簡易檢索 / 詳目顯示

研究生: 劉孟修
Liu, Meng-hsiu
論文名稱: 兩種液體在側壁注入型微混合器之混合效率研究
Study of Mixing Efficiency in a Micromixer with Sidewall Injection of Another Fluid
指導教授: 王振源
Wang, Chen-yuan
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 94
中文關鍵詞: 微混合器數值擴散
外文關鍵詞: micromixer, numerical diffusion
相關次數: 點閱:115下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以數值方法模擬不同性質流體在微流道中混合的情形, 探討雷諾數、幾何結構, 流體性質和支流道位置對混合效果的影響。首先, 就不同離散方法比較其模擬結果差異, 其結果顯示數值擴散造成的影響非常大, 因此求解速度和濃度場時, 需選用高階離散方法來減少數值擴散產生。在選定模擬方法之後, 改變微流道幾何結構, 以加入擋板的方式, 觀察流場變化及混合特性, 加入擋板可以
    延長流體在流道停留的時間, 增加流體間分子擴散的效果, 在高雷諾數時更可產生迴流, 攪拌流體使混合強度提高。接著再將側壁注入流體改為甘油水溶液, 藉由改變甘油含量來觀察不同流體性質(如密度, 黏滯力和擴散係數) 下, 其混合行為之差異。在高雷諾數下, 倘若甘油水溶液質量分率增加, 注入口雷諾數則會變小, 因此擋板後產生迴流的範圍也隨之減小。而低雷諾數時, 分子擴散為流體混合的主要因素, 故混合效果隨著擴散係數的大小而增減。最後再嘗試改變支流道注入位置, 在高雷諾數時, 將支流道設在迴流產生處有助於流體混合。

    In this thesis, the fluids mixing process of different fluid properties in a microchannel is studied numerically. The effects of Reynolds number, geometric structure, fluid properties and location of sidewall injection in mixing efficiency are investigated. At first, compare the different of discretization methods, with the results that the numerical diffusion had a great influence on it. Therefore, we must choose a high-order discretization scheme to solve the velocity and concentration profile. Then, we set baffles in the microchannel and observe the change of flow field and mixing characteristic. Inserting baffles can extend the staying period of fluids, and expand molecular diffusion as well. Furthermore, it can induce recirculation which stirring the fluids to rise the mixing intensity in high Reynolds number. Afterwards, we replace the sidewall injection fluid with a solution of glycerol in water. By varying the glycerol content of the glycerol/water solution, the variation in mixing behavior with changes in the difference in the properties of two fluids (e.g., viscosity, dnesity and diffusivity) was investigated. As the glycerol content increase, Reynolds number wolud decrease as well as the range of recirculation. Molecular diffusion is the main factor in low Reynolds number. For this reason, the increased mixing efficiency would follow the increase of diffusivity. At last, we change the location of sidewall injection next to the recirculation area and we found that is helpful for the fluid mixing in high Reynolds number.

    目錄 中文摘要 i 英文摘要 ii 致謝 iv 表目錄 viii 圖目錄 ix 符號表 xiii 1 導論 1 1.1 簡介 1 1.2 文獻回顧 2 1.2.1 被動式微混合器 2 1.2.2 主動式微混合器 6 1.3 研究動機 7 1.4 流體的連續性 7 2 數學與物理模式 9 2.1 基本假設 9 2.2 統御方程式 9 2.3 混合強度 11 2.4 初始條件和邊界條件 12 3 數值方法 14 3.1 數值演算法 14 3.1.1 離散方法 14 3.1.2 SIMPLE演算法 16 3.2 收歛標準 17 3.3 暫態分析 18 4 結果與討論 19 4.1 二維問題 19 4.2 三維問題 21 4.3 擋板的影響 22 4.4 流體性質的影響 24 4.4.1 水與甘油水溶液的混合 24 4.4.2 水與酒精的混合 27 4.5 支流道注入位置的影響 28 5 結論與未來工作 29 5.1 結論 29 5.2 未來工作 30 參考文獻 31

    [1] Nam-Trung Nguyen and Zhigang Wu, “Micromixers-a review,” J. Micromech. Microeng., Vol. 15, R1-R16, 2005.
    [2] Andrew Evan Kamholz, Bernhard. H. Weigl, Bruce A. Finlayson, and Paul Yager, “Quantitative Analysis of Molecular Interaction in a Microfluidic Channel: The T-Sensor,” Analytical Chemistry, Vol. 71, No. 23, pp. 5340-5347, 1999.
    [3] Rustem F. Ismagilov, Abraham. D. Stroock, Paul J. A. Kenis, and George Whitesides, “Experimental and Theoretical Scaling Laws for Transverse Diffusive Broadening in Two-Phase Laminar Flows in Microchannels,” Appl. Phys. Lett., Vol. 76, No. 17, pp. 2376-2378, 2000.
    [4] Mingqiang Yi and Haim H. Bau, “The Kinematics of Bend-Induced Mixing in Micro-Conduits,” J. Heat Fluid Flow, Vol. 24, pp. 645-656, 2003.
    [5] Seck Hoe Wong, Patrick Bryant, Michael Ward, and Christopher Wharton, “Investigation of Mixing in a Cross-Shaped Micromixer with Static Mixing Elements for Reaction Kinetics Studies,” Sensors and Actuators B, Vol. 95, pp.414-424, 2003.
    [6] T. T. Veenstra, T. S. J. Lammerink, M. C. Elwenspoek, and A. van den Berg, “Characterization Method for a New Diffusion Mixer Applicable in Micro Folw Injection Analysis Systems,” J. Micromech. Microeng., Vol. 9, pp. 199-202, 1999.
    [7] Fiona G. Bessoth, Andrew J. deMello, and Andreas Manz, “Microstructure for Efficient Continuous Flow Mixing,” Anal. Commun., Vol. 36, pp. 213-215, 1999.
    [8] Jens Branebjerg, Peter Gravesen, Jens Peter Krog, and Claus Rye Nielsen, “Fast Mixing by Lamination,” Proc. MEMS’96, 9th IEEE Int. Worksohp Micro Electromechanical System (San Diego, CA), pp. 441-446, 1996.
    [9] Ryo Miyake, Theo S. J. Lammerink, Miko Elwenspoek, “Micro Mixer with Fast Diffusion,” Proc. MEMS’93, 6th IEEE Int. Workshop Micro Electromechanical System (San Diego, CA), pp. 248-253, 1993.
    [10] Joel Voldman, Martha L. Gray, and Martin A. Schmidt, “An Integrated Liquid Mixer/Valve,” J. Microelectromech. Syst., Vol. 9, No. 3, pp. 295-302, 2000.
    [11] Hengzi Wang, Pio Iovenitti, Erol Harvey, and Syed Masood, “Optimizing Layout of Obstacles for Enhanced Mixing in Microchannels,” Smart Mater. Struct, Vol. 11, pp. 662-667, 2002.
    [12] Virginie Mengeaud, Jacques Josserand, and Hubert H. Girault, “Mixing Processes in a Zigzag Microchannel: Finite Element Simulations and Optical Study,” Analytical Chemistry, Vol. 74, pp. 4279-4286, 2002.
    [13] Robin H. Liu, Mark A. Stremler, Kendra V. Sharp, Michael G. Olsen, Juan G. Santiago, Ronald J. Adrian, Hassan Aref, and David J. Beebe, “Passive Mixing in a Three-Dimensional Serpentine Microchannel,” J. Microelectromech. Syst., Vol. 9, No. 2, pp. 190-197, 2000.
    [14] Sung-Jin Park, Jung Kyung Kim, Junha Park, Seok Chung, Chanil Chung, and Jun Keun Chang, “Rapid Three-Dimensional Passive Rotation Micromixer Using the Breakup Process,” J. Micromech. Microeng., Vol. 14, pp. 6-14, 2004.
    [15] 洪嘉亨, 擋板與側壁注入對微型混合器效率之影響的暫態觀察, 國立成功大學機械工程研究所, 碩士論文, 2007.
    [16] Abraham D. Strook, Stephan K. W. Dertinger, Armand Ajdari, Igor Mezi´c, Howard A. Stone, George M. Whitesides, “Chaotic Mixer for Microchannels,” Science, Vol. 295, pp. 647-651, 2002.
    [17] Arnaud Bertsch, Stephan Heimgartner, Peter Cousseau, and Philippe Renaud, “Static Micromixers Based on Large-Scale Industrial Mixer Geometry,” Lab on a Chip, Vol. 1, pp.56-60, 2001.
    [18] Vibhu Vivek, Yi Zeng, and Eun Sok Kim, “Novel Acoustic-Wave Micromixer,” Proc. of the IEEE Micro Electro Mechanical Systems(MEMS), pp. 668-673, 2000.
    [19] Jr-Hung Tsai, and Liwei Lin, “Active Microfluidic Mixer and Gas Bubble Filter Driven by Thermal Bubble Micropump,” Sensors and Actuators, A 97-98, pp. 665-671, 2002.
    [20] Liang-Hsuan Lu, Kee Suk Ryu, and Chang Liu, “A Magnetic Microstirrer and Array for Microfluidic Mixing,” J. Microelectromech. Syst., Vol. 11, NO. 5, pp.462-469, 2002.
    [21] M. H. Oddy, J. G. Santiago, and J. C. Mikkelsen, “Electrokinetic Instability Micromixing,” Analytical Chemistry, Vol. 73, No. 24, pp. 5822-5832, 2001.
    [22] Ian Glasgow, Samuel Lieber, and Nadine Aubry, “Parameters Influencing Pulsed Flow Mixing in Microchannels,” Analytical Chemistry, Vol. 76, No. 16, pp. 4825-4832, 2004.
    [23] Gad-el-Hak, “The Fluid Mechanics of Microdevices-The Freeman Scholar Lecture,” Journal of Fluids Engineering, Vol. 121, pp. 5-33, 1999.
    [24] T. J. Chung, Continuum Mechanics, Prentice-Hall International, Inc., 1988.
    [25] S. Hardt, and F. Sch¨onfeld, “Laminar Mixing in Different Interdigital Micromixers: II. Numerical Simulations,” AIChE Journal, Vol. 49, No. 3, pp. 578-584, 2003.
    [26] S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, D. C., 1980.
    [27] A. Soleymani, E. Kolehmainen, I. Turunen, “Numerical and Experimental Investigations of Liquid Mixing in T-Type Micromixers,”Chemical Engineering Journal, Vol. 135, pp. S219-S228, 2008.

    下載圖示
    2010-07-31公開
    QR CODE