簡易檢索 / 詳目顯示

研究生: 顏瑜
Yen, Yu
論文名稱: 考量個人會員尖離峰票價策略與選擇行為之鐵路座位配置
A Railway Seat Allocation Model Considering Peak and Off-peak Pricing Strategies and Choice Behavior for Personal Membership Passengers
指導教授: 鄭永祥
Cheng, Yung-Hsiang
學位類別: 碩士
Master
系所名稱: 管理學院 - 交通管理科學系
Department of Transportation and Communication Management Science
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 70
中文關鍵詞: 個人會員鐵路座位配置需求移轉選擇行為NSGA-II
外文關鍵詞: Railway Seat Allocation, Personal Membership, Demand Transfer, Choice Behavior, NSGA-II
相關次數: 點閱:69下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於運輸服務具尖離峰之特性,當尖離峰之旅運量差距過大,會有供需不平衡之現象,造成尖峰時段載運量供不應求,導致車廂內擁擠、服務水準下降;而離峰時段供過於求,供給未能有效運用。為解決尖離峰特性造成的供需不平衡現象,可採取時間差別定價,在離峰時段提供優惠票使部分尖峰時段需求移轉至離峰時段。近年來,鐵路產業陸續引進會員制度,透過會員制度能有效掌握旅客特性,而提供會員離峰優惠票能有助於改善尖離峰特性,除此之外亦能吸引旅客加入會員。
    目前沒有相關研究把提供優惠票後需求移轉的現象納入座位配置模型中,因此本研究針對不同旅客特性分群,將提供會員離峰優惠票後產生的移轉需求現象加入座位配置模型中,由於針對旅客特性分群時可能會有誤差,故本研究亦考量到不確定性。除此之外,不同旅客群有不同選擇行為,因此選擇行為亦為座位配置之考量。
    由於本研究為多目標問題,故採取NSGA-II求解座位配置,並以蒙地卡羅模擬需求產生。本研究設計不同情境,模擬不同情境下的預期總營收與乘載率,以比較不同情境中座位配置之表現。根據情境模擬之結果,透過提供離峰優惠票能有效改善尖離峰特性,但若提供之優惠折扣較大,則在營收方面則可能有負面影響。而考量不確定性與選擇行為能有效提升乘載率與總營收。最後本研究亦加入公平性,並求出一組權衡解,使鐵路營運者能在公平性與營收中選擇適當方案。

    Transportation has characteristic of peak time and off-peak time. In order to solve unbalanced supply-demand resulted by characteristic of peak time and off-peak time, we can adopt to make price at different time. In recent years, railway industry launches membership system. Membership system can not only help railway companies know characteristic of passengers, but also provides off-peak discount tickets to improve characteristic of peak time and off-peak time. Our study adds different pricing at peak time and off-peak time strategy into seat allocation model. In the meanwhile, we use NSGA-II to solve seat allocation problem. In the scenario analysis, we know that providing off-peak discount tickets can help to effectively improve characteristic of peak time and off-peak time. However, more discount might be harmful for revenue. Besides, we also consider uncertainty of proportion of price sensitive passengers and choice behavior. In this way, we find out load factor and total revenue are greatly higher. Finally, our research also considers fairness to find a set of balanced solution. Based on that, railway companies can choose appropriate plan considering fairness and maximum revenue.

    目錄 圖目錄 iii 表目錄 iv 第一章 緒論 1 1.1 研究背景與動機 1 1.2研究目的 4 1.3研究範圍 4 1.4研究架構 4 第二章 文獻回顧 6 2.1 座位配置 6 2.2 旅客選擇行為 8 2.3 公平性 9 2.4 多目標最佳化 10 2.5 NSGA-II 11 2.6 蒙地卡羅模擬方法 12 2.7 小結 13 第三章 研究方法 14 3.1基本假設 15 3.2個人會員移轉需求之座位配置模型 15 3.3旅客選擇偏好之座位配置模型 21 3.4 考量公平性之座位配置模型 27 3.5 整合模型 28 第四章 求解過程 31 4.1 NSGA-II 流程 31 4.2 蒙地卡羅模擬流程 36 第五章 情境分析與討論 39 5.1 情境假設 39 5.2 情境分析─提供會員離峰優惠票 44 5.3 情境分析─提高尖峰票價 50 5.4 情境分析─考量敏感比例不確定性與選擇行為 53 5.5 情境分析─考量公平性 59 第六章 結論與建議 63 6.1 結論 63 6.2 研究貢獻 65 6.3 研究限制與建議 67 參考文獻 68

    國外參考文獻
    1. Belobaba, P. P. (1989). OR practice—application of a probabilistic decision model to airline seat inventory control. Operations Research, 37(2), 183-197.
    2. Belobaba, P. (1987). Air travel demand and airline seat inventory management. Cambridge, MA: Flight Transportation Laboratory, Massachusetts Institute of Technology,[1987].
    3. Ben-Akiva, M., & Bierlaire, M. (2003). Discrete choice models with applications to departure time and route choice. Handbook of transportation science, 32
    4. Chen, L., & Homem-de-Mello, T. (2010). Mathematical programming models for revenue management under customer choice. European Journal of Operational Research, 203(2), 294-305.
    5. Chen, L., & Homem-de-Mello, T. (2010). Mathematical programming models for revenue management under customer choice. European Journal of Operational Research, 203(2), 294-305.
    6. Cheng, Y.-H., & Liang, Z.-X. (2014). A strategic planning model for the railway system accident rescue problem. Transportation research part E: logistics and transportation review, 69, 75-96.
    7. Cross, R. G., Higbie, J. A., & Cross, Z. N. (2011). Milestones in the application of analytical pricing and revenue management. Journal of Revenue and Pricing Management, 10(1), 8-18.
    8. de Boer, S. V., Freling, R., & Piersma, N. (2002). Mathematical programming for network revenue management revisited. European Journal of Operational Research, 137(1), 72-92.
    9. Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16): John Wiley & Sons.
    10. Deb, K. (2014). Multi-objective optimization. In Search methodologies (pp. 403-449). Springer US.
    11. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182-197.
    12. Kroese, D. P., Brereton, T., Taimre, T., & Botev, Z. I. (2014). Why the Monte Carlo method is so important today. Wiley Interdisciplinary Reviews: Computational Statistics, 6(6), 386-392.
    13. Lee, T. C., & Hersh, M. (1993). A model for dynamic airline seat inventory control with multiple seat bookings. Transportation science, 27(3), 252-265.
    14. Littlewood, K. (1972). Forecasting and control of passenger bookings. Airline Group International Federation of Operational Research Societies Proceedings, 1972, 12, 95-117.
    15. McGill, J. I., & Van Ryzin, G. J. (1999). Revenue management: Research overview and prospects. Transportation science, 33(2), 233-256.
    16. Robinson, L. W. (1995). Optimal and approximate control policies for airline booking with sequential nonmonotonic fare classes. Operations Research, 43(2), 252-263.
    17. Smith, B. C., Leimkuhler, J. F., & Darrow, R. M. (1992). Yield management at American airlines. interfaces, 22(1), 8-31.
    18. Talluri, K., & Van Ryzin, G. (2004). Revenue management under a general discrete choice model of consumer behavior. Management Science, 50(1), 15-33.
    19. Tzeng, G. H., Cheng, H. J., & Huang, T. D. (2007). Multi-objective optimal planning for designing relief delivery systems. Transportation Research Part E: Logistics and Transportation Review, 43(6), 673-686.
    20. Williamson, E. L. (1992). Airline network seat inventory control: Methodologies and revenue impacts. Massachusetts Institute of Technology,

    中文參考文獻
    21. 台灣高速鐵路股份有限公司(2016), 法人說明會報告。
    22. 張涵寧. (2016). 考慮公平性及連續班車間需求相互不獨立之鐵路座位配置模式. 成功大學, Available from Airiti AiritiLibrary database. (2016年)
    23. 曾煥宗. (2016). 台灣高鐵休閒旅客出發時間選擇行為分析. 成功大學, Available from Airiti AiritiLibrary database. (2016年)

    無法下載圖示 校內:2023-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE