, 980-990 (2010).
    48 Kane, D. A. et al. The zebrafish epiboly mutants. Development 123, 47-55 (1996).
    49 Krens, S. F. et al. Distinct functions for ERK1 and ERK2 in cell migration processes during zebrafish gastrulation. Developmental biology 319, 370-383 (2008).
    50 Myers, D. C., Sepich, D. S. & Solnica-Krezel, L. Convergence and extension in vertebrate gastrulae: cell movements according to or in search of identity? Trends Genet 18, 447-455 (2002).
    51 Glickman, N. S., Kimmel, C. B., Jones, M. A. & Adams, R. J. Shaping the zebrafish notochord. Development 130, 873-887 (2003).
    52 Bakkers, J. et al. Has2 is required upstream of Rac1 to govern dorsal migration of lateral cells during zebrafish gastrulation. Development 131, 525-537 (2004).
    53 Daggett, D. F. et al. Developmentally restricted actin-regulatory molecules control morphogenetic cell movements in the zebrafish gastrula. Curr Biol 14, 1632-1638 (2004).
    54 Downs, K. M. & Davies, T. Staging of gastrulating mouse embryos by morphological landmarks in the dissecting microscope. Development 118, 1255-1266 (1993).
    55 Tam, P. P. & Behringer, R. R. Mouse gastrulation: the formation of a mammalian body plan. Mech Dev 68, 3-25 (1997).
    56 Jagadeeswaran, P. & Liu, Y. C. Developmental expression of thrombin in zebrafish embryos: a novel model to study hemostasis. Blood Cells Mol Dis 23, 147-156 (1997).

    無法下載圖示 校內:2021-05-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE