簡易檢索 / 詳目顯示

研究生: 周尚南
Chou, Shang-Nan
論文名稱: 以擠壓鑄造法製作氧化鋁/鋁合金複合材料之性質及破壞行為的研究
The Characterization and Fracture Behaviors of Al2O3 / aluminum alloy Composites Manufactured by Squeeze Casting
指導教授: 黃肇瑞
Huang, Jow-Lay
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 150
中文關鍵詞: 殘留應力破壞韌性擠壓鑄造法陶瓷/金屬複合材料接觸面積
外文關鍵詞: ceramic/metal composite, residual stress, fracture toughness, squeeze casting, interface contact area
相關次數: 點閱:106下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鋁陶瓷材料具有相當優良的物理、化學和機械性質,是目前最廣泛被使用的陶瓷材料之一。除了陶瓷粉體容易取得及成本較低的優點外,氧化鋁的高強度、熱穩定性及低熱傳導性近年來也適用於高溫結構體及基板的應用。但氧化鋁陶瓷仍和一般常見的陶瓷相同,擁有低延展性、低韌性的缺點,為改善此情形,其可利用更高的燒結溫度及施以加壓燒結,得到緻密之燒結體,或添加金屬相製作成氧化鋁基的陶瓷/金屬複合材料,預期以添加韌化相之方式,大幅度提升其破壞韌性值。
    本研究是以純氧化鋁粉末中混入不同體積配比的石蠟為起始粉末,壓製成生胚後於大氣氣氛中脫脂、燒結成多孔且連通的氧化鋁預形體,再以擠壓鑄造法,將鋁合金熔液以外加機械壓擠入氧化鋁預形體中,製成不同氧化鋁/鋁合金體積比例之複合材料。試片經裁切、研磨及拋光後,測量其物理性質及機械性質,並研究添加不同體積配比的第二相,對其物理性質及機械性質的影響,再將試片做適度的加工,以光學顯微鏡及電子顯微鏡觀察其微結構與破壞表面,探討複合材料之破壞機構。
    經實驗分析後得知,以擠壓鑄造法製作氧化鋁/鋁合金複合材料,經電性及影像分析結果可得知,本研究可製作出陶瓷及金屬兩相均勻分佈且相互連通之複合材料。氧化鋁/鋁合金複合材料之機械性質分析中,硬度值隨金屬相體積百分比的增加而降低,其四點彎曲強度值隨金屬相體積百分比的增加而先增加後降低,而破壞韌性值隨金屬相體積百分比的增加而增加,其中氧化鋁/A356鋁合金複合材料為本研究中最佳物理及機械性質之複合材料,進而以物理性質及微結構觀察的方式探討其性質較佳之原因。
    研究中發現氧化鋁/ A356鋁合金複合材料之物理性質及機械性質的關連性,並由前人之研究中觀察到的同樣現象,可推測殘留應力之形成是由於複合材料由製程高溫降低至室溫時,高熱膨脹係數之鋁合金相包圍擠壓氧化鋁陶瓷相所致,因此殘留應力應產生於陶瓷及金屬相的介面處。研究後續以有限元素法模擬分析複合材料中,金屬及陶瓷兩相間因熱膨脹係數的差異而產生之殘留應力;且以高角度X-ray繞射分析法,分析複合材料中存在的殘留應力實驗值,並比較理論值及實驗值的差異之處。之後分析陶瓷/金屬兩相間的接觸面積,研究結果發現,兩相間接觸面積的多寡將會影響複合材料中殘留應力的大小。由此可解釋以有限元素法模擬分析,及高角度X-ray繞射分析法研究複合材料中,所得到不同殘留應力數值的原因。最後討論殘留應力的存在,對於氧化鋁/ A356鋁合金複合材料之微結構及機械性質的影響,並綜合討論複合材料中,強化及韌化機制的存在及影響。

    Aluminum oxide (Al2O3) is a hard refractory ceramic, which has been investigated for high temperature structural and substrate applications because of its good strength and low thermal expansion coefficient. Nevertheless, like other monolithic ceramics, Al2O3 is apt to suffer from low ductility and low fracture toughness. Therefore, metals (e.g. aluminum, cobalt, and niobium) or alloys are added to ceramics to improve their toughness.
    This study aims at investigating the physical, mechanical properties and fracture behaviors, and internal residual stresses in metal reinforced ceramic matrix composites (CMCs). A356, 6061 and 1050 aluminum alloys were infiltrated into the aluminum oxide (Al2O3) preforms in order to fabricate Al2O3/A356, Al2O3/6061 and Al2O3/1050 composites, respectively, with different volumes of aluminum alloy content using the pressure infiltration technique of squeeze casting. The contents of aluminum alloy in the composites were 10 to 40 percent by volume. For all different Al alloy composites, the hardness decreased dramatically, the four-points bending strength increased, the fracture toughness increased, and the resistivity decreased dramatically with increasing Al alloy content in the composites, respectively. From SEM microstructural analysis and TEM bright field images, the porous ratio and the relative density of the composites were the most important factors that affected the physical and mechanical properties, and there are four different toughening mechanisms affected the toughness of the composites, i.e. metal phase increased, crack bridging, crack deflection, and crack branching in the composites.

    Values of coefficients of thermal expansion (CTEs) were found to vary significantly with temperature, indicating an influence of the flow characteristics of the metal. Comparisons are made with well known methods for predicting CTEs values of metal/ceramic composites. The overall strain was found to increase with temperature and scaled proportionally with the metal content of the composite. Comparisons were also made with non-infiltrated porous ceramic preforms and a pure metallic sample. The uniform heating and cooling curves for the composite samples were found to exhibit hysterisis. The residual stress analysis and failure simulation were performed based on thermomechanics and the finite element method (FEM). This analysis is often utilized for the analysis of stress distribution or deformation of a structure. High angle X-ray and CTEs mismatch equation analysis were utilized to analyze the residual stresses at the ceramic / metal interface of the Al2O3/A356 composites. The relationship between residual stresses and the contact area of the ceramic / metal interface are also discussed.

    中文摘要 I 英文摘要 III 致謝 V 總目錄 XI 表目錄 XVII 圖目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 研究目的及動機 2 第二章 理論基礎 3 2.1 發展陶瓷/金屬複合材料之緣由 3 2.2 陶瓷/金屬複合材料之製程 9 2.3 擠壓鑄造技術 10 2.4 複合材料中第二相影響機械性質之因素 12 2.4.1 熱作用力的影響 12 2.4.2 晶粒大小的影響 13 2.4.3 Zener relation 14 2.4.4 孔隙率的影響 14 2.4.5 金屬顆粒連通性的影響 15 2.5 陶瓷/金屬複合材料的韌化機制 16 2.5.1 裂縫架橋韌化 21 2.5.2 裂縫轉折韌化 28 2.5.3 熱作用力所造成的殘留應力影響 29 2.6 陶瓷/金屬複合材料的破壞模式 30 2.6.1 陶瓷/金屬的介面破壞模式 31 2.7 破壞韌性的測量 31 2.8 材料之表面殘留應力測量原理 34 2.8.1 壓痕法 34 2.8.2 高角度X光繞射法 35 2.8.3 超音波分析法 39 2.8.4 有限元素分析法 44 第三章 實驗步驟 48 3.1 原始粉末規格及粉體製備 48 3.2 胚體製備 48 3.2.1 多孔隙預形體之製作 48 3.2.2 多孔預形體滲透鋁合金製程 53 3.3 複合材料之微觀組織分析 57 3.3.1 XRD之相分析 57 3.3.2 掃瞄式電子顯微鏡(SEM)觀察 57 3.3.3 電子微探儀(EPMA)試樣之製作及觀察 57 3.3.4 穿透式電子顯微鏡(TEM)觀察 58 3.4 複合材料物理性質量測 58 3.4.1 密度測定 58 3.4.2 電性分析 59 3.4.3 楊氏係數之測定 60 3.4.4 熱膨脹係數分析 60 3.4.5 孔隙大小分佈量測 61 3.5 複合材料機械性質測試 61 3.5.1 維氏硬度測定 61 3.5.2 四點彎曲強度測定 61 3.5.3 破裂韌性測定 62 3.6 表面殘留應力量測 64 3.6.1 壓痕法 64 3.6.2 超音波分析法 64 3.6.3 高角度X光繞射法 65 3.6.4 有限元素分析法 65 3.7 複合材料均勻性分析 65 3.8 陶瓷/金屬接觸面積分析 65 第四章 氧化鋁/鋁合金複合材料性質之研究 70 4.1 複合材料製程之選擇 70 4.2 相分析 73 4.3 物理性質分析 78 4.3.1 密度分析 78 4.3.2 電阻率分析 78 4.4 顯微結構分析 80 4.5 機械性質分析 88 4.5.1 硬度分析 88 4.5.2 彎曲強度分析 91 4.5.3 破壞韌性分析 97 4.5.4 韌化機制分析 101 第五章 複合材料殘留應力之量測及影響 105 5.1 氧化鋁/A356鋁合金複合材料性質概述 105 5.2 複合材料內含有殘留應力之原因及證據 109 5.3 複合材料之物理性質分析 116 5.4 高角度X-Ray繞射法分析殘留應力 120 5.5 有限元素法模擬分析殘留應力 121 5.5.1 殘留應力計算 121 5.5.2 殘留應力模擬 125 5.6 陶瓷/金屬接觸面積分析 128 5.7 複合材料顯微結構分析 130 5.8 陶瓷/金屬複合材料之強化機制 134 5.8.1 應變強化 134 5.8.2 複合材料強化 135 5.9 殘留應力影響氧化鋁/ A356鋁合金複合材料之韌化機制 135 第六章 結論 137 參考文獻 140 個人研究成果 147 作者簡歷 150

    [1] Toy, C. and Scott, W. D., “Ceramic-metal composite produced by melt infiltration”, J. Am. Ceram. Soc., 73, [1], 1990, pp. 97-101.
    [2] Flinn, B. D., Ruhle, M. and Evans, A. G., “Toughening in composites of reinforced with Al”, Acta Metall., 37, [11], 1989, pp. 3001-3006.
    [3] Halverson, D. C., Pyzik, A. J., Aksay, I. A. and Snowden, W. E., “Processing of boron carbide/aluminum composites”, J. Am. Ceram. Soc., 72, [5], 1988, pp. 775-780.
    [4] Sigl, L. S. and Fischmeister, H. F., “On the fracture toughness of cemented carbides”, Acta Metall., 36, [4], 1988, pp. 887-897.
    [5] Shaw, L. and Abbaschian, R., “Toughening MoSi2 with niobium metal-effects of morphology of ductile reinforcement”, J. Mater. Sci., 30, 1995, pp. 849-854.
    [6] A. G. Evans, “The New Generation of High Toughness Ceramics”, in Ceramic Microstructures ’86, J. A. Pask and A. G. Evans Ed. Plenum Press, 1987, pp. 775.
    [7] R. W. Rice, “Ceramic Matrix Composite Toughening Mechanisms : An Update”, Ceram. Eng. Sci. Proc., 6, [7-8], 1985, pp.589.
    [8] R. W. Steinbrech “Toughening Mechanism for Ceramic Materials”, J. Eur. Ceram. Soc., 10, 1992, pp. 131.
    [9] J. Selsing, “Internal stress in ceramics”, J. Am. Ceram. Soc., 44, [8], 1961, pp. 419.
    [10] A. Alonso, A. Pamies, J. Narciso, C. Garcia-Cordovilla and E. Louis, “Evaluation of the wettability of liquid aluminum with ceramic particulates (SiC, TiC, Al2O3) by means of pressure infiltration” Metall. Trans. A, 24A, 1993, pp. 1423-1432.
    [11] Evans AG, Naslain R editors., “High-temperature ceramic-matrix composites II: manufacturing and materials development”, Ceramic Transaction 58, 1995.
    [12] L. H. Van Vlack, “Element of Materials Science and Engineering”, Addison - Wesley Publishing Company, 6th Ed.
    [13] 汪建民, “精密陶瓷替性及檢測分析” 第十一章, 工研院工材所, 1988年。
    [14] 段維新,“以金屬韌化陶瓷材料之研究及發展” ,粉末冶金會刊,第18卷第1期,1993年。
    [15] D. K. Creber, S. D. Poste, M. K. Aghajanian and T. D. Alaar, “AlN Composites Growth by Nitridation of Al-Alloys”, Ceram. Eng. Sci. Proc., 9, 1988, pp. 975.
    [16] B. Budiansjky, J. C. Amazigo and A. G. Evans, “Small- Scale Crack Bridging and the Fracture Toughness of Particulate-Reinforced Ceramics”, J. Mech. Phys. Solids, 36, 1988, pp. 167.
    [17] M. K. Aghajanian, N. H. Mac-Millan, C. K. Kennedy, S. J. Luszcz and R. Roy, “Properties and Microstructures of Lanxide Al2O3 - Al Ceramic Composite Materials”, J. Mater. Sci., 24, 1989, pp. 658.
    [18] M. S. Newkirk, A. W. Urquhart, H. R. Zwicker and E. Breval, “Formation of Lanxide Ceramic Composite Materials”, J. Mater. Res., 1, [1], 1986, pp. 81.
    [19] R. Smith and J. Westlake, “Retention reproducibility of basic drugs in high-performance liquid chromatography on a silica column with a methanol-high-pH buffer eluent Changes in selectivity with the age of the stationary phase”, J. Chromatography A, 592, [1-2], 21 Feb., 1992, pp. 85-92.
    [20] Shy-Wen Lai, D. D. L. Chung, “Fabrication of Particle Aluminum-Matrix Composites by Liquid Metal Infiltration”, J. Mater. Sci., 29, 1994, pp. 3128-3150.
    [21] P. K. Rohtagi, D. Nath, S. S. Singh, and B. N. Keshavaram, “Factors affecting the damping capacity of cast aluminium-matrix composites”, J. Mater. Sci., 29, 1994, pp. 5975-5984.

    [22] A .-B. Ma, H. Gan, T. Imura, Y. Nishida, J. Q. Jiang, M. Takagi, “Wear Properties of Aluminum Alloy Reinforced by short Alumina Fibers with Gradient Distribution” Mater. Trans., 38, [9], 1997, pp. 812–816.
    [23] 陳俊沐,“擠壓鑄造製程簡介及在其複合材料方面的應用” , 工業材料, 85期,1994年, pp.111-119。
    [24] 傅兆章, “擠壓鑄造法回顧與展望” , 鑄工期刊, 33期,1982 年,pp. 22-28。
    [25] 黃啟祥、林江財,陶瓷技術手冊 (下),經濟部技術處,1994年。
    [26] 陳志榮,納米碳化鉻/及鉬/氧化鋁基複合材料之製程與分析,國立台灣大學材料科學及工程學研究所,2000年。
    [27] P. F. Becher, “Micro-structural design of Toughened Ceramics”, J. Am. Ceram. Soc., 74 [2], 1991, pp. 255.
    [28] 狩野 武,粉粒體輸送裝置,日刊工業新聞社,1976年。
    [29] W. H. Rice, “Microstructure dependence of Mechanical behavior”, Academic Press, N. Y., 1977, pp. 257.
    [30] W. H. Tuan, J. M. Wu, “Effect of microstructure on the hardness and fracture toughness of YBa2Cu2O7−x /Ag Composites ”, J. Mater. Sci., 28, 1993, pp. 1415.
    [31] W. H. Tuan and R. J. Brook, “The toughening of alumina with nickel inclusions”, Journal of the European Ceramic Society, 6, [1], 1990, pp. 31-37.
    [32] W. H. Tuan and R. J. Brook, “Processing of alumina/nickel composites”, Journal of the European Ceramic Society, 10, [2], 1992, pp. 95-100.
    [33] T. J. Davies, H. G. Emblem, A. Harabi, C. S. Nwobodo, A. A. Oqwu, and V. Tsantzlaou, “Characterisation and properties of alumina-chrome refratories”, Br. Ceram. Trans, 91, 1992, pp. 71-76.
    [34] A. Harabi and T. J. Davies, “Mechanical properties of sintered alumina-chromia refractories”, Br. Ceram. Trans, 94, [2], 1995, pp. 79-84.
    [35] R. W. Rice, “Toughening in Ceramics Particulate and Whisker Composites”, Ceram. Eng. Sci. Proc., 11, [7-8], 1990, pp. 667-694.
    [36] K. T. Faber and A. G. Evans, “Crack Deflection Process-I. Theory”, Acta Metall., 31, [4], 1983, pp. 565-576.
    [37] G. C. Wei and P. F. Becher, “Improvement in Mechanical in SiC by the Addition of TiC Particulate”, J. Am. Ceram. Soc., 67, [8], 1984, pp. 571-591.
    [38] K. M. Shu, C. T. Fu, and J. M. Liu, “Electrodicharge-Machining of Al2O3/Cr3C2 Composites”, J. Mater. Sci. Letter, 13, [13-18], 1994, pp. 1146-1148.
    [39] R. C. Bradt, “Cr2O3 solid solution hardening of Al2O3”, J. Am. Ceram. Soc., 50, [31], 1967, pp. 54-55.
    [40] B. B. Chate, W. C. Smith, C. H. Kim, D. P. H. Hasselman and G. E. Kane, “Effect of Chromia Alloying on Machining Performance of Alumina Ceramic Cutting Tools”, Ceramic Bulletin, 54, [2], 1975, pp. 210-215.
    [41] P. K. Rajagopalan, T. S. Krishnan, and D. K. Bose, “Development of Carbothermy for the Preparation of Hepta Chromium Carbide”, Journal of Alloys and Compounds, 297, [1-2], 2000, pp. L1-L4.
    [42] K. T. Faber, A. G. Evans, “Crack deflection Process-II, Theory”, Acta. Metall., 31, [4], 1983, pp. 577-584.
    [43] L. S. Sigl, P. A. Matage, B. J. Dalgleish, R. M. Mcmekking, A. G. Evans, “On the Toughness of Brittle materials reinforced with a Ductile phase”, Acta. Metall., 36, [4], 1988, pp. 945-953.
    [44] B. D. Flinn, M. Ruhle, A. G. Evans, “Toughness in Composites of Al2O3 Reinforced with Al”, Acta. Metall., 37, [11], 1989, pp. 3001.
    [45] W. H. Tuan and R. J. Brook, “Reactive Sintering of Al2O3 / Ni Composites”, Proc. Brit. Ceram. Soc., No.10, 1992, pp. 95.
    [46] F. Erdogan, P. F. Joseph, “Toughening of ceramics through crack bridging by ductile Particle”, J. Am. Ceram. Soc., 72, [2], 1989, pp. 262.
    [47] M. F. Ashby, F. J. Blunt, M. Bannister, “Flow characteristics of highly Constrained Metal wire”, Acta. Metall., 37, [7], 1989, pp. 1847.
    [48] H. E. Deve, A. G. Evans, G. R. Odeette, R. Mehrabian, M. L. Emilian, R. J. Heckt, “Ductile Reinforcement Toughening of γ-TiAl effect of Debonding and Ductility”, Acta. Metall., 38, 1990, pp. 1491.
    [49] Davidge, R. W. and Green, T. J., “The Strength of Two - Phase Ceramic / Glass Materials”, J. Mater. Sci., 3, 1968, pp. 629.
    [50] Chermant, J. L. and Osterstock, F., “Fracture Toughness and Fracture of WC-Co Composites”, J. of Mater. Sci., 11, 1976, pp. 1939-1951.
    [51] M. Slesar, J. Dusza, and L. Parilak, “Micro-mechanics of Fracture in WC-Co Hard-metals ”, Inst. Phys. Conf. Ser., 75, 1986, pp. 657.
    [52] D.B. Marshall and B.R. Lawn, “An Indentation Technique for Measuring Stresses in Tempered Glass Surfaces”, J. Am. Ceram. Soc., 60, 1977, pp. 86-87.
    [53] B.R. Lawn and E.R. Jr. Fuller, “Measurement of Thin-Layer Surface Stresses by Indentation Fracture”, J. Mater. Sci., 19, 1984, pp. 4061-4067.
    [54] M. F. Gruninger, B.R.Lawn, E.N. Farabaugh and J.B. Jr. Wachtman, “Measurement of Residual Stresses in Coating on Brittle Substrates by Indentation”, J. Am. Ceram. Soc., 70, 1987, pp. 344-348.
    [55] B.D. Cullity, “Elements of X-ray Diffraction”, 2nd ed., Ch. 16, Reading, MA, Addison-Wesley, 1978.

    [56] I.C. Noyan and J.B. Cohen, “Residual Stress, Measurement by Diffraction and Interpretation”, Springer-Verlag, NY (1987).
    [57] 吳翼貽,“以X光照繞射量測殘留應力”,科儀新知,13 [6],1992年,pp.23-34。
    [58] 黃炳淮,“以X光照繞射量測殘留應力”,科儀新知,22 [2],1992年,pp.23-30。
    [59] J.B. Cohen, H. Dolle, M.R. James, “Stress Analysis from Powder Diffraction Patterns”, NBS Special Publication 567, Gaithersburg, Maryland, 1980, pp. 453-477.
    [60] 吳政忠、施光亮、莊東漢, “超音波量測SAE4130鋼板之焊接殘留應力”,檢測科技,14 [5] ,1996年,pp.264。
    [61] Y. Iwashimizu and K. Kubomura, “Stress-induced rotation of polarization directions of elastic waves in slightly anisotropic materials”, International Journal of Solids and Structures, 9, [1] , 1973, pp. 99-114.
    [62] Kohji Toda, “A technique for measuring strain in layered structure media”, Sensors and Actuators A: Physical, 43, [1-3], 1994, pp. 213-216.
    [63] Yi-Wang Bao, Chien-Cheng Liu, Jow-Lay Huang, “Effects of residual stresses on strength and toughness of particle-reinforced TiN/Si3N4 composite: Theoretical investigation and FEM simulation”, Materials Science and Engineering A 434, 2006, pp. 250-258.
    [64] C.L. Xu, “Mechanics of Elasticity”, Education Press of China, Beijing, 1978, pp. 188-190.
    [65] S. N. Chou, H. H. Lu, D. F. Lii, J. L. Huang, “Investigation of residual stress effects in an alloy reinforced ceramic/metal composite”, Journal of Alloys and Compounds, In Press, accepted 18 February 2008, available online 8 April 2008.
    [66] S. N. Chou, H. H. Lu, D. F. Lii, J. L. Huang, “Processing and Physical Properties of Al2O3 / Aluminum Alloy Composites”, Ceramics International, In Press, accepted 2nd September 2007, available online 25 September 2007.
    [67] S. N. Chou, J. L. Huang, D. F. Lii, H. H. Lu, “The mechanical properties of Al2O3/aluminum alloy A356 composite manufactured by squeeze casting”, Journal of Alloys and Compounds, 419, 2006, pp. 98-102.
    [68] W. H. Tuan, M. C. Lin and H. H. Wu, “Preparation of Al2O3/Ni composites by pressureless sintering in H2”, Ceramics International, 21, [4], 1995, pp. 221-225.
    [69] S. N. Chou, J. L. Huang, D. F. Lii, H. H. Lu, “The mechanical properties and microstructure of Al2O3/aluminum alloy composites fabricated by squeeze casting”, Journal of Alloys and Compounds, 436, 2007, pp. 124-130.
    [70] Shuangjie Chu and Renjie Wu, “The structure and bending properties of squeeze-cast composites of A356 aluminium alloy reinforced with alumina particles”, Composites Science and Technology, 59, [1], 1999, pp. 157-162.
    [71] E. Le Pen and D. Baptiste, “Prediction of the fatigue-damaged behaviour of Al/Al2O3 composites by a micro–macro approach”, Composites Science and Technology, 61, [1], 2001, pp. 2317-2326.
    [72] Zheng LIU and Tao TU, “Solidified structure and solute segregation in Al2O3/A356-La alloy composites”, Rare Metals, 25, [3], 2006, pp. 231-236.
    [73] K.K. Tojek and D.J. Green, “Effect of Residual Stress on the Strength Distribution of Brittle Materials”, J. Am. Ceram. Soc., 72, 1989, pp. 1885-1890.
    [74] Ching-An Jeng, Jow-Lay Huang, Show-Yueh Lee, Bing-Hwait Hwang, “Erosion damage and surface residual stress of Cr3C2/Al2O3 composite”, Materials Chemistry and Physics, 78, 2002, pp. 278–287.
    [75] A. Borbely, H. Biermann, O. Hartmann, “FE investigation of the effect of particle distribution on the uniaxial stress–strain behaviour of particulate reinforced metal-matrix composites”, Mater. Sci. Eng. A 313, [1-2], 2001, pp. 34-35.
    [76] 劉國雄、林樹均、李勝雄、鄭晃忠、葉鈞蔚, “工程材料科學” 第九章 材料之強化,全華科技圖書,1991年,pp. 433-486。

    下載圖示 校內:2009-07-21公開
    校外:2009-07-21公開
    QR CODE