| 研究生: |
魏瑄妤 Wei, Xuan-Yu |
|---|---|
| 論文名稱: |
以第一原理研究二氧化碳於以石墨烯為基底之過渡金屬(鈧、鈦、釩、鉻、錳、鐵、鈷、鎳、銅、鋅)單原子結構的吸附反應 First Principles Investigation of CO2 Adsorption on Single Atom(Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) supported on Graphene |
| 指導教授: |
蘇彥勳
Su, Yen-Hsun |
| 共同指導教授: |
關肇正
Kuan, Chao-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 第一原理計算 、密度泛函理論 、石墨烯 、單原子吸附 、二氧化碳吸附反應 |
| 外文關鍵詞: | first principles calculation, transition metal, graphene, single atom, d-band center, adsorption |
| 相關次數: | 點閱:21 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用基於密度泛函理論之第一原理計算,以原子級觀點建立模型,探討二氧化碳分子在以石墨烯為基底之過渡金屬單原子(鈧、鈦、釩、鉻、錳、鐵、鈷、鎳、銅、鋅)結構上的吸附反應。
單原子催化劑(Single-atom catalysts, SACs)與純金屬不同,具有極高的原子利用率,因為活性中心的結構均一,可以讓催化反應更穩定,更加精準的控制反應過程及合成產物。單原子催化劑實現了金屬表面無法實現的催化活性及選擇性,而且使用後易分離、回收性良好,因此近年來在各催化領域受到越來越多的關注。儘管單原子催化劑提供了迄今為止無法實現的化學物質的機會,但仍存在限制及挑戰,限制了其在工業上的長期應用,再加上目前為止仍沒有能夠精確模擬單原子催化劑的結構和反應機制,因此透過反覆數次理論計算的基礎,以期望能發展出更精確的理論計算模型。本研究以石墨烯為載體之過渡金屬單原子系統,利用第一原理計算預測二氧化碳在單原子金屬上的吸附行為。
第一部分利用第一原理預測過渡金屬原子在石墨烯上的吸附反應,並在石墨烯載體上選擇了三種不同的原子吸附位置(Top-site、Hollow-site和Bridge-site.),首先計算過渡金屬原子的d帶中心,以預測不同過渡金屬原子(鈧、鈦、釩、鉻、錳、鐵、鈷、鎳、銅、鋅)與石墨烯基底間是否能產生吸附行為,接著計算過渡金屬原子(鈧、鈦、釩、鉻、錳、鐵、鈷、鎳、銅、鋅)與石墨烯系統優化後的幾何結構、態密度及能帶分布,第一部分的計算結果顯示,只有鈧(Sc)、鈦(Ti)、鉻(Cr)、錳(Mn)、鈷(Co)、銅(Cu)原子能夠成功在石墨烯上產生吸附反應,值得注意的是,由於鋅(Zn)的3d和4s軌道電子殼層已滿,因此不易與碳原子形成鍵結。第二部分承接第一部分,將能夠發生吸附反應之過渡金屬單原子系統,做下個階段的二氧化碳分子吸附反應,第二部分的計算結果顯示,鉻(Cr)金屬原子系統中,二氧化碳的吸附能相對於其他三個系統為最低者,此也與COHP (crystal orbital Hamilton population)的分析結果相符,因此在本次研究中,鈷金屬原子在此複合結構的吸附行為最為顯著,因此鉻(Cr)為此十種過渡金屬元素裡最適合做為吸附反應的材料候選人。
Density functional theory (DFT) has emerged as the leading computational approach for modeling and characterizing adsorption phenomena, offering valuable capabilities for understanding and optimizing adsorption processes. DFT calculations can guide experimental efforts and accelerate the discovery of novel materials for various applications. In recent years, driven by pressing environmental concerns, such as the increasing concentration of atmospheric CO2 and its impact on global climate, and fueled by the diverse range of potential applications in fields ranging from energy to chemical manufacturing, research on CO2 adsorbents has experienced a significant surge. This has fostered interdisciplinary collaborations between chemists, materials scientists, and engineers, accelerating the pace of discovery and innovation in this crucial area. This work employs DFT calculations to investigate the adsorption of carbon dioxide molecules. Our analysis encompasses optimized geometries, electronic density of states (DOS), d-band centers and COHP (crystal orbital Hamilton population) analysis. This comprehensive approach aims to predict the CO2 molecules adsorption behaviors on single atoms supported on graphene substrates. Specifically, we present a systematic investigation of single atom models with transition metal, featuring Scandium (Sc), titanium (Ti), Vanadium (V), chromium (Cr), manganese (Mn), Iron (Fe), Cobalt (Co), Nickel (Ni), copper (Cu) and Zinc (Zn). Throughout all works, DFT calculations utilizing the generalized gradient approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional, were consistently employed in this study to investigate CO2 adsorption on these graphene-based systems. We anticipate that these findings will contribute to the advancement of single-atom graphene materials.
1.Cazorla, C.; Shevlin, S. A., Accuracy of density functional theory in the prediction of carbon dioxide adsorbent materials. Dalton Transactions 2013, 42 (13), 4670-4676.
2.Liu, Z.; Zhang, D.; Wei, T.; Wang, L.; Li, X.; Liu, B., Adsorption characteristics of formaldehyde on nitrogen doped graphene-based single atom adsorbents: a DFT study. Applied Surface Science 2019, 493, 1260-1267.
3.Wang, Y.; Qiu, W.; Song, E.; Gu, F.; Zheng, Z.; Zhao, X.; Zhao, Y.; Liu, J.; Zhang, W., Adsorption-energy-based activity descriptors for electrocatalysts in energy storage applications. National Science Review 2018, 5 (3), 327-341.
4.Ren, C.; Jiang, Q.; Lin, W.; Zhang, Y.; Huang, S.; Ding, K., Density functional theory study of single-atom V, Nb, and Ta catalysts on graphene and carbon nitride for selective nitrogen reduction. ACS Applied Nano Materials 2020, 3 (6), 5149-5159.
5.Yang, S.; Zhang, D.; Lei, G.; Wang, Z.; Lan, Z.; Xu, H.; Gu, H., Hydrogen adsorption on TaSe2 monolayer doped with light metals: A DFT study. Vacuum 2022, 196, 110775.
6.Sun, S.; Zhou, X.; Cong, B.; Hong, W.; Chen, G., Tailoring the d-band centers endows (Ni x Fe1–x) 2P nanosheets with efficient oxygen evolution catalysis. Acs Catalysis 2020, 10 (16), 9086-9097.
7.Amaya-Roncancio, S.; Blanco, A. G.; Linares, D. H.; Sapag, K., DFT study of hydrogen adsorption on Ni/graphene. Applied Surface Science 2018, 447, 254-260.
8.Tran, N. T. T.; Nguyen, D. K.; Lin, S. Y.; Gumbs, G.; Lin, M. F., Fundamental Properties of Transition‐Metals‐Adsorbed Graphene. ChemPhysChem 2019, 20 (19), 2473-2481.
9.Lee, K.-J.; Kim, S.-J., Theoretical investigation of CO 2 adsorption on graphene. Bulletin of the Korean Chemical Society 2013, 34 (10), 3022-3026.
10.Schrödinger, E., An undulatory theory of the mechanics of atoms and molecules. Physical review 1926, 28 (6), 1049.
11.Fock, V., Näherungsmethode zur Lösung des quantenmechanischen Mehrkörperproblems. Zeitschrift für Physik 1930, 61, 126-148.
12.Slater, J. C., A simplification of the Hartree-Fock method. Physical review 1951, 81 (3), 385.
13.Thomas, L. H. In The calculation of atomic fields, Mathematical proceedings of the Cambridge philosophical society, Cambridge University Press: 1927; pp 542-548.
14.Hohenberg, P.; Kohn, W., Inhomogeneous electron gas. Physical review 1964, 136 (3B), B864.
15.Kohn, W.; Sham, L. J., Self-consistent equations including exchange and correlation effects. Physical review 1965, 140 (4A), A1133.
16.Levine, I. N.; Busch, D. H.; Shull, H., Quantum chemistry. Pearson Prentice Hall Upper Saddle River, NJ: 2009; Vol. 6.
17.Ceperley, D. M.; Alder, B. J., Ground state of the electron gas by a stochastic method. Physical review letters 1980, 45 (7), 566.
18.Becke, A. D., Density-functional exchange-energy approximation with correct asymptotic behavior. Physical review A 1988, 38 (6), 3098.
19.Perdew, J. P.; Burke, K.; Ernzerhof, M., Generalized gradient approximation made simple. Physical review letters 1996, 77 (18), 3865.
20.Payne, M. C.; Teter, M. P.; Allan, D. C.; Arias, T.; Joannopoulos, a. J., Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Reviews of modern physics 1992, 64 (4), 1045.
21.Jiao, S.; Fu, X.; Huang, H., Descriptors for the evaluation of electrocatalytic reactions: d‐band theory and beyond. Advanced Functional Materials 2022, 32 (4), 2107651.
22.Lu, C.; Lee, I. C.; Masel, R. I.; Wieckowski, A.; Rice, C., Correlations between the Heat of Adsorption and the Position of the Center of the D-Band: Differences between Computation and Experiment. The Journal of Physical Chemistry A 2002, 106 (13), 3084-3091.
23.Dronskowski, R.; Blöchl, P. E., Crystal orbital Hamilton populations (COHP): energy-resolved visualization of chemical bonding in solids based on density-functional calculations. The Journal of Physical Chemistry 1993, 97 (33), 8617-8624.
24.Deringer, V. L.; Tchougréeff, A. L.; Dronskowski, R., Crystal orbital Hamilton population (COHP) analysis as projected from plane-wave basis sets. The journal of physical chemistry A 2011, 115 (21), 5461-5466.
25.Pantelic, R. S.; Suk, J. W.; Magnuson, C. W.; Meyer, J. C.; Wachsmuth, P.; Kaiser, U.; Ruoff, R. S.; Stahlberg, H., Graphene: Substrate preparation and introduction. Journal of structural biology 2011, 174 (1), 234-238.
26.Li, T.; Zhang, Z., Substrate-regulated morphology of graphene. Journal of Physics D: Applied Physics 2010, 43 (7), 075303.
27.Goncalves, G.; Marques, P. A.; Granadeiro, C. M.; Nogueira, H. I.; Singh, M.; Gracio, J., Surface modification of graphene nanosheets with gold nanoparticles: the role of oxygen moieties at graphene surface on gold nucleation and growth. Chemistry of Materials 2009, 21 (20), 4796-4802.
28.Sabater, S.; Mata, J. A.; Peris, E., Catalyst enhancement and recyclability by immobilization of metal complexes onto graphene surface by noncovalent interactions. Acs Catalysis 2014, 4 (6), 2038-2047.
29.Yu, W.; Sisi, L.; Haiyan, Y.; Jie, L., Progress in the functional modification of graphene/graphene oxide: A review. RSC advances 2020, 10 (26), 15328-15345.
30.Wang, A.; Li, J.; Zhang, T., Heterogeneous single-atom catalysis. Nature Reviews Chemistry 2018, 2 (6), 65-81.
31.Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T., Single-atom catalysts: a new frontier in heterogeneous catalysis. Accounts of chemical research 2013, 46 (8), 1740-1748.
32.Cheng, N.; Zhang, L.; Doyle-Davis, K.; Sun, X., Single-atom catalysts: from design to application. Electrochemical Energy Reviews 2019, 2, 539-573.
33.Chen, Y.; Ji, S.; Chen, C.; Peng, Q.; Wang, D.; Li, Y., Single-atom catalysts: synthetic strategies and electrochemical applications. Joule 2018, 2 (7), 1242-1264.
34.Gawande, M. B.; Fornasiero, P.; Zbořil, R., Carbon-based single-atom catalysts for advanced applications. Acs Catalysis 2020, 10 (3), 2231-2259.
35.Rivera‐Cárcamo, C.; Serp, P., Single atom catalysts on carbon‐based materials. ChemCatChem 2018, 10 (22), 5058-5091.
36.Song, W.; Xiao, C.; Ding, J.; Huang, Z.; Yang, X.; Zhang, T.; Mitlin, D.; Hu, W., Review of carbon support coordination environments for single metal atom electrocatalysts (SACS). Advanced Materials 2024, 36 (1), 2301477.
37.Liu, J.; Xiao, J.; Luo, B.; Tian, E.; Waterhouse, G. I., Central metal and ligand effects on oxygen electrocatalysis over 3d transition metal single-atom catalysts: A theoretical investigation. Chemical Engineering Journal 2022, 427, 132038.
38.Yang, H.; Shang, L.; Zhang, Q.; Shi, R.; Waterhouse, G. I.; Gu, L.; Zhang, T., A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nature communications 2019, 10 (1), 4585.
39.Liu, X.; Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.-Z., Building up a picture of the electrocatalytic nitrogen reduction activity of transition metal single-atom catalysts. Journal of the American Chemical Society 2019, 141 (24), 9664-9672.
40.Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical review B 1996, 54 (16), 11169.
41.Kresse, G.; Joubert, D., From ultrasoft pseudopotentials to the projector augmented-wave method. Physical review b 1999, 59 (3), 1758.
42.Kresse, G.; Furthmüller, J., Vienna ab-initio simulation package (VASP). Vienna: Vienna University 2001.
43.Blöchl, P. E., Projector augmented-wave method. Physical review B 1994, 50 (24), 17953.
44.Zhu, H.; Liu, S.; Yu, J.; Chen, Q.; Mao, X.; Wu, T., Computational screening of effective gC 3 N 4 based single atom electrocatalysts for the selective conversion of CO 2. Nanoscale 2023, 15 (18), 8416-8423.
45.Li, N.; Peng, J.; Shi, Z.; Zhang, P.; Li, X., Charge transfer and orbital reconstruction of non-noble transition metal single-atoms anchored on Ti2CTx-MXenes for highly selective CO2 electrochemical reduction. Chinese Journal of Catalysis 2022, 43 (7), 1906-1917.
46.Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical review B 1992, 46 (11), 6671.
47.Han, L.; Cheng, H.; Liu, W.; Li, H.; Ou, P.; Lin, R.; Wang, H.-T.; Pao, C.-W.; Head, A. R.; Wang, C.-H., A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nature Materials 2022, 21 (6), 681-688.
48.Ajayi, T. M.; Shirato, N.; Rojas, T.; Wieghold, S.; Cheng, X.; Latt, K. Z.; Trainer, D. J.; Dandu, N. K.; Li, Y.; Premarathna, S., Characterization of just one atom using synchrotron X-rays. Nature 2023, 618 (7963), 69-73.
49.Bhattacharjee, S.; Waghmare, U. V.; Lee, S.-C., An improved d-band model of the catalytic activity of magnetic transition metal surfaces. Scientific reports 2016, 6 (1), 35916.
50.Mohanty, B.; Basu, S.; Jena, B. K., Transition metal-based single-atom catalysts (TM-SACs); rising materials for electrochemical CO2 reduction. Journal of Energy Chemistry 2022, 70, 444-471.
51.Mott, N. F., Electrons in transition metals. Advances in Physics 1964, 13 (51), 325-422.
52.Cramer, C. J.; Truhlar, D. G., Density functional theory for transition metals and transition metal chemistry. Physical Chemistry Chemical Physics 2009, 11 (46), 10757-10816.
53.Harvey, J. N., On the accuracy of density functional theory in transition metal chemistry. Annual Reports Section" C"(Physical Chemistry) 2006, 102, 203-226.
54.Sameera, W.; Maseras, F., Transition metal catalysis by density functional theory and density functional theory/molecular mechanics. Wiley Interdisciplinary Reviews: Computational Molecular Science 2012, 2 (3), 375-385.
55.Ataca, C.; Cahangirov, S.; Durgun, E.; Jang, Y.-R.; Ciraci, S., Structural, electronic, and magnetic properties of 3 d transition metal monatomic chains: First-principles calculations. Physical Review B—Condensed Matter and Materials Physics 2008, 77 (21), 214413.
56.Zhuo, H.-Y.; Zhang, X.; Liang, J.-X.; Yu, Q.; Xiao, H.; Li, J., Theoretical understandings of graphene-based metal single-atom catalysts: stability and catalytic performance. Chemical reviews 2020, 120 (21), 12315-12341.
57.Fei, H.; Dong, J.; Chen, D.; Hu, T.; Duan, X.; Shakir, I.; Huang, Y.; Duan, X., Single atom electrocatalysts supported on graphene or graphene-like carbons. Chemical Society Reviews 2019, 48 (20), 5207-5241.
58.Pan, C.; El-khodary, S.; Wang, S.; Ling, Q.; Hu, X.; Xu, L.; Zhong, S., Research progress in graphene based single atom catalysts in recent years. Fuel Processing Technology 2023, 250, 107879.
59.Liu, L.; Li, M.; Chen, F.; Huang, H., Recent advances on single‐atom catalysts for CO2 reduction. Small Structures 2023, 4 (3), 2200188.
60.Gong, L.; Zhang, D.; Lin, C. Y.; Zhu, Y.; Shen, Y.; Zhang, J.; Han, X.; Zhang, L.; Xia, Z., Catalytic mechanisms and design principles for single‐atom catalysts in highly efficient CO2 conversion. Advanced Energy Materials 2019, 9 (44), 1902625.