| 研究生: |
陳佑慈 Chen, Yu-Tzu |
|---|---|
| 論文名稱: |
三維交錯微管道中流場分析與應用 Analysis and Application of Fluid Phenomena in Three-Dimensional Crossing Microchannel |
| 指導教授: |
李定智
Lee, Denz |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 英文 |
| 論文頁數: | 161 |
| 中文關鍵詞: | 三維交錯 、微管道 、流體控制 、混合 、混沌 |
| 外文關鍵詞: | flow control, chaotic, mixing, microchannel, 3-D crossing |
| 相關次數: | 點閱:125 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
三維交錯微管道具有許多應用可能如流體轉換、混合等,其在微流體系統中逐漸變成一重要的元件。此研究主要目的為詳細探討三維交錯管道中的流體行為並將此管道應用於微混合器中。研究中利用數值模擬、理論分析與實驗方法來確認此三維結構中的流場與混合特性。
研究顯示兩道流體在經過三維交錯處時會互相交換並轉彎到另一層管道中;我們發現一個表面積體積比的無因次參數(SV)可以有效的用來了解此一流體行為,在大部分的案例中,流體的轉彎比率會與適當範圍內的SV成線性關係。此外,我們也有系統的探討其他參數如雷諾數、擴散率、交錯角度、流速比和流阻比對流體交換比率的影響。相信經過這些參數測試後,能對相關元件中的流體控制提供一有用的參考。
接著本文研究了五種以三維交錯微管道為基準而設計的混合器,這些混合器分別在交錯與轉角處做一些改變。我們利用粒子散佈、龐加萊截面、李盼諾夫指數和混合指數來評斷各混合器中混沌的情形與混合的效能;另外也探討了雷諾數與管道深寬比對混合效能的影響。結果顯示TDCM-RU型的混合器具備了分離合併(SAR)的多層板與混沌的混合機制,展現了相當優異的混合效能,未來具有延伸應用的可能。經這些探討後,相信能對相關的三維微混合器提供一有效的設計指引。
Microchannel with three-dimensional crossing structure has a variety of applications in flow switching, mixing and so on, becoming an important component in microfluidic systems. The present study aims at understanding detailed flow behavior through this 3-D crossing of the microchannel and applying the crossing structure as a basic component to micromixer. The numerical simulation technique was chosen as the major tools for the investigation. Some theoretical analysis works and simplified experimental methods were also shown for verifying the 3-D flow and mixing characteristics.
In a 3-D crossing microchannel, the flow will turning and switching to another layer at the junction. A non-dimensional parameter of surface to volume ratio (SV) was useful to understanding the flow behavior. The results showed that in a moderate range, the turning fraction is proportional to the SV for most cases. In addition, the effect of various parameters such as Reynolds number, diffusivity, crossing angle, flow rate ratio and flow resistance on the fraction of flow turning are also systematic investigated. From the comprehensive investigate of these parameters, it is expected to provide useful guidelines for the control of flow in microfluidic devices among others.
Based on the flow features of 3-D crossing microchannel, the mixing can be achieved by an appropriate design. Five different micromixers which have various crossing or bending patterns was designed and investigated. The chaotic behavior and mixing efficiency were identified using four different methods (particle dispersion, Poincar sections, Lyapunov exponent and mixing index) for qualitative and quantitative estimation. The influence of Reynolds number and aspect ratio are also studied. All of the results showed that the new design of TDCM-RU (which combines two mixing mechanisms of split-and-recombine and chaotic advection) has the best mixing efficiency among other designs. The mixing index can achieve to 0.78 after four crossing times at low Reynolds number, while the Xia-B can only to 0.33. Even in high Re, TDCM-RU also reveals an excellent mixing just by adjusting the aspect ratio of channel. The results provide useful design guidelines for 3-D micromixers. Also, the TDCM-RU has a great potential for practical use in chemistry, biochemistry and combustion.
[1] Feynman, R. P., “There’s plenty of room at the bottom,” J. Microelectromech. Syst., 1, 60-66 (1992).
[2] Manz, A., Graber, N., and Widmer, H. M., “Miniaturized total chemical analysis system: a novel concept for chemical sensing,” Sens. Actuators, B, 1, 244-248 (1990).
[3] Suzuki, H., “Development of chaotic miro-mixer using magnetic beads,” Ph.D. thesis, Tokyo University, Tokyo, Japan (2003).
[4] Nguyen, N. T., and Wereley, S. T., “Fundamentals and applications of microfluidics,” Boston: Artech House (2002).
[5] Geschke, O., Klank, H., and Telleman, P., “Microsystem engineering of lab-on-a-Chip devices,” New York: Wiley-VCH (2004).
[6] Lee, G. B., Chen, S. H., Huang, G. R., Sung, W. C., and Lin, Y. H., “Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection,” Sens. Actuators, B, 75, 142-148 (2001).
[7] Hatch, A., Kamholz, A. E., Hawkins, K. R., Munson, M. S., Schilling, E. A., Weigl, B. H., and Yager, P., “A rapid diffusion immunoassay in a T-sensor,” Nat. Biotechnol., 19, 461-465 (2001).
[8] Conningham, D. D., “Fluidics and sample handling in clinical chemical analysis,” Analy. Chim. Acta, 429, 1-18 (2001).
[9] Pihl, J., Sinclair, J., Sahlin, E., Karisson, M., Petterson, F., Olofsson, J., and Orwar, O., “ Microfluidic gradient-generating device for pharmacological profiling,” Anal. Chem., 77, 3897-3903 (2005).
[10] Weibel, D. B., Kruithof, M., Potenta, S., Sia, S. K., Lee, A., and Whiteside, G. M., “Torque-actuated valves for microfluidics,” Anal. Chem., 77, 4726-4733 (2005).
[11] Duffy, D. C., Schueller, O. J. A., Brittan, S. T., and Whitesides, G. M., “Rapid prototyping of microfluidic switches in poly(dimethylsiloxane) and their actuation by electro-osmotic flow,” J. Micromech. Microeng., 9, 211-217 (1999).
[12] Beebe, D. J., Moore, J. S., Bauer, J. M., Yu, Q., Liu, R. H., Devadoss, C., and Jo, B. H., “Functional hydrogel structures for autonomous flow control inside microfluidic channels,” Nature, 404, 588-590 (2000).
[13] Laurell, T., Wallman, L., and Nilsson, J., “Design and development of a silicon microfabricated flow-through dispenser for on-line picolitre sample handling,” J. Micromech. Microeng., 9, 369-376 (1999).
[14] Jiang, X., Ng, J. M. K., Stroock, A. D., Dertinger, S. K. W., and Whitesides, G. M., “A miniaturized, parallel, serially diluted immunoassay for analyzing multiple antigens,” J. Am. Chem. Soc., 125, 5294-5295 (2003).
[15] Neils, C., Tyree, Z., Finlayson, B., Folch, A., “Combinatorial mixing of microfluidic streams,” Lab Chip, 4, 342-350 (2004).
[16] Takagi, J., Yamada, M., Yasuda, M., and Seki, M., “Continuous particle separation in a microchannel having asymmetrically arranged multiple branches,” Lab Chip, 5, 778-784 (2005).
[17] Ottino, J. M., “The kinematics of mixing: stretching, chaos, and transport,” New York: Cambridge University Press (1989).
[18] Nguyen, N. T., and Wu, Z., “Micromixers-a review,” J. Micromech. Microeng., 15, R1-R16 (2005).
[19] Hardt, S., Drese, K. S., Hessel, V., and Schonfeld, F., “Passive micromixers for applications in the microreactor and TAS field,” Microfluid. Nanofluid., 1, 108-118 (2005).
[20] Lee, D., Chen, Y. T., and Bai, T. Y., “A study of flows in tangentially crossing micro-channels,” Microfluid. Nanofluid., in press, 2009.
[21] Ismagilov, R. F., Rosmarin, D., Kenis, P. J. A., Chiu, D. T., Zhang, W., Stone, H. A., and Whitesides, G. M., “Pressure-driven laminar flow in tangential microchannels: an elastomeric microfluidic switch,” Anal. Chem., 73, 4682-4687 (2001).
[22] Ismagilov, R. F., Ng, J. M.K., Kenis, P. J. A., and Whitesides, G. M., “Microfluidic arrays of fluid-fluid diffusional contacts as detection elements and combinatorial tools,” Anal. Chem., 73, 5207-5213 (2001).
[23] Wang, L, and Yang, J. T., “An overlapping crisscross micromixer using chaotic mixing principles,” J. Micromech. Microeng., 62, 711-720 (2006).
[24] Wang, L., Yang, J.T., and Lyu, P. C., “An overlapping crisscross micromixer,” Chem. Eng. Sci., 62, 711-720 (2007).
[25] Li, C. W., and Yang, M., “3-D streamline steering by nodes arrayed in an entangled microfluidic network,” Lab Chip, 7, 1712-1716 (2007).
[26] Xia, H. M., Shu, C., Wan, S. Y. M., and Chew, Y. T., “Influence of the Reynolds number on chaotic mixing in a spatially periodic micromixer and its characterization using dynamical system techniques,” J. Micromech. Microeng., 16, 53-61 (2006).
[27] Xia, H. M., Wan, S. Y. M., Shu, C., and Chew, Y. T., “Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers,” Lab Chip, 5, 748-755 (2005).
[28] Beebe, D. J., Mensing, G. A., and Walker, G. M., “Physics and applications of microfluidics in biology,” Annu. Rev. Biomed. Eng., 4, 261-286 (2002).
[29] Stone, H. A., Stroock, A. D., and Ajdari, A., “Engineering flows in small devices: microfluidics toward a lab-on-a-chip,” Annu. Rev. Fluid Mech., 36, 381-411 (2004).
[30] Vilkner, T., Janasek, D., and Manz, A., “Micro total analysis systems. Recent developments,” Anal. Chem., 76, 3373-3386 (2004).
[31] Dittrich, P. S., Tachikawa, K., and Manz, A., “Micro total analysis systems. Latest advancements and trends,” Anal. Chem., 78, 3887-3907 (2006).
[32] Luque, A., Quero, J. M., Hibert, C., Fluckiger, P., and Ganan-Calvo, A. M., ” Integrable silicon microfluidic valve with pneumatic actuation,” Sens. Actuators, A, 118, 144-151 (2005).
[33] Lin, L. W., “Microscale thermal bubble formation: thermophysical phenomena and applications,” Microscale Thermophys. Eng., 2, 71-85 (1998).
[34] Bird, R. B., Stewart, W. E., and Lightfoot, E. N., “Transport phenomena,” New York: Wiley (2001).
[35] Niu, X. Z., and Lee, Y. K., “Efficient spatial–temporal chaotic mixing in microchannels,” J. Micromech. Microeng., 13, 454-462 (2003).
[36] Liu, R. H., Yang, J., Pindera, M. Z., Athavale, M., and Grodzinski, P., “Bubble-induced acoustic micromixing,” Lab Chip, 2, 151-157 (2002).
[37] Bau, H. H., Zhong, J., and Yi, M., “A minute magneto hydrodynamic (MHD) mixer,” Sens. Actuators, B, 79, 207-215 (2001).
[38] Oddy, M. H., Santiago, J. G., and Mikkelsen, J. C., “Electrokinetic instability micromixing,” Anal. Chem., 73, 5822-5832 (2001).
[39] Gobby, D., Angeli, P., Gavriilidis, A., “Mixing characteristics of T-type microfluidic mixers,” J. Micromech. Microeng., 11, 126-132 (2001).
[40] Knight, J. B., Vishwanath, A., Brody, J. P., and Austin, R. H., “Hydrodynamic focusing on a silicon chip: mixing nanoliters in microseconds,” Phys. Rev. Lett., 80, 3863-3866 (1998).
[41] Lb, P., Drese, K. S., Hessel, V., Hardt, S., Hofmann, C., Lwe, H., Schenk, R., Schnfeld, F., and Werner, B., “Steering of liquid mixing speed in interdigital micromixers-from very fast to deliberately slow mixing,” Chem. Eng. Technol., 27, 340-345 (2004).
[42] Schnfeld, F., Hessel, V., and Hofmann, C., “An optimised split-andrecombine micro mixer with uniform ‘chaotic’ mixing,” Lab Chip, 4, 65-69 (2004).
[43] Schwesinger, N., Frank, T., and Wurmus, H., “A modular microfluidics system with an integrated micromixer,” J. Micromech. Microeng., 6, 99-102 (1996).
[44] Stroock, A. D., Dertinger, S. K. W., Ajdari, A., Mezić, I., Stone, H. A., and Whitesides, G. M., “Chaotic mixing for microchannels,” Science, 295, 647-651 (2002).
[45] Liu, R. H., Stremler, M. A., Sharp, K. V., Olsen, M. G., Santiago, J. G., Adrian, R. J., and Aref, H., “Passive mixing in a three-dimensional serpentine microchannel,” J. Microelectromech. Syst., 9, 190-197 (2000).
[46] Mengeaud, V., Josserand, J., and Girault, H. H., “Mixing processes in a zigzag microchannel: finite element simulations and optical study,” Anal. Chem., 74, 4279-4286 (2002).
[47] Hessel, V., Lwe, H., and Schnfeld, F., “Micromixers-a review on passive and active mixing principles,” Chem. Eng. Sci., 60, 2479-2501 (2005).
[48] Wang, L., “Design and analysis of overlapping-crisscross micromixers,” Ph.D. Thesis, National Tsing Hua University, Hsinchu, Taiwan (2006).
[49] Yang, J. T., Huang, K. J., and Lin, Y. C., ”Geometric effects on fluid mixing in passive grooved micromixers,” Lab Chip, 5, 1140-1147 (2005).
[50] Rawool, A. S., Mitra, S. K., and Kandlikar, S. G., “Numerical simulation of flow through microchannels with designed roughness,” Microfluid. Nanofluid., 2, 215-221 (2006).
[51] Tsai, C. H., Chen, H. T., Wang, Y. N., Lin, C. H., and Fu, L. M., “ Capabilities and limitations of 2-dimensional and 3-dimensional numerical methods in modeling the fluid flow in sudden expansion microchannels,” Microfluid. Nanofluid., 3, 13-18 (2007).
[52] White, F. M., “Fluid Mechanics,” Boston: McGraw-Hill (1999).
[53] Bird, R., Stewart, W., and Lightfoot, E., “Transport phenomena,” New York: Wiley (1960).
[54] Van, D. J. P., Raithby, G. D., “Enhancements of the SIMPLE method for predicting incompressible fluid flows,” Numer. Heat Transfer, 7, 147-163 (1984).
[55] Kang, T. G., and Kwon, T. H., “Colored particle tracking method for mixing analysis of chaotic micromixers,” J. Micromech. Microeng., 14, 891-899 (2004).
[56] Aubin, J., Fletcher, D. F., Bertrand, J., and Xuereb, C., “Characterization of the mixing quality in micromixers,” Chem. Eng. Technol., 26, 1262-1270 (2003).
[57] Tung, K. Y., and Yang, J. T., “Analysis of a chaotic micromixer by novel methods of particle tracking and FRET,” Microfluid. Nanofluid., 5, 749-759 (2008).
[58] Kim, H. J., and Beskok, A., “Quantification of chaotic strength and mixing in a micro fluidic system,” J. Micromech. Microeng., 17, 2197-2210 (2007).
[59] Park, J. M., and Kwon, T. H., “Numerical characterization of three-dimensional serpentine micromixers,” AIChE J., 54, 1999-2008 (2008).
[60] Byrde, O., and Sawley, M. L., “Optimization of a Kenics static mixer for non-creeping flow conditions,” Chem. Eng. J., 72, 163-169 (1999).
[61] Xia, Y., and Whitesides, G. M., “Soft lithography,” Annu. Rev. Master. Sci., 28, 153-194 (1998).
[62] Sia, S. K., and Whitesides, G. M., “Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies,” Electrophoresis, 24, 3563-3576 (2003).
[63] Lorenz, H., Despont, M., Fahrni, N., LaBianca, N., Renaud, P., and Vettiger, P., “SU-8: a low-cost negative resist for MEMS,” J. Micromech. Microeng., 7, 121-124 (1997).
[64] Chen, Y. T., and Lee, D., “A bonding technique using hydrophilic SU-8,” J. Micromech. Microeng., 17, 1978-1984 (2007). (See Appendix A)
[65] http://www.microchem.com/index.htm
[66] Chen, J. M., Horng, T. L., and Tan, W. Y., “Analysis and measurements of mixing in pressure-driven microchannel flow,” Microfluid. Nanofluid., 2, 455-469 (2006).
[67] Munson, M. S., and Yager, P., “Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer,” Anal. Chim. Acta, 507, 63-71(2004).
[68] Koch, M., Witt, H., Evans, A. G. R., and Brunnschweiler, A., “Improved characterization technique for micromixers,” J. Micromech. Microeng., 9, 156-158 (1999).
[69] Schumann, C. A., Dittrich, P. S., Franzke, J., and Manz, A., “Towards multi dimensional chemical manipulation of living cells: chemotaxis analysis of social amoebae,” In: Proceedings of 11th international conference on Miniaturized Systems for Chemistry and Life Sciences (MicroTAS2007), 766-768 (2007).
[70] Buckingham, E., "On physically similar systems; illustrations of the use of dimensional equations," Phys. Rev., 4, 345–376 (1914).
[71] Tritton, D. J., “Physical fluid dynamic,” New York: Van Nostrand Reinhold Co. (1977).
[72] White, F. M., “Viscous Fluid Flow,” Boston: McGraw Hill (2006).
[73] Park, J. M., Kim, D. S., Kang, T. G., and Kwon, T. H., "Improved serpentine laminating micromixer with enhanced local advection,” Microfluid. Nanofluid., 4, 513-523 (2008).
[74] Karniadakis, G., Beskok, A., and Aluru, N., “Microflows and nanoflows: fundamental and simulation,” New York: Springer (2005).
[75] Engler, M., Kockmann, N., Kiefer, T., and Woias, P., “Numerical and experimental investigations on liquid mixing in static micromixers,” Chem. Eng. J., 101, 315-322 (2004).