| 研究生: |
薛漢鼎 Hsueh, Han-Ting |
|---|---|
| 論文名稱: |
矽、氧化銅及氧化鋅奈米線之成長及奈米線感測元件製作 Growth of Si, CuO and ZnO nanowires and the fabrication of nanowire sensors |
| 指導教授: |
張守進
Chang, Shoou-Jinn 洪飛義 Hung, Fei-Yi |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 奈米科技暨微系統工程研究所 Institute of Nanotechnology and Microsystems Engineering |
| 論文出版年: | 2012 |
| 畢業學年度: | 100 |
| 語文別: | 英文 |
| 論文頁數: | 129 |
| 中文關鍵詞: | 奈米線 、感測器 |
| 外文關鍵詞: | nanowires, sensors |
| 相關次數: | 點閱:55 下載:6 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究之主要目的為成長並量測分析一維奈米結構(奈米線)。本論文因不同之材料種類可分為三個部份。第一部份為探討矽奈米線之成長及元件量測,第二部份為氧化銅奈米線之成長及元件製做。最後第三部份為成長氧化鋅奈米線及其相關元件之製做量測。
首先在矽奈米線之部份,本實驗成功的在玻璃基板上直接以氣態-液態-固態(vapor-liquid-solid)的方法成長矽奈米線。藉由先在玻璃基板上沈積一層很薄的非晶矽(5nm a-Si:H),可在具有金催化劑之表面上,在500oC時成長出高密度垂直的奈米線。並且發現當未沈積此非晶矽時,則無法成長出矽奈米線,因此藉由此方法,可以在不同的基板上或不同的金屬電極上做選擇性的成長矽奈米線。利用以此方式在玻璃基板上製做矽奈米線之場發射元件,經由量測,可發現其臨界電壓為15V/μm, 且其場發射因子β約為1700。此外為了探討不同金催化劑含量對成長矽奈米線所造成之影嚮,當所沈積金的厚度由5奈米增加至15奈米時,可發現其成長出來的矽奈米線之半徑由90奈米增至490奈米,且其矽奈米線之長度由1.6微米降至1微米。而由其溼度特性之量測可發現其電流會隨著其相對溼度之高低而呈現線性之變化。經由實驗之結果,可以發現當金催化劑之厚度越薄時,其具有較高之感測反應。
在CuO的部份,本實驗成功的在Cu/CuO/玻璃上成長CuO奈米線。並且可以發現在成長CuO奈米線之後,在之前藉由濺鍍機沈積之CuO薄膜和Cu薄膜之間會有多孔結構之產生。由此方式成長之CuO奈米線其平均長度會隨著所沈積Cu薄膜的厚度增加而增加;另一方面,上述所形成之多孔結構也會隨著Cu薄膜厚度而增加。在量測其異丙醇(IPA)之特性上,由實驗結果可發現其所量測得的電流會隨著所注入異丙醇之濃度增加而減少。此外,由實驗結果可得知其異丙醇及相對溼度之感測嚮應會隨著奈米線的長度增加而增加。在另一方面,本實驗亦進行CuO奈米線的側向成長,並用其來量測對酒精之感測嚮應。當量測溫度在300度時,實驗數據顯示當所注入之酒精濃度為25, 50, 100, 200, 500和1000ppm時,其所量測到的嚮應分別為1.06, 1.11, 1.14, 1.18, 1.24及1.27。且其感測嚮應會隨著量測溫度之增加而上升。最後,本論文亦在玻璃基板上製做CuO奈米線之場發射元件,並量測其場發射特性。
在氧化鋅奈米線方面,本論文使用氣相傳輸方法(vapor phase transportation)及水浴法(hydrothermal process)這兩種方式來成長氧化鋅奈米線。此外,藉由適當的參數,藉由反應式濺鍍方式來沈積氧化亞銅(Cu2O),並在氧化鋅奈米線上沈積Cu2O。藉由SEM影像,發現Cu2O可以填滿氧化鋅奈米線之間隔,並達到很好的表面覆蓋率,而形成同軸的p-Cu2O/n-ZnO奈米線,且其亦呈現出典型之整流特性(電流-電壓曲線)。且藉由量測其光亮暗電流特性亦呈現出大的光嚮應和反應快速。此外,本論文亦藉由水浴法,在低溫下在軟性基板上成長氧化鋅奈米線且同時量測其相對溼度之嚮應。藉由電子顯微鏡之影像可發現所成長之氧化鋅奈米線其平均長度及半徑分別為0.6μm及50nm,並量測此氧化鋅奈米線在不同溼度環境下之嚮應。
The main goal of this dissertation is the growth and analyses of 1D semiconducting nanowires. The dissertation is divided into three sections due to different kinds of material. The first one is the investigation of silicon nanowires and the second is the growth and analyses of CuO nanowires. Finally, ZnO nanowire-based devices are also demonstrated.
In the beginning of this dissertation, high density silicon nanowires (SiNWs) are selectively grown on Cr/glass template with a very thin 5-nm-thick a-Si:H layer at 500oC by vapor-liquid-solid process using Au-Si nano-particles as catalyst. It is found that SiNWs cannot be grown without the a-Si:H layer. Field emitters using these SiNWs are also fabricated on glass substrate. It was found that threshold field of the fabricated field emitters was 15 V/m and the field enhancement factor, β, of the fabricated SiNWs field emitter was around 1700. In order to further investigate the growth of SiNWs, different distributions of Au catalyst are utilized to grow SiNWs. It is found that average length of Si nanowires decreased from 1.6 to 1 μm while the diameter of Si nanowires increase from 90 to 490 nm as we increase the initial Au catalytic layer thickness from 5 nm to 15 nm. While measuring their humidity properties, it is also found that current measured from these Si nanowires decreased monotonically with RH. Furthermore, it was found that samples with a thinner Au layer thickness could provide a larger sensor response.
For CuO nanowires, growth of CuO nanowires on Cu/CuO/glass templates is reported. It is found that porous structures are formed at the interface between sputtered CuO film and Cu layer after annealing. The average length of the nanowires and thickness of the porous structure both increase monotonically as we increase the initial thickness of the copper film. The CuO nanowires are used to fabricate isopropyl alcohol (IPA) sensors. With a 5V applied bias, the current became smaller as the isopropyl alcohol is injected into the sealed test chamber. Furthermore, the measured responses of IPA and humidity are larger for the sensors with longer CuO nanowires. Lateral growth of CuO nanowires is also demonstrated to fabricate the ethanol sensor. The sensing responses measured at 300oC were around 1.06, 1.11, 1.14, 1.18, 1.24, and 1.27 when the concentration of injected ethanol gas were 25, 50, 100, 200, 500, and 1000 ppm, respectively. Also, CuO nanowires tend to exhibit higher response to ethanol gas with increasing sensing temperature. A CuO nanowire-based field emitter is also fabricated. Instead of fabricating CuO field emitter on copper foil or copper substrate, glass is utilized as the substrate for CuO emitter.
For the aspect of ZnO nanowires in this dissertation, vapor phase transportation and hydrothermal process are utilized to grow ZnO nanowires. With proper sputtering parameters, the deposited Cu2O could fill the gaps between the ZnO nanowires with good step coverage to form coaxial p-Cu2O/n-ZnO nanowires with a rectifying current-voltage characteristic. Furthermore, the fabricated coaxial p-Cu2O/n-ZnO nanowire photodiodes exhibit reasonably large photocurrent-to-dark-current contrast ratio and the fast responses. We also grow ZnO nanowires on flexible substrate by hydrothermal process and the fabrication of ZnO NW-based humidity sensor. It is found that average length and diameter of the ZnO NWs were 0.6 μm and 50 nm, respectively. The sensing properties are also measured with different humidity.
Reference
1. W. Y. Weng, S. J. Chang, C. L. Hsu, T. J. Hsueh, and S. P. Chang, “A Lateral ZnO Nanowire Photodetector Prepared on Glass Substrate”, J. Electrochem. Soc., vol. 157, no. 2, pp. K30-K33 (2010).
2. H. H. Hsieh, C. C. Wu, “Scaling behavior of ZnO transparent thin-film transistors”, Appl. Phys. Lett., vol. 89, pp. 041109-041111 (2006).
3. H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. L. Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, U. Gosels, “Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications”, Small, vol. 2, pp. 561-568 (2006).
4. J. Y. Yang, C. W. Liu, C. L. Cheng, J. T. Jeng, B. T. Dai, J. S. Lin, and K. C. Chen, “Photovoltaic characterizations of crisscrossed-silicon-nanorod solar cells”, IEEE Electron Device Lett., vol. 30, no. 12, pp. 1299-1301 (2009).
5. H. T. Hsueh, S. J. Chang, F. Y. Hung, W. Y. Weng, C. L. Hsu, T. J. Hsueh, S. S. Lin, and B. T. Dai, “Ethanol Gas Sensor of Crabwise CuO Nanowires Prepared on Glass Substrate”, J. Electrochem. Soc., 158, pp. J106-J109, (2011).
6. H.T. Hsueh, T. J. Hsueh, S. J. Chang, F. Y. Hung, C. L. Hsu, W. Y. Weng, C. W. Liu, Y. H. Lee, and B. T. Dai, “Selective Growth of Silicon Nanowires on Glass Substrate with an Ultrathin a-Si:H Layer”, Electrochem. Solid-State Lett., 13, K29 (2010).
7. A. M. Khoviv, T. A. Myachina, E. G. Goncharov, V. A. Logacheva, and E. V. Kasatkina, “Effect of vacuum annealing on the phase composition of In/SnO/Si, In/SnO2/Si and Sn/In2O3/Si heterostructures”, Inorg. Mater., vol. 42, no. 2, pp. 108-111 (2006).
8. S. Abedrabbo, D. E. Arafah, O. Gokce, L. S. Wielunski, M. Gharaibeh, O. Celik, and N. M. Ravindra, “Ion beam mixing for processing of nanostructure materials”, J. Electron. Mater., vol. 35, no. 5, pp. 834-839 (2006).
9. T. J. Hsueh, and C. L. Hsu, “Fabrication of gas sensing devices with ZnO nanostructure by the low-temperature oxidation of zinc particles”, Sens.. Actuators B, vol. 131, no. 2, pp. 572-576 (2008).
10. L. D. Doucette, F. Santiago, S. L. Moran, and R. J. Lad, “Heteroepitaxial growth of tungsten oxide films on silicon (100) using a BaF2 buffer layer”, J. Mater. Res., vol. 18, no. 12, pp. 2859–2868 (2003).
11. N. Kumar, A. Dorfman, and J. Hahm, “Fabrication of optically enhanced ZnO nanorods and microrods using novel biocatalysts”, J. Nanosci. Nanotechnol., vol. 5, no. 11, pp. 1915-1918 (2005).
12. I. Hotovy, V. Rehacek, P. Siciliano, S. Capone, and L. Spiess, “Sensing characteristics of NiO thin films as NO2 gas sensor”, Thin Solid Films, vol. 418, no. 1, pp. 9-15 (2002).
13. S. Pokhrel, C. E. Simion, V. Quemener, N. Barsan, and U. Weimar, “Investigations of conduction mechanism in Cr2O3 gas sensing thick films by ac impedance spectroscopy and work function changes measurements”, Sens. Actuators B, vol. 133, no. 1, pp. 78-83 (2008).
14. W. Y. Li, L. N. Xu, and J. Chen, “Co3O4 nanomaterials in lithium-ion batteries and gas sensors”, Adv. Funct. Mater., vol. 15, pp. 851-857 (2005).
15. L. Zhang, Q. Zhou, Z. Liu, X. Hou, Y. Li, and Y. Lv, “Novel Mn3O4 micro-octahedra: promising cataluminescence sensing material for acetone”, Chem. Mater., vol. 21, pp. 5066-5071 (2009).
16. P. M. Jones, J. A. May, J. B. Reitz, and E. I. Solomon, “Electron spectroscopic studies of CH3OH chemisorption on Cu2O and ZnO single-crystal surfaces: Methoxide bonding and reactivity related to methanol synthesis”, J. Am. Chem. Soc., vol. 120, no. 7, pp. 1506-1516 (1998).
17. A. E. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous-oxide - A review”, Solid-State Electron., vol. 29, no. 1, pp. 7-17 (1986).
18. B. Balamurugan, and B.R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation”, Thin Solid Films, vol. 396, no. 1-2, pp. 90-96 (2001).
19. A. H. MacDonald, “Superconductivity - Copper oxides get charged up”, Nature, vol. 414, no. 6862, pp. 409-410 (2001).
20. Y. P. Sukhorukov, N. N. Loshkareva, A. A. Samokhvalov, S. V. Naumov, A. S. Moskvin, and A. S. Ovchinnikov, “Magnetic phase transitions in optical spectrum of magnetic semiconductor CuO”, J. Magn. Magn. Mater., vol. 183, no. 3, pp. 356-358 (1998).
21. J. B. Reitz, and E. I. Solomon, “Propylene oxidation on copper oxide surfaces: Electronic and geometric contributions to reactivity and selectivity”, J. Am. Chem. Soc., vol. 120, no. 44, pp. 11467-11478 (1998).
22. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. M. Tarascon, “Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries”, Nature, vol. 407, no. 6803, pp. 496-499 (2000).
23. J. Ghijsen, L. H. Tjeng, J. Vanelp, H. Eskes, J. Westerink, G. A. Sawatzky, and M. T. Czyzyk, “Electronic-structure of Cu2O and CuO”, Phys. Rev. B, vol. 38, pp. 11322-11330 (1988).
24. C. T. Hsieh, J. M. Chen, H. H. Lin, and H. C. Shih, “Field emission from various CuO nanostructures”, Appl. Phys. Lett., vol. 83, no. 16, pp. 3383-3385 (2003).
25. Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tan, J. T. L. Thong, and C. H. Sow, “Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films”, Nanotechnol., vol. 16, no. 1, pp. 88-92 (2005).
26. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, P. Yang, “Catalytic growth of Znic oxide nanowires by vapor transport”, Adv. Mater., vol. 13, pp. 113-116 (2000).
27. Y. Wu, P. yang, “Direct Observation of Vapor-Liquid-Solid Nanowire growth”, J. Am. Chem. Soc., pp. 3165-3166 (2001).
28. J. F. Conley Jr, L. Stecker, and Y. Ono, “Directed assembly of ZnO nanowires on a Si substrate without a metal catalyst using a patterned ZnO seed layer”, Nanotechnology, vol. 16, pp. 292-296 (2005).
29. Y. Zhang, H. B. Jia, X. H. Luo, X. H. Chen, D. P. Yu, R. M. Wang, “Synthesis, Microstructure, and Growth Mechanism of Dendrite ZnO nanowires”, J. Phys. Chem. B, vol. 107, pp. 8289-8293 (2003).
30. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, “Microstructures of gallium nitride nanowires synthesized by oxide-assisted method”, Chem. Phys. Lett., vol. 345, pp. 377-380 (2001).
31. W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, S. T. Lee, “Oxide-assisted growth and optical characterization of gallium-arsenide nanowires”, Appl. Phys. Lett., vol. 78, pp. 3304-3306 (2001).
32. R. S. Wagner, W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”. Appl. Phys. Lett. vol. 4, pp. 89 (1964)
33. X. Jiang, T. Herricks, Y. Xia, Nano. Lett. vol. 12, pp. 293 (2002).
34. Y. Quan, D. Fang, X.Y. Zhang, S.Q. Liu and K.L. Huang, “Synthesis and characterization of gallium oxide nanowires via a hydrothermal method”, Mater. Chem. Phys., vol. 121, p. 142 (2010).
35. H. Wang, Y. Liu, M. Li, H. Huang, M. Zhong, H. Shen, “Hydrothermal growth of large-scale macroporous TiO2 nanowires and its application in 3D dye-sensitized solar cells”, Appl. Phys. A, vol. 97, pp. 25-29 (2009).
36. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater., vol. 15, pp. 464-466 (2003).
37. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. D. Johnson, Y. F. Zhang, R. J. Saykally, and P. D. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays”, Angew. Chem. Int. Ed., vol. 42, pp. 3031-3034 (2003).
38. X. Yan, Z. Li, R. Chen, and W. Gao, “Template growth of ZnO nanorods and microrods with controllable densities”, Cryst. Growth. Des. 8, 2406 (2008).
39. A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science, vol. 279, pp. 208 (1998).
40. D. P. Yu, Y. J. Xing, Q. L. Hang, H. F. Yan, J. Xu, Z. H. Xi and S. Q. Feng, “Controlled growth of oriented amorphous silicon nanowires via a solid–liquid–solid (SLS) mechanism”, Physica E, vol. 9, pp. 305 (2001).
41. R. Q. Zhang, Y. Lifshitz and S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires”, Adv. Mater., vol. 15 pp. 635 (2003).
42. J. S. Huang, C. Y. Hsiao, S. J. Syu, J. J. Chao and C. F. Lin, “Well-aligned single-crystalline silicon nanowire hybrid solar cells on glass”, Solar Energy Mater. Solar Cells, vol. 93, pp. 621 (2009).
43. K. L. Ng, J. Yuan, J. T. Cheung and K. W. Cheah, “Electron field emission characteristics of electrochemical etched Si tip array”, Solid State Commun., vol. 123, pp. 205 (2002).
44. L. Nillson, O. Groening, C. Emmenegger, O. Kuettel, E. Schaller and L. Schlapbach, “Scanning field emission from patterned carbon nanotube films”, Appl. Phys. Lett., vol. 76, pp. 2071 (2000).
45. Y. H. Yang, C. X. Wang, B. Wang, N. S. Xu and G. W. Yang, “ZnO nanowire and amorphous diamond nanocomposites and field emission enhancement”, Chem. Phys. Lett., vol. 403, pp. 248 (2005).
46. S. Iijima, Nature, “Helical microtubules of graphitic carbon”, vol. 354, pp. 56 (1991).
47. H. Zhu, C. Masarapu, J. Wei, K. Wang, D. Wu and B. Wei, “Temperature dependence of field emission of single-walled carbon nanotube thin films”, Physica E, vol. 41, pp. 1277 (2009).
48. Y. K. Ko, J. Geng, S. G. Jang, S. M. Yang, T. W. Jeong, Y. W. Jin, J. M. Kim and H. T. Jung, “Enhanced field emission of an electric field assisted single-walled carbon nanotube assembly in colloid interstices”, Carbon, vol. 47, pp. 1555 (2009).
49. K. F. Nielsen, “Growth of ZnO single crystals by the vapor phase reaction method”, J. Cryst. Growth, vol. 3-4, pp. 141 (1968).
50. Z. Fan and J. G. Lu, “Zinc oxide nanostructures: synthesis and properties”, J. Nanosci. Nanotechnol., vol. 5, pp. 1561 (2005).
51. Z. G. Bai, D. P. Yu, H. Z. Zhang, Y. Ding, X. Z. Gai, Q. L. Hang, G. C. Xiong and S. Q. Feng, “Nano-scale GeO2 wires synthesized by physical evaporation”, Chem. Phys. Lett., vol. 303, pp. 311 (1999).
52. Y. Q. Zhu, W. B. Hu, W. K. Hsu, M. Terrones, N. Grobert, J. P. Hare, H. W. Kroto, D. R. M. Walton and H. Terrones, “SiC–SiOx heterojunctions in nanowires”, J. Mater. Chem., vol. 9, pp. 3173 (1999).
53. Z. R. Dai, Z. W. Pan and Z. L. Wang, “Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation”, Adv. Funct. Mater., vol. 13, pp. 9 (2003).
54. F. G. Tarntair, C. Y. Wen, L. C. Chen, J.-J. Wu, K. H. Chen, P. F. Kuo, S. W. Chang, Y. F. Chen, W. K. Hong and H. C. Cheng, “Field emission from quasi-aligned SiCN nanorods”, Appl. Phys. Lett., vol. 76, pp. 2630 (2000).
55. Y. B. Li, Y. Bando, D. Golberg and K. Kurashima, “Field emission from MoO3 nanobelts”, Appl. Phys. Lett., vol. 81, pp. 3648 (2002).
56. L. W. Yu, M. Oudwan, O. Moustapha, F. Fortuna and P. R. I. Cabarrocas, “Guided growth of in-plane silicon nanowires”, Appl. Phys. Lett., vol. 95, pp. 113106 (2009).
57. C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng and I. C. Chen, “Vertical single-crystal ZnO nanowires grown on ZnO: Ga/glass templates”, IEEE Tran. Nanotechnol., vol. 4, pp. 649 (2005).
58. P. H. Chang, G. Berman and C. C. Shen, “Transmission electron microscopy of gold‐silicon interactions on the backside of silicon wafers”, J. Appl. Phys., vol. 63, pp. 1473 (1988).
59. S. W. Lee and G. S. Hwang, “Structure, energetics, and bonding of amorphous Au–Si alloys”, J. Chem. Phys., vol. 127, pp. 224710 (2007).
60. R. S. Wagner and W. C. Ellis, “Vapor‐liquid‐solid mechanism of single crystal growth”, Appl. Phys. Lett., vol. 4, pp. 89 (1964).
61. R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields”, Proc. R. Soc. London, Ser. A, vol. 119, pp. 173 (1928).
62. F. C. K. Au, K. W. Wong, Y. H. Tang, Y. F. Zhang, I. Bello and S. T. Lee, “Electron field emission from silicon nanowires”, Appl. Phys. Lett., vol. 75, pp. 1700 (1999).
63. D. Temple, W. D. Palmer, L. N. Yadon, J. E. Mancusi, D. Vellenga and G. E. Mcguire, “Silicon field emitter cathodes: Fabrication, performance, and applications”, J. Vac. Sci. Technol. A, vol. 16, pp. 1980 (1998).
64. S. Johnson, A. Markwitz, M. Rudolphi, H. Baumann, S. P. Oei, K. B. K. Teo and W. I. Milne, “Field emission properties of self-assembled silicon nanostructures on n- and p-type silicon”, Appl. Phys. Lett., vol. 85, pp.3277 (2004).
65. Y. L. Chueh, L. J. Chou, S. L. Cheng, J. H. He, W. W. Wu and L. J. Chen, “Synthesis of taperlike Si nanowires with strong field emission”, Appl. Phys. Lett., vol. 86, pp. 133112 (2005).
66. L. T. Chen, C. Y. Lee, and W. H. Cheng, “MEMS-based humidity sensor with integrated temperature compensation mechanism”, Sens. Actuators A, vol. 147, no. 2, pp. 522-528 (2005).
67. T. L. Yeo, T. Sun, and K. T. V. “Grattan, “Fibre-optic sensor technologies for humidity and moisture measurement”, Sens. Actuators A, vol. 144, no. 2, pp. 280-295 (2008).
68. P. G. Su and C. P. Wang, “Flexible humidity sensor based on TiO2 nanoparticles-polypyrrole-poly[3-(methacrylamino)propyl] trimethyl ammonium chloride composite materials”, Sens. Actuators B, vol. 129, no. 2, pp. 538-543 (2008).
69. A. Vijayan, M. Fuke, R. Hawaldar, M. Kulkarni, D. Amalnerkar, and R. C. Aiyer, “Optical fibre based humidity sensor using Co-polyaniline clad”, Sens. Actuators B, vol. 129, no. 1, pp. 106-112 (2008).
70. Z. M. Rittersma, A. Splinter, A. Bodecker and W. Benecke, “A novel surface-micromachined capacitive porous silicon humidity sensor”, Sens. Actuators B, vol. 68, no. 1-3, pp. 210-217 (2000).
71. P. Furjes, A. Kovacs, C. Ducso, M. Adam, B. Muller and U. Mescheder, “Porous silicon-based humidity sensor with interdigital electrodes and internal heaters”, Sens. Actuators B, vol. 95, no. 1-3, pp. 140-144 (2003).
72. A. Kovacs, D. Meister and U. Mescheder, “Investigation of humidity adsorption in porous silicon layers”, Phys. Status Solidi A, vol. 206, no. 6, pp. 1343-1347 (2009).
73. M. Ben-Chorin, F. Moller, F. Koch, W. Schirmacher and M. Eberhard, “Hopping transport on a fractal-ac conductivity of porous silicon”, Phys. Rev. B, vol. 51, no. 4, pp. 2199-2213 (1995).
74. Z. P. Sun, L. Liu, L. Zhang and D. Z. Jia, “Rapid synthesis of ZnO nano-rods by one-step, room-temperature, solid-state reaction and their gas-sensing properties”, Nanotechnol., vol. 17, no. 9, pp. 2266-2270 (2006).
75. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Appl. Phys. Lett., vol. 84, no. 18, pp. 3654-3656 (2004).
76. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan and Z. L. Wang, “Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts”, Appl. Phys. Lett., vol. 81, no. 10, pp. 1869-1871 (2002).
77. R. J. Wu, Y. L. Sun, C. C. Lin, H. W. Chen and M. Chavali, “Composite of TiO2 nanowires and Nafion as humidity sensor material”, Sens. Actuators B, vol. 115, no. 1, pp. 198-204 (2006).
78. A. Vomiero, S. Bianchi, E. Comini, G. Faglia, M. Ferroni, N. Poli and G. Sberveglieri, “In2O3 nanowires for gas sensors: morphology and sensing characterisation”, Thin Solid Films, vol. 515, no. 23, pp. 8356-8359 (2007).
79. K. M. Sawicka, A. K. Prasad and P. I. Gouma, “Metal oxide nanowires for use in chemical sensing applications”, Sens. Lett., vol. 3, no. 1, pp. 31-35 (2005).
80. J. Zhu and Y. Cui, “Photovoltaics more solar cells for less”, Nature Mater., vol. 9, no. 3, pp. 183-184 (2010).
81. L. Tsakalakos, J. Balch, J. Fronheiser and B. A. Korevaar, “Silicon nanowire solar cells,” Appl.Phys. Lett., vol. 91, no. 23, pp. 233117 (2007).
82. T. C. Cheng, J. Shieh, W. J. Huang, M. C. Yang, M. H. Cheng, H. M. Lin, and M. N. Chang, “Hydrogen plasma dry etching method for field emission application”, Appl.Phys. Lett., vol. 88, no. 26, pp. 263118 (2006).
83. S. Johnson, A. Markwitz, M. Rudolphi, H. Baumann, S. P. Oei, K. B. K. Teo and W. I. Milne, “Field emission properties of self-assembled silicon nanostructures on n- and p-type silicon”, Appl.Phys. Lett., vol. 85, no. 15, pp. 3277-3279 (2004).
84. K. Q. Peng, J. S. Jie, W. J. Zhang and S. T. Lee, “Silicon nanowires for rechargeable lithium-ion battery anodes”, Appl. Phys. Lett., vol. 93, no. 3, pp. 033105 (2008).
85. A. Tibuzzi, B. Margesin, M. Decarli, C.D. Natale, M. Zen, A. D. Amico and G. Soncini, “MOS-junction-based nanostructures by thermal oxidation of silicon wires for hydrogen detection”, IEEE Trans. Nanotechnol., vol. 3, no. 2, pp. 287-292 (2004).
86. Y. Chen, X. H. Wang, S. Erramilli, P. Mohanty, and A. Kalinowski, “Silicon-based nanoelectronic field-effect pH sensor with local gate control”, Appl. Phys. Lett., vol. 89, no. 22, pp. 223512 (2006).
87. Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka and R. S. Williams, “Sequence-specific label-free DNA sensors based on silicon nanowires”, Nano Lett., vol. 4, no. 2, pp. 245-247 (2004).
88. L. W. Yu, M. Oudwan, O. Moustapha, F. Fortuna and P. R. I. Cabarrocas, “Guided growth of in-plane silicon nanowires”, Appl. Phys. Lett., vol. 95, no. 11, pp. 113106 (2009).
89. C. L. Hsu, S. J. Chang, H. C. Hung, Y. R. Lin, C. J. Huang, Y. K. Tseng and I. C. Chen, “Vertical single-crystal ZnO nanowires grown on ZnO : Ga/glass templates”, IEEE Tran. Nanotechnol., vol. 4, no. 6, pp. 649-654 (2005).
90. X. F. Zhou, T. Jiang, J. Zhang, X. H. Wang and Z. Q. Zhu, “Humidity sensor based on quartz tuning fork coated with sol-gel-derived nanocrystalline zinc oxide thin film”, Sens. Actuators B, vol. 123, no. 1, pp. 299-305 (2007).
91. P. H. Chang, G. Berman and C. C. Shen, “Transmission electron-microscopy of gold-silicon interactions on the backside of silicon-wafers”, J. Appl. Phys., vol. 63, no. 5, pp. 1473-1477 (1988).
92. R. S. Wagner and W. C. Ellis, “Vapor‐liquid‐solid mechanism of single crystal growth”, Appl. Phys. Lett., vol. 4, pp. 89 (1964).
93. B. B. Li, D. P. Yu and S. L. Zhang, “Raman spectral study of silicon nanowires”, Phys. Rev. B, vol. 59, no. 3, pp. 1645-1648 (1999).
94. J. Y. Yang, C. W. Liu, C. L. Cheng, J. T. Jeng, B. T. Dai, J. S. Lin and K. C. Chen, “Photovoltaic Characterizations of Crisscrossed-Silicon-Nanorod Solar Cells”, IEEE Electron Device Lett., vol. 30, no. 12, pp. 1299-1301 (2009).
95. M. W. Shao, D. D. D. Ma and S. T. Lee, “Silicon nanowires – synthesis, properties, and applications”, European J. Inorganic Chem., vol. 27, pp. 4264-4278 (2010).
96. Y. Fujita, K. Matsuda-Jindo, “Electrical transport properties of Au-doped polycrystalline silicon: Hole trapping effect”, J. Appl. Phys., vol. 67, no. 6, pp. 2965-2968 (1990).
97. P. Saravanan, S. Alam, and G. N. Mathur, “A liquid-liquid interface technique to form films of CuO nanowhiskers”, Thin Solid Films, vol. 491, no. 1-2, pp. 168-172 (2005).
98. C. M. Tsai, G. D. Chen, T. C. Tseng, C. Y. Lee, C. T. Huang, W. Y. Tsai, W. C. Yang, M. S. Yeh, and T. R. Yew, “CuO nanowire synthesis catalyzed by a CoWP nanofilter”, Acta Mater., vol. 57, no. 5, pp. 1570-1576 (2009).
99. W. Z. Wang, Y. Zhuang, L. Li, “Structure and size effect of CuO nanowires prepared by low temperature solid-phase process”, Mater. Lett., vol. 62, no. 10-11, pp. 1724-1726 (2008).
100. X. Jiang, T. Herricks, and Y. Xia, “CuO nanowires can be synthesized by heating copper substrates in air”, Nano Lett., vol. 2, no. 12, pp. 1333-1338 (2002).
101. K. L. Zhang, C. Rossi, C. Tenailleau, P. Alphonse, and J. Y. Chane-Ching, “Synthesis of large-area and aligned copper oxide nanowires from copper thin film on silicon substrate”, Nanotechnol., vol. 18, no. 27, pp. 275607 (2007).
102. S. C. Yeon, W. Y. Sung, W. J. Kim, S. M. Lee, H. Y. Lee, and Y. H. Kim, “Field emission characteristics of CuO nanowires grown on brown-oxide-coated Cu films on Si substrates by conductive heating in air”, J. Vac. Sci. Technol. B, vol. 24, no. 2, pp. 940-944 (2006).
103. Y. W. Park, N. J. Seong, H. J. Jung, A. Chanda, and S. G. Yoon, “Growth mechanism of the copper oxide nanowires from copper thin films deposited on CuO-buffered silicon substrate”, J. Electrochem. Soc., vol. 157, no. 6, pp. K119-K124 (2010).
104. A. M. Khoviv, T. A. Myachina, E. G. Goncharov, V. A. Logacheva, and E. V. Kasatkina, “Effect of vacuum annealing on the phase composition of In/SnO/Si, In/SnO2/Si, and Sn/In2O3/Si heterostructures”, Inorg. Mater., vol. 42, pp. 108 (2006).
105. S. Abedrabbo, D. E. Arafah, O. Gokce, L. S. Wielunski, M. Gharaibeh, O. Celik, and N. M. Ravindra, “Ion beam mixing for processing of nanostructure materials”, J. Electron. Mater., vol. 35, pp. 834 (2006).
106. J. L. Zhao, and X. M. Lib, “Study on anomalous high p-type conductivity in ZnO films on silicon substrate prepared by ultrasonic spray pyrolysis”, Appl. Phys. Lett., vol. 90, pp. 062118-1 (2007).
107. A. Nemeth, E. Horvath, Z. Labadi, L. Fedak, and I. Barsony, “Single step deposition of different morphology ZnO gas sensing films “, Sensor. Actuators B, vol. 127, pp. 157 (2007).
108. L. D. Doucette, F. Santiago, S. L. Moran, and R. J. Lad, “Heteroepitaxial growth of tungsten oxide films on silicon (100) using a BaF2 buffer layer”, J. Mater. Res., vol. 18, pp. 2859 (2003).
109. C. M. Liu, W. L. Liu, W. J. Chen, S.H.Hsieh, T. K. Tsai, and L. C. Yang, “ITO as a Diffusion Barrier Between Si and Cu”, J. Electrochem. Soc., vol. 152, pp. G234 (2005).
110. S. Meng, W. C. Hao, C. Z. Wang, X. J. Li, and T. M. Wang, “Photocatalytic Properties of TiO2/Si-NPA Nano Composite Systems”, Chin. Phys. Lett., vol. 24, pp. 256 (2007).
111. L. Liao, Z. Zhang, B. Yan, Z. Zheng, Q. L. Bao, T. Wu, C. M. Li, Z. X. Shen, J. X. Zhang, H. Gong, J. C. Li, and Y. Yu, “Multifunctional CuO nanowire devices: p-type field effect transistors and CO gas sensors”, Nanotechnol., vol. 20, no. 8, pp. 85023 (2009).
112. Y. S. Kim, I. S. Hwang, S. J. Kim, C. Y. Lee, and J. H. Lee, “CuO nanowire gas sensors for air quality control in automotive cabin”, Sens. Actuators B, vol. 135, no. 1, pp. 298-303 (2008).
113. Z. W. Pei, S. T. Chang, C. W. Liu, and Y. C. Chen, “Numerical simulation on the photovoltaic behavior of an amorphous-silicon nanowire-array solar cell”, IEEE Electron Dev. Lett., vol. 30, no. 12, pp. 1305-1307 (2009).
114. V. Sivakov, G. Andra, A. Gawlik, A. Berger, J. Plentz, F. Falk, and S. H. Christiansen, “Silicon nanowire-based solar cells on glass: Synthesis, optical properties, and cell parameters”, Nano Lett., vol. 9, no. 4, pp. 1549-1554 (2009).
115. T. J. Hsueh, C. L. Hsu, S. J. Chang, Y. R. Lin, S. P. Chang, Y. Z. Chiou, T. S. Lin, and I. C. Chen, “Crabwise ZnO nanowire UV photodetector prepared on ZnO : Ga/Glass template”, IEEE Tran. Nanotechnol., vol. 6, pp. 595-600 (2007).
116. S. Mridha, and D. Basak, “Investigation of a p-CuO/n-ZnO thin film heterojunction for H2 gas-sensor applications”, Semicond. Sci. Technol., vol. 21, no. 7, pp. 928-932 (2006).
117. D. D. Li, J. Hu, R. Q. Wu, and J. G. Lu, “Conductometric chemical sensor based on individual CuO nanowires”, Nanotechnol., vol. 21, no. 48, pp. 485502 (2010).
118. X. L. Gou, G. X. Wang, J. S. Yang, J. Park, and D. Wexler, “Chemical synthesis, characterisation and gas sensing performance of copper oxide nanoribbons”, J. Mater. Chem., vol. 18, no. 9, pp. 965-969 (2008).
119. P. J. Skrdla, S. B. Mendes, N. R. Armstrong, and S. S. Saavedra, “Planar integrated optical waveguide sensor for isopropyl alcohol in aqueous media”, J. Sol-Gel Sci. Technol., vol. 24, no. 2, pp. 167-173 (2002).
120. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors”, Appl. Phys. Lett., vol. 86, no. 15, pp. 151122 (2005).
121. H. C. Wang, Y. Li, and M. J. Yang, “Fast response thin film SnO2 gas sensors operating at room temperature”, Sen. Actuators B, vol. 119, no. 2, pp. 380-383 (2006).
122. T. W. Graham Solomons, and C. Fryhle, Organic Chemistry, Wiley (2008).
123. S. P. Chang, S. J. Chang, C. Y. Lu, M. J. Li, C. L. Hsu, Y. Z. Chiou, T. J. Hsueh, I. C. Chen, “A ZnO nanowire-based humidity sensor”, Superlattice Microst., vol. 49, pp. 772-778 (2010).
124. G. Wang, Q. Wang, W. Lu, J. H. Li, “Photoelectrochemical study on charge transfer properties of TiO2-B nanowires with an application as humidity sensors”, J. Phys. Chem. B, vol. 110, pp. 22029-22034 (2006).
125. X. Q. Fu, C. Wang, H. C. Yu, Y. G. Wang, T. H. Wang, “Fast humidity sensors based on CeO2 nanowires”, Nanotechnol., vol. 18, pp. 145503 (2007).
126. C. Wang, X. Q. Fu, X. Y. Xue, Y. G. Wang, T. H. Wang, “Surface accumulation conduction controlled sensing characteristic of p-type CuO nanorods induced by oxygen adsorption”, Nanotechnology, vol. 18, pp. 145506 (2007).
127. Y. Y. Zhang, W. Y. Fu, H. B. Yang, M. H. Li, Y. X. Li, W. Y. Zhao, P. Sun, M. X. Yuan, D. Ma, B. B. Liu, G. T. Zou, “A novel humidity sensor based on Na2Ti3O7 nanowires with rapid response-recovery”, Sens. Actuators B, vol. 135, pp. 317-321 (2008).
128. C. L. Dai, M. C. Liu, F. S. Chen, C. C. Wu, M. W. Chang, “A nanowire WO3 humidity sensor integrated with micro-heater and inverting amplifier circuit on chip manufactured using CMOS-MEMS technique”, Sens. Actuators B, vol. 123, pp. 896-901 (2007).
129. Q. Kuang, C. S. Lao, Z. L. Wang, Z. X. Xie, L. S. Zheng, “High-sensitivity humidity sensor based on a single SnO2 nanowire”, J. American Chem. Soc., vol. 129, pp. 6070 (2007).
130. P. Raksa, A. Gardchareon, T. Chairuangsri, P. Mangkorntong, N. Mangkorntong, S. Choopun, “Ethanol sensing properties of CuO nanowires prepared by an oxidation reaction”, Ceram. Int., vol. 35, pp. 649-652 (2009).
131. M. Hubner, C. E. Simion, A. Tomescu-Stanoiu, S. Pokhrel, N. Barsan, U. Weimar, “Influence of humidity on CO sensing with p-type CuO thick film gas sensors”, Sens. Actuators B, vol. 153, pp. 347-353 (2011).
132. C. H. Yuan, Y. T. Xu, Y. M. Deng, N. N. Jiang, N. He, L. Z. Dai, “CuO based inorganic-organic hybrid nanowires: a new type of highly sensitive humidity sensor”, Nanotechnology, vol. 21, pp. 415501 (2010).
133. Y. Wang, S. Park, J. T. W. Yeow, A. Langner, F. Muller, “A capacitive humidity sensor based on ordered macroporous silicon with thin film surface coating”, Sens. Actuators B, vol. 149, pp. 136-142 (2010).
134. Y. W. Zhu, T. Yu, F. C. Cheong, X. J. Xu, C. T. Lim, V. B. C. Tan, J. T. L. Thong, and C. H. Sow, “Large-scale synthesis and field emission properties of vertically oriented CuO nanowire films”, Nanotechnology, vol. 16, pp. 88 (2005).
135. T. J. Hsueh, C. L. Hsu, S. J. Chang, and I. C. Chen, “Laterally grown ZnO nanowire ethanol gas sensors “, Sensor. Actuators B, vol. 126, pp. 473 (2007).
136. J. Chen, Y. Zhang, B. J. Skromme, K. Akimoto and S. J. Pachuta, “Properties of the shallow O‐related acceptor level in ZnSe”, J. Appl. Phys., vol. 78, pp. 5109 (1995).
137. T. J. Hsueh, C. L. Hsu, S. J. Chang, P. W. Guo, J. H. Hsieh and I. C. Chen, “Cu2O/n-ZnO nanowire solar cells on ZnO: Ga/glass templates”, Scr. Mater., vol. 57, pp. 53 (2007).
138. T. K. Lin, S. J. Chang, Y. K. Su, B. R. Huang, M. Fujita and Y. Horikoshi, “ZnO MSM photodetectors with Ru contact electrodes”, J. Crystal Growth, vol. 281, pp. 513 (2005).
139. S. J. Young, L. W. Ji, S. J. Chang and Y. K. Su, “ZnO metal-semiconductor-metal ultraviolet sensors with various contact electrodes”, J. Crystal Growth, vol. 293, pp. 43 (2006).
140. Y. Yang, X. W. Sun, B. K. Tay, G. F. You, S. T. Tan and K. L. Teo, “A pn homojunction ZnO nanorod light-emitting diode formed by As ion implantation”, Appl. Phys.Lett., vol. 93, pp. 253107 (2008).
141. J. Huang, L. J. Wang, R. Xu, K. Tang, W. M. Shi and Y. B. Xia, Semicond. Sci. Technol., vol. 24, pp. 075025 (2009).
142. D. C. Look, “Recent advances in ZnO materials and devices”, Mater. Sci. Eng., B, vol. 80, pp. 383 (2001).
143. C. H. Liu, C. S. Chang, S. J. Chang, Y. K. Su, Y. Z. Chiou, S. H. Liu, and B. R. Huang, “The characteristics of photo-CVD SiO2 and its application on SiC MIS UV photodetectors”, Mater. Sci. Eng., B, vol. 100, pp. 142 (2003).
144. S. J. Chang, T. K. Ko, Y. K. Su, Y. Z. Chiou, C. S. Chang, S. C. Shei, J. K. Sheu, W. C. Lai, Y. C. Lin, W. S. Chen, and C. F. Shen, “GaN-based p-i-n sensors with ITO contacts”, IEEE Sens. J., vol. 6, pp. 406 (2006).
145. J. Yahiro, Y. Oaki, and H. Imai, “Biomimetic synthesis of wurtzite ZnO nanowires possessing a mosaic structure”, Small, vol. 2, pp. 1183 (2006).
146. H. J. Ko, S. K. Hong, Y. Chen, and T. Yao, “A challenge in molecular beam epitaxy of ZnO: control of material properties by interface engineering”, Thin Solid Films, vol. 409, pp. 153 (2002).
147. H. Kind, H. Yang, B. Messer, M. Law, and P. Yang, “Nanowire ultraviolet photodetectors and optical switches”, Adv. Mater. (Weinheim, Ger.), vol. 14, pp. 158 (2002).
148. H. J. Fan, W. Lee, R. Hauschild, M. Alexe, G. L. Rhun, R. Scholz, A. Dadgar, K. Nielsch, H. Kalt, A. Krost, M. Zacharias, and U. Gosels, “Template‐Assisted Large‐Scale Ordered Arrays of ZnO Pillars for Optical and Piezoelectric Applications”, Small, vol. 2, pp. 561 (2006).
149. J. J. Wu and S. C. Liu, “Catalyst-Free Growth and Characterization of ZnO Nanorods”, J. Phys. Chem. B, vol. 106, pp. 9546 (2002).
150. Y. Li, G. W. Meng, L. D. Zhang, and F. Phillipp, “Ordered semiconductor ZnO nanowire arrays and their photoluminescence properties”, Appl. Phys. Lett., vol. 76, pp. 2011 (2000).
151. L. Vayssieres, “Growth of arrayed nanorods and nanowires of ZnO from aqueous solutions”, Adv. Mater., vol. 15, pp. 464-466 (2003).
152. Y. W. Heo, V. Varadarajan, M. Kaufman, K. Kim, D. P. Norton, F. Ren, and P. H. Fleming, “Site-specific growth of Zno nanorods using catalysis-driven molecular-beam epitaxy”, Appl. Phys. Lett., vol. 81, pp. 3046 (2002).
153. W. I. Park, Y. H. Jun, S. W. Jung, and G. C. Yi, “Excitonic emissions observed in ZnO single crystal nanorods”, Appl. Phys. Lett., vol. 82, pp. 964 (2003).
154. S. Muthukumar, H. Sheng, J. Zhong, Z. Zhang, N. W. Emanaetoglu, and Y. Lu, “Selective MOCVD growth of ZnO nanotips”, IEEE Trans. Nanotechnol., vol. 2, pp. 50 (2003).
155. M. H. Huang, Y. Wu, H. Feick, N. Tran, E. Weber, and P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater. (Weinheim, Ger.), vol. 13, pp. 113 (2000).
156. C. Geng, Y. Jiang, Y. Yao, X. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz, and S. T. Lee, “Well‐Aligned ZnO Nanowire Arrays Fabricated on Silicon Substrates”, Adv. Funct. Mater., vol. 14, pp. 589 (2004).
157. J. Grabowska, K. K. Nanda, E. McGlynn, J. P. Mosnier, and M. O. Henry, “Studying the growth conditions, the alignment and structure of ZnO nanorods”, Surf. Coat. Technol., vol. 200, pp. 1093 (2005).
158. W. Lee, M. C. Jeong, and J. M. Myoung, “Fabrication and application potential of ZnO nanowires grown on GaAs (002) substrates by metal–organic chemical vapour deposition”, Nanotechnology, vol. 15, pp. 1441 (2004).
159. P. M. Jones, J. A. May, J. B. Reitz, and E. I. Solomon, “Electron spectroscopic studies of CH3OH chemisorption on Cu2O and ZnO single-crystal surfaces: Methoxide bonding and reactivity related to methanol synthesis”, J. Am. Chem. Soc., vol. 120, no. 7, pp. 1506-1516 (1998).
160. A. E. Rakhshani, “Preparation, characteristics and photovoltaic properties of cuprous-oxide - A review”, Solid-State Electron., vol. 29, no. 1, pp. 7-17 (1986).
161. B. Balamurugan, and B.R. Mehta, “Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation”, Thin Solid Films, vol. 396, no. 1-2, pp. 90-96 (2001).
162. S. C. Ray, “Preparation of copper oxide thin film by the sol-gel-like dip technique and study of their structural and optical properties”, Solar Ener. Mater. Solar Cells, vol. 68, no. 3-4, pp. 307-312 (2001).
163. A. Paretta, M. K. Jayaraj, A. Dinocera, S. Loreti, L. Quercia, and A. Agati, “Electrical and optical properties of copper oxide films prepared by reactive RF magnetron sputtering”, Phys. Stat. Sol. A, vol. 155, no. 2, pp. 399-404 (1996).
164. S. Ishizuka, S. Kato, Y. Okamoto, T. Sakurai, K. Akimoto, N. Fujiwara, and H. Kobayashi, “Passivation of defects in polycrystalline Cu2O thin films by hydrogen or cyanide treatment”, Appl. Surf. Sci., vol. 216, no. 1-4, pp. 94-97 (2003).
165. P. Samarasekara, N. T. R. N. Kumara, and N. U. S. Yapa, “Sputtered copper oxide (CuO) thin films for gas sensor devices”, J. Phys.: Condens. Matter., vol. 18, no. 8, pp. 2417-2420 (2006).
166. J. Herion, E. A. Niekisch, and G. Scharl, “Investigation of metal-oxide cuprous-oxide heterojunction solar-cells”, Sol. Energy Mater., vol. 4, no. 1, pp. 101-112 (1980).
167. X. C. Jiang, T. Herricks, and Y. N. Xia, “CuO nanowires can be synthesized by heating copper substrates in air”, Nanotechnol., vol. 2, no. 12, pp. 1332-1338 (2002).
168. L. Armelao, D. Barreca, M. Bertapelle, Y. Bottaro, C. Sada, and E. Tondello, “A sol-gel approach to nanophasic copper oxide thin films”, Thin Solid Films, vol. 442, no. 1-2, pp. 48-52 (2003).
169. R. Kita, K. Kawaguchi, T. Hase, T. Koga, R. Itti, and T. Morishita, “Effects of oxygen-ion energy on the growth of cuo films by molecular-beam epitaxy using mass-separated low-energy O+ beams”, J. Mater. Res., vol. 9, no. 5, pp. 1280-1283 (1994).
170. A. Catana, J. P. Locquet, S. M. Paik, and I. K. Schuller, “Local epitaxial-growth of CuO films on MgO”, Phys. Rev. B, vol. 46, no. 23, pp. 15477-15483 (1992).
171. Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides”, Science, vol. 291, no.5510, pp. 1947-1949 (2001).
172. X. B. Cao, P. Chen, and Y. Guo, “Decoration of textured ZnO nanowires array with CdTe quantum dots: Enhanced light-trapping effect and photogenerated charge separation”, J. Phy. Chem. C, vol. 112, pp. 20560-20566 (2008).
173. T. Y. Zhai, X. S. Fang, M. Y. Liao, X. J. Xu, H. B. Zeng, B. Yoshio, and D. Golberg, “A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors”, Sensors, vol. 9, pp. 6504-6529 (2009).
174. G. K. Paul, R. Ghosh, S. K. Bera, S. Bandyopadhyay, T. Sakurai, and K. Akimoto, “Deep level transient spectroscopy of cyanide treated polycrystalline p-Cu2O/n-ZnO solar cell”, Chem. Phys. Lett., vol. 463, pp. 117 (2008).
175. M. Izaki, T. Shinagawa, K. T. Mizuno, Y. Ida, M. Inaba, and A. Tasaka, “Electrochemically constructed p-Cu2O/n-ZnO heterojunction diode for photovoltaic device”, J. Phys. D: Appl. Phys., vol. 40, pp. 3326 (2007).
176. C. L. Kuo, R. C. Wang, J. L. Huang, C. P. Liu, C. K. Wang, S. P. Chang, W. H. Chu, C. H. Wang, and C. H. Tu, “The synthesis and electrical characterization of Cu2O/Al: ZnO radial p–n junction nanowire arrays”, Nanotechnol., vol. 20, pp. 365603 (2009).
177. J. B. Cui, and U. J. Gibson, “A Simple Two-Step Electrodeposition of Cu2O/ZnO Nanopillar Solar Cells”, J. Phys. Chem. C, vol. 114, pp. 6408 (2010).
178. J. Zhang, W. X. Que, P. Zhong, and G. Q. Zhu, “p-Cu2O/n-ZnO Nanowires on ITO Glass for Solar Cells”, J. Nanosci. Nanotechnol. vol. 10, pp. 7473 (2010).
179. P. G. Su and Y. S. Chuang, “Flexible H-2 sensors fabricated by layer-by-layer self-assembly thin film of multi-walled carbon nanotubes and modified in situ with Pd nanoparticles”, Sens. Actuators B, vol. 145, pp. 521-526 (2010).
180. L. E. Greene, M. Law, J. Goldberger, F. Kim, J. D. Johnson, Y. F. Zhang, R. J. Saykally, and P. D. Yang, “Low-temperature wafer-scale production of ZnO nanowire arrays”, Angew. Chem. Int. Ed., vol. 42, pp. 3031-3034 (2003).
181. J. B. Cui, C. P. Daghlian, U. J. Gibson, R. Püsche, P. Geithner, and L. Ley, “Low-temperature growth and field emission of ZnO nanowire arrays”, J. Appl. Phys., vol. 97, pp. 044315 (2005).
182. B. Weintraub, Z. Z. Zhou, Y. H. Li, and Y. L. Deng, “Solution synthesis of one-dimensional ZnO nanomaterials and their applications”, Nanoscale, vol. 2, pp. 1573-1587 (2010).
183. H. Ahn, J. H. Park, S. B. Kim, S. H. Jee, Y. S. Yoon, and D. J. Kim, “Vertically Aligned ZnO Nanorod Sensor on Flexible Substrate for Ethanol Gas Monitoring”, Electrochem. Solid-State Lett., vol. 13, pp. J125-J128 (2010).
184. S. M. U. Ali, N. H. Alvi, Z. Ibupoto, O. Nur, M. Willander, and B. Danielsson, “Selective potentiometric determination of uric acid with uricase immobilized on ZnO nanowires”, Sens. Actuators B, vol. 152, pp. 241-247 (2011).
185. M. Purica, E. Budianu, E. Rusu, M. Danila, and R. Gavrila, “Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD)”, Thin Solid Films, vol. 403-404, pp. 485-488 (2002).
186. X. D. Yan, Z. W. Li, R. Q. Chen, and W. Gao, “Template growth of ZnO nanorods and microrods with controllable densities”, Cryst. Growth. Des., vol. 8, pp. 2406-2410 (2008).
187. W. P. Tai and J. H. OH, “Humidity sensing behaviors of nanocrystalline Al-doped ZnO thin films prepared by sol-gel process”, J. Mater. Sci., Mater. Electron., vol. 13, pp. 391-394 (2002).
188. S. R. Morrison, “SEMICONDUCTOR GAS SENSORS”, Sens. Actuators, vol. 2, pp. 329-341 (1982).