簡易檢索 / 詳目顯示

研究生: 莊淑芬
Chuang, Shu-Fen
論文名稱: 影響牙科樹脂填補聚合收縮應力之生物力學探討
Biomechanical Considerations of Factors Contributing to the Contraction Stress in Dental Composite Restorations
指導教授: 張志涵
Chang, Chih-Han
學位類別: 博士
Doctor
系所名稱: 工學院 - 醫學工程研究所
Institute of Biomedical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 110
中文關鍵詞: 二級MOD窩洞光聚合複合樹脂聚合收縮應力襯底材
外文關鍵詞: Class II MOD cavity, incremental technique, polymerization shrinkage, finite element analysis, lining material, resin composite
相關次數: 點閱:150下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以光聚合複合樹脂進行牙科窩洞修復,已蔚為復形材料主流。在光照(photo-activation)後,樹脂單體產生聚合反應,產生體積聚合收縮、填補介面間的收縮應力(contraction stress)等現象。這些變化會造成牙體結構的變形可能導致急遽斷裂;殘應力也可能累積而造成黏著界面破壞。一般認為改變窩洞外型、改變聚合時間、應用低彈性模數襯底材(lining material)等方式,可有效減少樹脂聚合收縮及咬合時之種種應力。這些假說有待驗證。
    樹脂聚合收縮所造成的種種術後問題,於臨床上始終無法有效改善。因此本研究以複合樹脂進行臼齒二級窩洞復形治療為樣本。研究目的為探討不同幾何型態窩洞中的複合樹脂填補,於樹脂聚合收縮過程所導致的生物力學影響,並探討使用襯底材(lining material)於各種洞中,以降低收縮應力的可能性。研究將以材料性質量測、牙齒樣本實驗、有限元素模擬三方面進行。
    研究第一部份探討樹脂於光聚合後的材料性質測定。光聚合樹脂機械性質如彈性模數、不同深度之聚合程度等為測量目標。由於牙科樹脂填補時,光源於上方照射,因此於不同的照射深度也會有不同的聚合程度(degree of conversion)。一般文獻中,決定樹脂於填補內部的機械性質,通常以微小硬度對應聚合程度以計算出彈性模數。本研究以奈米硬度測試儀測量樹脂於不同聚合深度的彈性模數。這兩項測量值比較後,驗證以硬度計算彈性模數的可靠性,並用於後續的有限元素分析材料性質設定上。結果顯示,40秒照射時間所得的微小與奈米硬度、聚合深度都大於20秒照射;而兩段式聚合與標準聚合所得的聚合程度相近。於本實驗中,微小硬度與彈性模數的結果於測量範圍內相近,因此可被應用於後續有限元素分析材料性質的決定。
    實驗部分,以真實的臼齒為樣本,探討不同填補技術對於填補邊緣品質與復形牙齒的影響。在不同襯底材料的影響方面,研究結果顯示加上流動性樹脂襯底並無法有效降低齒頸部邊緣微滲漏的改善;使用玻璃離子黏著劑則可改善較深窩洞於牙本質邊緣的密封性。進一步的探討則發現使用較厚的流動性樹脂襯底,於冷熱循環後,邊緣品質受影響更為顯著。本研究並利用數位影像相關變形量測方式測試樹脂填補時之齒質形變,並以此為有限元素模擬觀測之依據。以數位影像相關法所測得的結果,樹脂填補在不同窩洞外型條件中,形變的大小與形式均不同。相較於以往文獻中單純以C-factor定義樹脂所受的限制條件,結果中顯示,樹脂充填量、殘留齒質的韌度均影響牙齒與樹脂的變形量。
    而有限元素模擬,是以真實臼齒建立幾何外型,以探討不同窩洞外型中收縮應力的分佈。模擬是利用量測之樹脂收縮性質,建立對等的有限元素模組,並以數位影像相關法實驗所得結果進行比對與修正。研究首先探討如何調整不同變數以符合實驗中所得的牙齒變形量,在包括材料性質與網格化等條件確立後,最終針對窩洞型態、襯底材料等不同影響因子分析,進行在不同二級近遠心窩洞模組的模擬。結果顯示窩洞內部的底部為高主應力承受區。評估以低彈性模數材料襯底之模組,則發現填補與襯底材料的收縮率,對於聚合收縮應力有極大影響。而這些分析結果所得窩洞底部變形率,與數位影像相關法所得有一致性。
    本研究透過生物力學的分析研究,探討複合樹脂填補聚合收縮與界面應力的產生之破壞機轉。經研究發現治療後所產生之剩餘齒質變形與微滲漏等問題,被樹脂充填量、樹脂收縮比率、窩洞幾何外型、剩餘齒質強度等多重因子所影響。本研究結合數值分析與實驗驗證,結果可提供臨床上探討複合樹脂或復形技術有利的參考資料。

    The light cured resin composites have been widely used in the restorative dentistry. The composite materials polymerize through the photo-activation process, the subsequent polymerization shrinkage is one of the most critical defects that directs to some problems. In a restored cavity, this shrinkage and contraction stress may provoke contraction stress and result in the deflection of bonded tooth structures or the disruption of resin-tooth bonding. Some restorative techniques including modification of cavity configuration, changing curing time, use of materials with low elastic modulus under the composites, were believed to alleviate the contraction stress. These postulation need to be verified.
    The clinical consequences of polymerization shrinkage constitute the main reasons for replacement of resin composite restorations. The objective of this study was to investigate the development and distribution of composite contraction stress in a Class II cavity, with specific aim to examine the roles of cavity configuration and lining materials in reducing this stress. By integrating experimental approaches and finite element analysis, the biomechanics of composite polymerization was explored.
    The primary part was to collect the material properties including Young’s modulus and degree of conversion of a composite material, which are required in the following finite element (FE) models. The polymerized composite in the cavity is not homogeneous since the halogen lamp only irradiates on the top surface. This study attempted to determine the local Young’s modulus using nanoindentation tester. The obtained local Young’s modulus for different curing depth was compared with microhardness to verify the correlation of hardness and degree of conversion. Results showed that 40 sec curing resins exhibited greater micro- and nanohardness values for all the measured curing depths and also the effective curing depth than 20 sec curing. There was no significant difference between the standard and 2-step curing modes. The obtained microhardness values and Young’s modulus were generally consistent in the measured regions.
    With laboratory experimental approaches, composite restorations in human molars were accomplished by different techniques and their polymerization consequences were inspected. With a study comparing the composite restorations with various lining materials, flowable composite lining did not showed reduce the cervical microleakage. Use of glass ionomer lining showed better marginal sealing especially in deep cavities. A subsequent study also showed that a thick flowable composite lining contributed to reduced marginal integrity after the thermocycling test. The cusp deformation generated from polymerization shrinkage was measured by digital-image-correlation (DIC) method. The displacement measurement showed that the composite shrinkage patterns were not solely determined by previously mentioned C-factor, but also the volume of composite materials and the stiffness of the remained cusps.
    FE simulation corresponding to the real human molar was performed to analyze the stress distribution in different cavity geometries. After the primary results are verified with data from the experiment approaches, the FE model was adjusted to validate the contribution of multiple variables in a Class II cavity. Using the FE models, the models showed the stress distribution in cavities of different configurations. The stress analysis showed that the high stress was located inside the deep portion of the cavity surfaces. The assessment of models with lining materials showed that the shrinkage rate of restorative and lining materials cast a significant influence on the magnitude of contraction stress. The displacements in the cavity floor from the analytic results were partly in consistence with the DIC measurement.
    In conclusion, the current study investigated the polymerization shrinkage and contraction stress provoked by composite restorations through the biomechanical experiments and analysis. The development of remained tooth deformation and microleakage was affected by multiple factors including the volume of resin composite, the polymerization shrinkage rate, the cavity configuration, and the remained cusp stiffness. This“hybrid numerical– experimental” approach provides valuable information to find the most favorable restorative technique in various clinical conditions.

    ABSTRACT .................................................I 中文摘要 ................................................IV 誌謝.....................................................VI LIST OF CONTENTS .......................................VII LIST OF TABLES ..........................................IX LIST OF FIGURES...........................................X CHAPTER 1. GENERAL INTRODUCTION 1.1 OVERVIEWS OF DENTAL COMPOSITE RESTORATION .....1 1.2 LITERATURE REVIEWS 1.2.1 The polymerization kinetic and the development of contraction stress......................................3 1.2.2 Factors regulating the contraction stress ......7 1.2.3 Approaches in investigating the polymerization kinetics ...............................................10 1.3 GENERAL HYPOTHESES AND OBJECTIVES..................13 CHAPTER 2. INVESTIGATION OF RESIN POLYMERIZATION KINETICS AND MATERIAL PROPERTY 2.1 INTRODUCTION ......................................16 2.2 METERIALS AND METHODS..............................19 2.2.1 Microhardness measurement in different curing depths .............................................19 2.2.2 Nanoindentation test for mechanical properties..21 2.3 RESULTS .............................................23 2.4 DISCUSSION ..........................................30 2.5 SUMMARY .............................................34 CHAPTER 3. INFLUENCE OF LINING MATERIALS ON COMPOSITE RESTORATIONS 3.1 INTRODUCTION ........................................35 3.2 METERIALS AND METHODS................................38 3.2.1 Influence of various lining materials...........38 3.2.2 Influence of lining thickness...................41 3.3 RESULTS .............................................44 3.3.1 Influence of various lining materials...........44 3.3.2 Influence of lining thickness...................46 3.4 DISCUSSION ..........................................50 3.5 SUMMARY .............................................54 CHAPTER 4. COMPOSITE SHRINKAGE MEASUREMENT USING DIGITAL IMAGE CORRELATION TECHNIQUE 4.1 INTRODUCTION ........................................55 4.2 METERIALS AND METHODS................................57 4.2.1 Experimental instrumentation and verification...57 4.2.2 Measurement on a simulated cavity and finite element analysis ........................................58 4.2.3 Composite shrinkage in a dental cavity..........60 4.3 RESULTS .............................................63 4.3.1 Shrinkage in a simulated cavity.................63 4.3.2 Composite shrinkage in a dental cavity..........65 4.4 DISCUSSION ..........................................67 4.5 SUMMARY .............................................71 CHAPTER 5. FINITE ELEMENT ANALYSIS OF CLASS II MOD COMPOSITE RESTORATION 5.1 INTRODUCTION ........................................72 5.2 METERIAL AND METHODS.................................75 5.2.1 Imaging processing and finite element model construction.............................................75 5.2.2 Material property, boundary condition, and loading condition........................................79 5.2.3 Convergence criteria and validation.............80 5.3 RESULTS .............................................82 5.4 DISCUSSION ..........................................90 5.5 SUMMARY..............................................93 CHAPTER 6. CONCLUSION AND FUTURE WORK ...................94 REFERENCE ...............................................96 APPENDIX Appendix 1. Nanoindentation test......................104 Appendix 2. Rationale of digital image correlation method..................................................106 CURRICULUM VITAE........................................108

    ADA (1998). Statement on posterior resin-based composites. ; ADA Council on Scientific Affairs: ADA Council on Dental Benefit Programs. J Am Dent Assoc 129(11):1627-8.

    Alomari QD, Reinhardt JW, Boyer DB (2001). Effect of liners on cusp deflection and gap formation in composite restorations. Oper Dent 26(4):406-11.

    Alster D, Feilzer AJ, De Gee AJ, Mol A, Davidson CL (1992). The dependence of shrinkage stress reduction on porosity concentration in thin resin layers. J Dent Res 71(9):1619-22.

    Asmussen E (1982). Restorative resins: hardness and strength vs. quantity of remaining double bonds. Scand J Dent Res 90(6):484-9.

    Asmussen E, Peutzfeldt A (2001). Influence of pulse-delay curing on softening of polymer structures. J Dent Res 80(6):1570-3.

    Atai M, Nekoomanesh M, Hashemi SA, Amani S (2004). Physical and mechanical properties of an experimental dental composite based on a new monomer. Dent Mater 20(7):663-8.

    Ausiello P, Apicella A, Davidson CL, Rengo S (2001). 3D-finite element analyses of cusp movements in a human upper premolar, restored with adhesive resin-based composites. J Biomech 34(10):1269-77.

    Ausiello P, Apicella A, Davidson CL (2002). Effect of adhesive layer properties on stress distribution in composite restorations--a 3D finite element analysis. Dent Mater 18(4):295-303.

    Barink M, Van der Mark PC, Fennis WM, Kuijs RH, Kreulen CM, Verdonschot N (2003). A three-dimensional finite element model of the polymerization process in dental restorations. Biomaterials 24(8):1427-35.

    Bayne SC, Thompson JY, Swift EJ, Jr., Stamatiades P, Wilkerson M (1998). A characterization of first-generation flowable composites. J Am Dent Assoc 129(5):567-77.

    Bedran-de-Castro AK, Cardoso PE, Ambrosano GM, Pimenta LA (2004). Thermal and mechanical load cycling on microleakage and shear bond strength to dentin. Oper Dent 29(1):42-8.

    Bouillaguet S, Ciucchi B, Jacoby T, Wataha JC, Pashley D (2001). Bonding characteristics to dentin walls of class II cavities, in vitro. Dent Mater 17(4):316-21.

    Bouillaguet S, Gamba J, Forchelet J, Krejci I, Wataha JC (2006). Dynamics of composite polymerization mediates the development of cuspal strain. Dent Mater 22(10):896-902.

    Bowen RL (1956). Use of epoxy resins in restorative materials. J Dent Res 35(3):360-9.

    Brackett WW, Browning WD, Ross JA, Brackett MG (2001). Two-year clinical performance of a polyacid-modified resin composite and a resin-modified glass-ionomer restorative material. Oper Dent 26(1):12-6.

    Braga RR, Ferracane JL (2002). Contraction stress related to degree of conversion and reaction kinetics. J Dent Res 81(2):114-8.

    Brannstrom M (1986). The cause of postrestorative sensitivity and its prevention. J Endod 12(10):475-81.

    Briscoey BJ, Fiori L, Pelillo E (1998). Nano-indentation of polymeric surfaces. J Phys D: Appl Phys 31(2395-2405.

    Bruck HA, McNeill SR, Sutton MA, Peters WHI (1989). Digital image correlation using Newton-Raphson method of partial differential correction
    Exp Mech 29(3):261-267.

    Carvalho RM, Santiago SL, Fernandes CA, Suh BI, Pashley DH (2000). Effects of prism orientation on tensile strength of enamel. J Adhes Dent 2(4):251-7.

    Chabrier F, Lloyd CH, Scrimgeour SN (1999). Measurement at low strain rates of the elastic properties of dental polymeric materials. Dent Mater 15(1):33-8.

    Chen HY, Manhart J, Hickel R, Kunzelmann KH (2001). Polymerization contraction stress in light-cured packable composite resins. Dent Mater 17(3):253-9.

    Christensen GJ (1989). Alternatives for the restoration of posterior teeth. Int Dent J 39(3):155-61.

    Chuang SF, Liu JK, Chao CC, Liao FP, Chen YH (2001). Effects of flowable composite lining and operator experience on microleakage and internal voids in class II composite restorations. J Prosthet Dent 85(2):177-83.

    Chuang SF, Jin YT, Lin TS, Chang CH, Garcia-Godoy F (2003). Effects of lining materials on microleakage and internal voids of Class II resin-based composite restorations. Am J Dent 16(2):84-90.

    Chung K, Greener EH (1988). Degree of conversion of seven visible light-cured posterior composites. J Oral Rehabil 15(6):555-60.

    Cook WD (1982). Spectral distributions of dental photopolymerization sources. J Dent Res 61(12):1436-8.

    Craig RG, Peyton FA (1958). Elastic and mechanical properties of human dentin. J Dent Res 37(4):710-8.

    Dauvillier BS, Feilzer AJ, De Gee AJ, Davidson CL (2000). Visco-elastic parameters of dental restorative materials during setting. J Dent Res 79(3):818-23.

    Davidson CL, de Gee AJ (1984). Relaxation of polymerization contraction stresses by flow in dental composites. J Dent Res 63(2):146-8.

    Davidson CL, Feilzer AJ (1997). Polymerization shrinkage and polymerization shrinkage stress in polymer-based restoratives. J Dent 25(6):435-40.

    de Gee AF, Feilzer AJ, Davidson CL (1993). True linear polymerization shrinkage of unfilled resins and composites determined with a linometer. Dent Mater 9(1):11-4.

    Dietschi D, De Siebenthal G, Neveu-Rosenstand L, Holz J (1995). Influence of the restorative technique and new adhesives on the dentin marginal seal and adaptation of resin composite Class II restorations: an in vitro evaluation. Quintessence Int 26(10):717-27.

    Eldiwany M, Powers JM, George LA (1993). Mechanical properties of direct and post-cured composites. Am J Dent 6(5):222-4.

    Eliades GC, Vougiouklakis GJ, Caputo AA (1987). Degree of double bond conversion in light-cured composites. Dent Mater 3(1):19-25.

    Feilzer AJ, De Gee AJ, Davidson CL (1987). Setting stress in composite resin in relation to configuration of the restoration. J Dent Res 66(11):1636-9.

    Ferracane JL, Greener EH (1986). The effect of resin formulation on the degree of conversion and mechanical properties of dental restorative resins. J Biomed Mater Res 20(1):121-31.

    Ferracane JL, Condon JR (1992). Post-cure heat treatments for composites: properties and fractography. Dent Mater 8(5):290-5.

    Figueiredo Reis A, Giannini M, Ambrosano GM, Chan DC (2003). The effects of filling techniques and a low-viscosity composite liner on bond strength to class II cavities. J Dent 31(1):59-66.

    Fleming GJ, Khan S, Afzal O, Palin WM, Burke FJ (2006). Investigation of polymerisation shrinkage strain, associated cuspal movement and microleakage of MOD cavities restored incrementally with resin-based composite using an LED light curing unit. J Dent.

    Gilchrist CL, Xia JQ, Setton LA, Hsu EW (2004). High-resolution determination of soft tissue deformations using MRI and first-order texture correlation
    IEEE Trans. Med. Imaging 23(5 ):546-553.

    Gladys S, Van Meerbeek B, Braem M, Lambrechts P, Vanherle G (1997). Comparative physico-mechanical characterization of new hybrid restorative materials with conventional glass-ionomer and resin composite restorative materials. J Dent Res 76(4):883-94.

    Haines DJ (1968). Physical properties of human tooth enamel and enamel sheath material under load. J Biomech 1(2):117-25.

    Hannig M, Friedrichs C (2001). Comparative in vivo and in vitro investigation of interfacial bond variability. Oper Dent 26(1):3-11.

    Hansen EK (1982). Visible light-cured composite resins: polymerization contraction, contraction pattern and hygroscopic expansion. Scand J Dent Res 90(4):329-35.

    Hembree JH, Jr. (1989). Microleakage at the gingival margin of class II composite restorations with glass-ionomer liner. J Prosthet Dent 61(1):28-30.

    Hofmann N, Just N, Haller B, Hugo B, Klaiber B (1998). The effect of glass ionomer cement or composite resin bases on restoration of cuspal stiffness of endodontically treated premolars in vitro. Clin Oral Investig 2(2):77-83.

    Hofmann N, Denner W, Hugo B, Klaiber B (2003). The influence of plasma arc vs. halogen standard or soft-start irradiation on polymerization shrinkage kinetics of polymer matrix composites. J Dent 31(6):383-93.

    Hood JA (1991). Biomechanics of the intact, prepared and restored tooth: some clinical implications. Int Dent J 41(1):25-32.

    Huang YH, Quan C, Tay CJ, Chen LJ (2005). Shape measurement by the use of digital image correlation. Optical Engineering 44 (8):087011.

    Imazato S, Tarumi H, Kobayashi K, Hiraguri H, Oda K, Tsuchitani Y (1995). Relationship between the degree of conversion and internal discoloration of light-activated composite. Dent Mater J 14(1):23-30.

    Imazato S, McCabe JF, Tarumi H, Ehara A, Ebisu S (2001). Degree of conversion of composites measured by DTA and FTIR. Dent Mater 17(2):178-83.

    Issa Y, Watts DC, Brunton PA, Waters CM, Duxbury AJ (2004). Resin composite monomers alter MTT and LDH activity of human gingival fibroblasts in vitro. Dent Mater 20(1):12-20.

    Jackson RD, Morgan M (2000). The new posterior resins and a simplified placement technique. J Am Dent Assoc 131(3):375-83.

    Jantarat J, Panitvisai P, Palamara JE, Messer HH (2001). Comparison of methods for measuring cuspal deformation in teeth. J Dent 29(1):75-82.

    Kanca J, 3rd, Suh BI (1999). Pulse activation: reducing resin-based composite contraction stresses at the enamel cavosurface margins. Am J Dent 12(3):107-12.

    Katona TR, Winkler MM (1994). Stress analysis of a bulk-filled Class V light-cured composite restoration. J Dent Res 73(8):1470-7.

    Katona TR, Winkler MM, Huang J (1996). Stress analysis of a bulk-filled Class-V chemical-cured dental composite restoration. J Biomed Mater Res 31(4):445-9.

    Kemp-Scholte CM, Davidson CL (1990). Complete marginal seal of Class V resin composite restorations effected by increased flexibility. J Dent Res 69(6):1240-3.

    Kidd EA (1976). Microleakage: a review. J Dent 4(5):199-206.

    Knobloch LA, Kerby RE, Clelland N, Lee J (2004). Hardness and degree of conversion of posterior packable composites. Oper Dent 29(6):642-9.

    Koenigsberg S, Fuks A, Grajower R (1989). The effect of three filling techniques on marginal leakage around Class II composite resin restorations in vitro. Quintessence Int 20(2):117-21.

    Krejci I, Lutz F, Krejci D (1988). The influence of different base materials on marginal adaptation and wear of conventional Class II composite resin restorations. Quintessence Int 19(3):191-8.

    Kwon YH, Jeon GH, Jang CM, Seol HJ, Kim HI (2006). Evaluation of polymerization of light-curing hybrid composite resins. J Biomed Mater Res B Appl Biomater 76(1):106-13.

    Labella R, Lambrechts P, Van Meerbeek B, Vanherle G (1999). Polymerization shrinkage and elasticity of flowable composites and filled adhesives. Dent Mater 15(2):128-37.

    Lang H, Rampado M, Mullejans R, Raab WH (2004). Determination of the dynamics of restored teeth by 3D electronic speckle pattern interferometry. Lasers Surg Med 34(4):300-9.

    Latorre-Garcia M, Alvarez-Gayosso C, Barcelo-Santana F, Vera-Graziano R (2006). Study of shrinkage-strain and contraction rates of commercial and experimental compomers. Dent Mater 22(11):1063-70.

    Lee MR, Cho BH, Son HH, Um CM, Lee IB (2006). Influence of cavity dimension and restoration methods on the cusp deflection of premolars in composite restoration. Dent Mater.

    Lee SY, Greener EH (1994). Effect of excitation energy on dentine bond strength and composite properties. J Dent 22(3):175-81.

    Leevailoj C, Cochran MA, Matis BA, Moore BK, Platt JA (2001). Microleakage of posterior packable resin composites with and without flowable liners. Oper Dent 26(3):302-7.

    Lim BS, Ferracane JL, Sakaguchi RL, Condon JR (2002). Reduction of polymerization contraction stress for dental composites by two-step light-activation. Dent Mater 18(6):436-44.

    Loguercio AD, Reis A, Schroeder M, Balducci I, Versluis A, Ballester RY (2004). Polymerization shrinkage: effects of boundary conditions and filling technique of resin composite restorations. J Dent 32(6):459-70.

    Lovell LG, Lu H, Elliott JE, Stansbury JW, Bowman CN (2001). The effect of cure rate on the mechanical properties of dental resins. Dent Mater 17(6):504-11.

    Magne P, Perakis N, Belser UC, Krejci I (2002). Stress distribution of inlay-anchored adhesive fixed partial dentures: a finite element analysis of the influence of restorative materials and abutment preparation design. J Prosthet Dent 87(5):516-27.

    McLean JW, Wilson AD (1977). The clinical development of the glass-ionomer cement. II. Some clinical applications. Aust Dent J 22(2):120-7.

    Mehl A, Hickel R, Kunzelmann KH (1997). Physical properties and gap formation of light-cured composites with and without 'softstart-polymerization'. J Dent 25(3-4):321-30.

    Meredith N (1999). Determination of the elastic modulus of resin based materials as a function of resonance frequency during polymerisation. Dent Mater 15(2):98-104.

    Meyer JM, Cattani-Lorente MA, Dupuis V (1998). Compomers: between glass-ionomer cements and composites. Biomaterials 19(6):529-39.

    Mongkolnam P, Tyas MJ (1994). Light-cured lining materials: a laboratory study. Dent Mater 10(3):196-202.

    Munksgaard EC, Hansen EK, Kato H (1987). Wall-to-wall polymerization contraction of composite resins versus filler content. Scand J Dent Res 95(6):526-31.

    Neves AD, Discacciati JA, Orefice RL, Yoshida MI (2005). Influence of the power density on the kinetics of photopolymerization and properties of dental composites. J Biomed Mater Res B Appl Biomater 72(2):393-400.

    Nicolella DP, Moravits DE, Gale AM, Bonewald LF, Lankford J (2006). Osteocyte lacunae tissue strain in cortical bone. J Biomech 39(9):1735-43.

    Nie J, Linden LA, Rabek JF, Ekstrand J (1999). Highly cross-linked networks for dental applications obtained by photocuring of tris[2-(acryloyloxy)ethyl]isocyanurate, 2-ethyl-2-(hydroxymethyl)-1,3-propanediol triacrylate, and pentaerythritol triacrylate. Acta Odontol Scand 57(1):1-8.

    Oliver WC, Pharr GM (1992). A new improved technique for determining hardness and elastic modulus using load and sensing indentation experiments. J Mater Res 7(6):1564-1582.

    Peutzfeldt A (1997). Resin composites in dentistry: the monomer systems. Eur J Oral Sci 105(2):97-116.

    Reeh ES, Douglas WH, Messer HH (1989). Stiffness of endodontically-treated teeth related to restoration technique. J Dent Res 68(11):1540-4.

    Rueggeberg F, Tamareselvy K (1995). Resin cure determination by polymerization shrinkage. Dent Mater 11(4):265-8.

    Rueggeberg FA, Craig RG (1988). Correlation of parameters used to estimate monomer conversion in a light-cured composite. J Dent Res 67(6):932-7.

    Sakaguchi RL, Ferracane JL (1998). Stress transfer from polymerization shrinkage of a chemical-cured composite bonded to a pre-cast composite substrate. Dent Mater 14(2):106-11.

    Sakaguchi RL, Wiltbank BD, Shah NC (2004). Critical configuration analysis of four methods for measuring polymerization shrinkage strain of composites. Dent Mater 20(4):388-96.

    Sano H, Ciucchi B, Matthews WG, Pashley DH (1994). Tensile properties of mineralized and demineralized human and bovine dentin. J Dent Res 73(6):1205-11.

    Shobha HK, Sankarapandian M, Sun Y, Kalachandra S, McGrath JE, Taylor DF (1997). Effect of dilution on the kinetics of cross-linking thermal polymerization of dental composite matrix resins. J Mater Sci Mater Med 8(10):583-6.

    Sutton MA, Turner JL, Bruck HA, Chae TA (1991). Full-field representation of discretely sampled surface deformation for displacement and strain analysis. . Exp Mech 31( 2 ):168-77.

    Tantbirojn D, Versluis A, Pintado MR, DeLong R, Douglas WH (2004). Tooth deformation patterns in molars after composite restoration. Dent Mater 20(6):535-42.

    Teshima W, Nomura Y, Tanaka N, Urabe H, Okazaki M, Nahara Y (2003). ESR study of camphorquinone/amine photoinitiator systems using blue light-emitting diodes. Biomaterials 24(12):2097-103.

    Thompson MS, Schell H, Lienau J, Duda GN (2006). Digital image correlation: A technique for determining local mechanical conditions within early bone callus. Med Eng Phys in press).

    Uno S, Finger WJ, Fritz U (1996). Long-term mechanical characteristics of resin-modified glass ionomer restorative materials. Dent Mater 12(1):64-9.

    van Dijken JW, Kieri C, Carlen M (1999). Longevity of extensive class II open-sandwich restorations with a resin-modified glass-ionomer cement. J Dent Res 78(7):1319-25.

    Van Meerbeek B, Willems G, Celis JP, Roos JR, Braem M, Lambrechts P, Vanherle G (1993). Assessment by nano-indentation of the hardness and elasticity of the resin-dentin bonding area. J Dent Res 72(10):1434-42.

    Versluis A, Douglas WH, Cross M, Sakaguchi RL (1996). Does an incremental filling technique reduce polymerization shrinkage stresses? J Dent Res 75(3):871-8.

    Versluis A, Tantbirojn D, Douglas WH (1998). Do dental composites always shrink toward the light? J Dent Res 77(6):1435-45.

    Versluis A, Tantbirojn D, Douglas WH (2004). Distribution of transient properties during polymerization of a light-initiated restorative composite. Dent Mater 20(6):543-53.

    Wahab FK, Shaini FJ, Morgano SM (2003). The effect of thermocycling on microleakage of several commercially available composite Class V restorations in vitro. J Prosthet Dent 90(2):168-74.

    Watts DC, al Hindi A (1999). Intrinsic 'soft-start' polymerisation shrinkage-kinetics in an acrylate-based resin-composite. Dent Mater 15(1):39-45.

    Watts DC, Kisumbi BK, Toworfe GK (2000). Dimensional changes of resin/ionomer restoratives in aqueous and neutral media. Dent Mater 16(2):89-96.

    Willems G, Celis JP, Lambrechts P, Braem M, Vanherle G (1993). Hardness and Young's modulus determined by nanoindentation technique of filler particles of dental restorative materials compared with human enamel. J Biomed Mater Res 27(6):747-55.

    Wilson J (1993). Effects of design features and restorative techniques on marginal leakage of MO composites: an in vitro study. Oper Dent 18(4):155-9.

    Witzel MF, Ballester RY, Meira JB, Lima RG, Braga RR (2007). Composite shrinkage stress as a function of specimen dimensions and compliance of the testing system. Dent Mater 23(2):204-10.

    Yamamoto M, Takahashi H (1995). Tensile fatigue strength of light cure composite resins for posterior teeth. Dent Mater J 14(2):175-84.

    Yoshikawa T, Sano H, Burrow MF, Tagami J, Pashley DH (1999). Effects of dentin depth and cavity configuration on bond strength. J Dent Res 78(4):898-905.

    Young KC, Cummings A, Main C, Gillespie FC, Stephen KW (1978). Microhardness studies on the setting characteristics of fissure sealants. J Oral Rehabil 5(2):187-95.

    Zhang TY, Xu WH (2002). Surface effects on nanoindentation. J Mater Res 17(1715-1720.

    下載圖示 校內:2008-08-10公開
    校外:2009-08-10公開
    QR CODE