| 研究生: |
張哲與 Chang, Che-Yu |
|---|---|
| 論文名稱: |
區間平均測速執法對於城際公路行車速度之影響 Effects of Average Speed Enforcement on Operating Speeds of Intercity Highways |
| 指導教授: |
李威勳
Lee, Wei-Hsun |
| 共同指導教授: |
胡守任
Hu, Shou-Ren |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 電信管理研究所 Institute of Telecommunications Management |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 111 |
| 中文關鍵詞: | 區間平均測速執法 、速度管理 、前後對照分析 、羅吉斯迴歸 、勝算比 |
| 外文關鍵詞: | Average speed enforcement, Speed management, Before–and–after study, Logistic regression, Odds ratio |
| 相關次數: | 點閱:245 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
區間平均測速(ASE)系統是科技執法的方式之一,有別於以往傳統定桿測速相機利用定點測速方式以判斷駕駛人是否超速,區間平均測速系統透過計算空間平均速率的方式,判別每輛車輛通過執法區間時是否超速。在此種新型態執法方式的設立之下,可有效避免駕駛人行駛於測速相機前,慣於急煞又隨即加速之危險駕駛行為。
萬里隧道是臺灣第一個設立區間平均測速系統的執法路段,目的是為了改善駕駛人於隧道內之超速行為。根據新北市交通警察大隊初步分析結果顯示,區間平均測速系統對於車輛駕駛人的降速效果及降低速度變異的效果皆十分顯著,因此許多地方政府接連提出建置區間平均測速系統之申請。
為了瞭解區間平均測速系統對實際車流速度所造成之影響,本研究涵蓋三個研究地點,分別為新北市萬里隧道、北宜公路19 K至23.1 K,以及臺61線122.3 K至130.2 K通霄往苑裡南下路段。透過前後對照研究分析結果顯示,區間平均測速系統對於平均速率、八十五百分位行車速率,以及速度變異,皆有顯著的降低效果。此外,本研究同時利用羅吉斯迴歸方法分析速度資料,透過模型得到超速事件的勝算比,探討駕駛人超速20公里以上之違規行為在架設區間平均測速系統前後之變化。研究結果顯示,儘管不同研究地點的道路幾何相差甚遠,亦或不同的車種差異,該測速系統設置後的超速事件之勝算降幅皆高達90%以上。最後,本研究在臺61線的案例中,另採用車輛偵測器(VD)記錄之車速資料加以分析,嘗試探討在區間平均測速執法區間內外的速度分布,是否因時空上差異而造成不同的降速效果,研究結果顯示車流速度降低的現象顯著。
Average speed enforcement (ASE) system is an intelligent law enforcement means to prevent road users from speeding behaviors and to make better compliance with the speed limit(s). It is viewed as a powerful way for speed management. Unlike traditional speed cameras which recognize the speeding events by recording spot speeds of each vehicle, ASE cameras record the mean speeds of vehicles within the enforced section, which effectively prevents drivers from the kangaroo driving behaviors.
In Taiwan, the first ASE system was installed in Wan-li tunnel in 2018 to prevent speeding behaviors occurring inside the tunnel. The results showed significant effects on reducing mean speeds and speed variations, leading to a large number of applications for ASE systems proposed by local governments. Therefore, it is crucial to investigate the effectiveness of ASE systems installed and implemented in Taiwan.
In this research, there are three study sites, namely Wan-li tunnel, Beiyi Highway 19 K to 23.1 K, and Provincial Highway No.61 from 122.3 K to 130.2 K for the southbound. The effects of ASE on average speeds, the 85th percentile speeds, and speed variations for the enforced sections are investigated by a before–and–after study. Moreover, the logistic regression method is applied to evaluate the effect of ASE enforcement on speeding behaviors more than 20 km/h over the speed limit via odds ratio comparisons. As the results show, the ASE system brings remarkable effects for decreasing the operating speeds and speed variations. The odds of speeding events decrease by over 90% regardless of different types of vehicles, different periods of the day, or different highway geometric designs. Finally, this study also analyzes the spatiotemporal effect of ASE systems by the speed data collected by vehicle detectors (VDs), which provides significant speed reduction results.
REFERENCES
1. Aarts, L., & van Schagen, I. (2006). Driving speed and the risk of road crashes: a review. Accid Anal Prev, 38(2), 215-224. doi:10.1016/j.aap.2005.07.004
2. Cascetta, E., Punzo, V., & Montanino, M. (2011). Empirical Analysis of Effects of Automated Section Speed Enforcement System on Traffic Flow at Freeway Bottlenecks. Transportation Research Record: Journal of the Transportation Research Board, 2260(1), 83-93. doi:10.3141/2260-10
3. Charlesworth, K. (2008). The effect of average speed enforcement on driver behaviour. IET Road Transport Information and Control-RTIC 2008 and ITS United Kingdom Members' Conference, 1-5.
4. Choudhary, P., Imprialou, M., Velaga, N. R., & Choudhary, A. (2018). Impacts of speed variations on freeway crashes by severity and vehicle type. Accid Anal Prev, 121, 213-222. doi:10.1016/j.aap.2018.09.015
5. Cirillo, J. A. J. P. r. (1968). Interstate system accident research study II, interim report II.
6. De Pauw, E., Daniels, S., Brijs, T., Hermans, E., & Wets, G. (2014). Automated section speed control on motorways: an evaluation of the effect on driving speed. Accid Anal Prev, 73, 313-322. doi:10.1016/j.aap.2014.09.005
7. Fitzpatrick, K. (2003). Design speed, operating speed, and posted speed practices (Vol. 504): Transportation Research Board.
8. Galata, A. J. I. A. p. I. i. (2007). La Prevenzione Nella Sicurezza Stradale: Risultati Tutor Primi 12 Mesi (Results of ‘Tutor’After 12 Months).
9. Garber, N. J., & Gadiraju, R. J. T. R. R. (1989). Factors affecting speed variance and its influence on accidents. 1213, 64-71.
10. Hoye, A. (2014). Speed cameras, section control, and kangaroo jumps-a meta-analysis. Accid Anal Prev, 73, 200-208. doi:10.1016/j.aap.2014.09.001
11. Hoye, A. (2015). Safety effects of section control--an empirical Bayes evaluation. Accid Anal Prev, 74, 169-178. doi:10.1016/j.aap.2014.10.016
12. Jateikienė, L., & Vaitkus, A. (2017). Average Speed Enforcement System Efficiency Assessment Model. The Baltic Journal of Road and Bridge Engineering, 12(1), 64-69. doi:10.3846/bjrbe.2017.08
13. La Torre, F., Meocci, M., & Nocentini, A. (2019). Safety effects of automated section speed control on the Italian motorway network. J Safety Res, 69, 115-123. doi:10.1016/j.jsr.2019.03.006
14. Lave, C. A. (1985). Speeding, Coordination, and the 55 Mph Limit. American Economic Review, 75(5), 1159-1164.
15. Montella, A., Imbriani, L. L., Marzano, V., & Mauriello, F. (2015). Effects on speed and safety of point-to-point speed enforcement systems: evaluation on the urban motorway A56 Tangenziale di Napoli. Accid Anal Prev, 75, 164-178. doi:10.1016/j.aap.2014.11.022
16. Montella, A., Persaud, B., D'Apuzzo, M., & Imbriani, L. L. (2012). Safety Evaluation of Automated Section Speed Enforcement System. Transportation Research Record: Journal of the Transportation Research Board, 2281(1), 16-25. doi:10.3141/2281-03
17. Montella, A., Punzo, V., Chiaradonna, S., Mauriello, F., & Montanino, M. (2015). Point-to-point speed enforcement systems: Speed limits design criteria and analysis of drivers’ compliance. Transportation Research Part C: Emerging Technologies, 53, 1-18. doi:10.1016/j.trc.2015.01.025
18. per l’Italia, A. (2017). Section control in italy (translated). In: Retrieved.
19. Punzo, V., & Cascetta, E. (2010). Impact on vehicle speeds and pollutant emissions of the fully automated section speed control scheme “Safety Tutor” on the Naples urban motorway. Paper presented at the SIDT–Scientific Seminar–External Costs of Transport Systems: Theory and Applications, Rome.
20. Soole, D. W., Watson, B. C., & Fleiter, J. J. (2013). Effects of average speed enforcement on speed compliance and crashes: a review of the literature. Accid Anal Prev, 54, 46-56. doi:10.1016/j.aap.2013.01.018
21. Transportation, U. D. o. (2009). Manual on Uniform Traffic Control Devices; for Streets and Highways: US Department of Transportation, Federal Highway Administration.
22. Yang, X., Lin, Y., Lu, Y., & Zou, N. (2013). Optimal Variable Speed Limit Control for Real-time Freeway Congestions. Procedia - Social and Behavioral Sciences, 96, 2362-2372. doi:10.1016/j.sbspro.2013.08.265
23. Yu, R., & Abdel-Aty, M. (2014). An optimal variable speed limits system to ameliorate traffic safety risk. Transportation Research Part C: Emerging Technologies, 46, 235-246. doi:10.1016/j.trc.2014.05.016
24. Zheng, Z., Ahn, S., & Monsere, C. M. (2010). Impact of traffic oscillations on freeway crash occurrences. Accid Anal Prev, 42(2), 626-636. doi:10.1016/j.aap.2009.10.009