簡易檢索 / 詳目顯示

研究生: 陳彥君
Chen, Yen-Chun
論文名稱: 具空氣彈簧效應之反自然蓮花結構的超疏水性研究
Superhydrophobicity of a Negative Lotus Structure with Air Spring Effect
指導教授: 李森墉
Lee, Sen-Yung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 141
中文關鍵詞: 蓮花效應接觸角PDMS超疏水性空氣彈簧效應
外文關鍵詞: Lotus effect, Contact angle, PDMS, Superhydrophobicity, Air Spring Effect
相關次數: 點閱:74下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然界中的蓮花葉面具有超疏水之特性,其接觸角約150°、滑動角約5°。其表面具能防水、自潔和流體滑動於界面之能力,可應用於玻璃清潔、太陽能電池、古蹟之保存、高樓、浴室及交通工具之清潔,而其滑動之邊界效應具應用於生物醫學方面之潛能。基於仿生學建立超疏水表面之結構,在近幾年引發極廣泛的基礎應用研究。然而該結構之結構強度低、大量複製困難,並易受外力受損失去自潔性的缺點。
    本研究在於設計與分析一不具奈米纖維之創新微結構,其與自然者大不相同。相對於凸柱狀之蓮花結構,提出一種多層次之凹洞狀微結構,而凹洞內可困住空氣。造成其超疏水性之機制包括表面張力之回復力、基底材料之彈性、結構下層封閉性之空氣彈簧效應,結構上層減少液/固接觸面積以及所使用之疏水材料。實驗所用之微結構材料為聚二甲基矽氧烷(polydimethylsiloxane, PDMS)。理論與實驗上證實本半封閉性之反蓮花結構,其接觸角可達168°、滑動角約於5°,水滴可於微結構表面反彈,具有超疏水之性質。此超疏水表面不但有可大量生產之可行性,且具有較佳的結構強度,此研究設計結果於各領域皆具應用之潛能。

    In nature, Leaves of Lotus are superhydrophobic surfaces. The contact angle is about 150° and slilding angle is below 5°. The surfaces have the abilities of water proofing, self-cleaning and slipping at the fluid-surface interface. Dominant applications can be found in the self-cleaning of glasses (window panes and windshields) and surfaces of solar cell, the protection of ancient remains, tall buildings, cars, bathrooms and structures in mountains. In addition, its slip boundary condition effect can potentially be applied in biomedicine. Based on the biomimicry, the study on creating super hydrophobic structures has triggered intense basic and applied research over the past several years. However, this kind of structures have some disadvantages, such as low structure strength and hard to replicate. It is easy to loss the ability of self-cleaning by the damage result from the external force.
    In this study, we show that it is not correct and suitable to study the problem in the way of biomimicry. Here we propose an innovative novel super hydrophobic micro-structure without nano-fibers. Opposite to the pillar lotus structure, the proposed one is a multi-leveled concaved structure with trapped air. The mechanisms for repelling water include the restoring force due to surface tension, the elastic deformation of the structure, the air spring force resulting from the concaved structure with trapped air, low contact area and the used of hydrophobic material. The material of micro-structures is PDMS (polydimethylsiloxane). This study theoretically and experimentally demonstrates that multi-leveled and semi-mural micro-structure of negative lotus struture has the following charateristcsc which the contact angle is 168°, sliding angle is about 5°. Droplets will rebound on the micro-structure of the surface. Such superhydrophobic suface has the possibility of mass-fabricating and greater structural strength. The result of this research will have great potential of application in all kinds of field.

    摘 要 I Abstract II 誌 謝 IV 目 錄 V 表 目 錄 IX 圖 目 錄 X 符 號 XV 第一章 緒 論 1 1.1 前 言 1 1.2 研究與理論發展 3 1.3 緒論總結 9 第二章 基本理論與文獻探討 12 2.1 表面張力 12 2.1.1 Laplace Pressure 15 2.1.2 三相界面濕潤狀態 16 2.2 接觸角 19 2.2.1 楊氏接觸角或本質接觸角 21 2.2.2 水滴幾何關係 21 2.2.3 前進角與後退角 23 2.2.4 滑動角 24 2.2.5 接觸角遲滯值 25 2.3 非理想表面之接觸角 28 2.3.1 The Wenzel Model 32 2.3.2 The Cassie-Baxter Model 33 2.3.3 過渡狀態 35 2.4 微結構表面疏水準則 37 2.5 動態效應 40 2.5.1 水滴撞擊微結構 40 2.5.2 滑動邊界條件 43 第三章 多層次反自然蓮花結構 45 3.1 設計多層次反蓮花結構 45 3.1.1 仿自然蓮花之突柱狀結構 45 3.1.2 多層次反自然蓮花結構 47 3.2 理論分析 51 3.2.1 接觸角理論 51 3.2.2 濕潤理論 54 3.3 力學機制分析 57 3.3.1 表面張力之回復力 57 3.3.2 基底材料之彈性 59 3.3.3 空氣彈簧效應 63 第四章 實驗材料與方法 66 4.1 實驗材料—聚二甲基矽氧烷 66 4.2 實驗儀器 67 4.2.1 接觸角量測儀 68 4.2.2 影像高速攝影機 68 4.2.3 分光光譜儀 69 4.3 實驗方法 71 4.3.1 實驗樣本製作 71 4.3.2 靜態接觸角量測實驗 77 4.3.3 前進角、後退角與滑動角量測實驗 81 4.3.4 水滴撞擊材料表面之動態量測實驗 82 4.3.5 穿透率量測實驗 83 第五章 實驗結果與探討 86 5.1 實驗結果 86 5.1.1 實驗試片介紹 86 5.1.2 接觸角、滑動角量測 90 5.1.3 水滴撞擊材料表面之動態量測 98 5.1.4 透光率量測 110 5.2 結構強度比較分析 113 5.3 實驗結果探討 119 第六章 總結 132 參考文獻 135 附錄 139 自述 141

    [1] Bico, J., Marzolin, C., and Quéré, D. Pearl drops. Europhys. Lett. 47(2), 220-226 (1999).
    [2] Bico, J.,Thiele,U. and Quéré, D. Wetting of textured surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 206(9), 41–46 ( 2002).
    [3] Bhushan, B and Jung, Y. C. Wetting study of patterned surfaces for superhydrophobicity, Ultramicroscopy, 107(10-11), 1033–1041 (2007).
    [4] Bhushan, B and Jung, Y. C., and Koch, K. Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces. Langmuir. 25(5), 3240–3248, ( 2009).
    [5] Cassie, A.B.D., Baxter, S. Wettability of Porous Surfaces. Trans. Faraday Soc. 40, 546-551 (1944).
    [6] Chen, Q., Yao, X., Xu, L., Li, Q., Song,Y and Jiang, L. Capillary force restoration of droplet on superhydrophobic ribbed nano-needles arrays. The Royal Society of Chemistry. 6, 2470–2474 (2010).
    [7] Extrand, C. W. Model for contact angles and hysteresis on rough and ultraphobic surface. Langmuir. 18, 7991–7999 (2002).
    [8] Extrand, C. W. Criteria for Ultralyophobic Surfaces. Langmuir. 20, 5013–5018 (2005).
    [9] Furmidge, C. G. Studies at phase interfaces: Sliding of liquid drops on solid surfaces and a theory for spray retention. Journal of Colloid Science. 17(4), 309 (1962).
    [10]de Gennes, P. G., Brochard-Wyart, F. and Quéré, D. Capillarity and Wetting Phenomena, Drops, Bubbles, Pearls, Waves, Springer. New York. (2004).
    [11]Gao, L. and McCarthy, T. J. Contact Angle Hysteresis Explained.Langmuir. 22, 6234–6237 (2006).
    [12]Hsieh, C. T., Wu, F. L., Chen, W. Y. Superhydrophobicity and superoleophobicity from hierarchical silica sphere. Material Chemistry and Physics. 121, 14–21 (2010).
    [13]Hong, C. C., Huang, P., and Shieh, J. Fabrication of Morphology-Controlled Sub-20-nm Polymer Nanotip and, Nanopore Arrays Using an Identical Nanograss Mold. Macromolecules. 43, 7722–7728 (2010).
    [14]Johnson, R. E. and Dettre, R. H. Contact angle, Wettability and Adhesion. Advances in Chemistry Series. 43, 112–35 (1964).
    [15]Jung, Y. C. and Bhushan, B. Contact angle, adhesion and friction properties of micro- and nanopatterned polymers for superhydrophobicity. Nanotechnology. 17, 4970 (2006).
    [16]Jung, Y. C. and Bhushan, B. Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces. Nanotechnology. 17, 4970–4980 (2006).
    [17]Y Jung, Y. C. and Bhushan, B. Wetting transition of water droplets on superhydrophobic patterned surfaces. Scripta Materialia. 57, 1057–1060 (2007).
    [18]Jiang, Z. X., Geng, L., and Huang, Y.D. Design and Fabrication of Hydrophobic Copper Mesh with Striking Loading Capacity and Pressure Resistance. American Chemical Society. 114(20), 9370–9378 (2010).
    [19]Kwon, Y., Patankar, N., Choi, J. and Lee, J. Design of Surface Hierarchy for Extreme Hydrophobicity. Langmuir. 25(11), 6129–6136 (2009).
    [20]Ko, H., Zhang, Z., Takei, K. Hierarchical polymer micropillar arrays decorated with ZnO nanowires. NANOTECHNOLOGY . 21, 295305 (2010) .
    [21]Lafuma, A. U., Quéré, D. Superhydrophobic states. Nature Materials. 2(7), 457–460 (2003).
    [22]Miwa, M., Nakajima, A., Fujishima, A., Hashimoto, K., and Watanabe, T. Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces. Langmuir. 16(13), 5754–5760 (2000).
    [23]Marmur, A. Wetting on Hydrophobic Rough Surfaces: To Be Heterogeneous or Not To Be ?. Langmuir. 19(20), 8343–8348 (2003).
    [24]Marmur, A. The Lotus Effect: Superhydrophobicity and metastability. Langmuir. 20( 9), 3517–3519 (2004).
    [25]Malouin, Jr., B. A., Koratkar, N.A., Hirsa, A. H., and Wang, Z. Directed rebounding of droplets by microscale surface roughness gradients. APPLIED PHYSICS LETTERS. 96, 234103 (2010).
    [26]Neinhuis, C., and Barthlott, W. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces. Annals of Botany. 79, 667–677 (1997).
    [27]Patankar, N. A. Mimicking the Lotus Effect: Influence of Double Roughness Structures and Slender Pillars. Langmuir. 20(19), 8209–8213 (2004).
    [28]Quéré, D. Non-sticking drops. INSTITUTE OF PHYSICS PUBLISHING. 68, 2495–2532 (2005).
    [29]Quéré, D. Bouncing transitions on microtextured materials. Europhys. Lett. 74, 306 (2006).
    [30]Richard, D. and Quéré, D. Bouncing water drops. Europhys. Lett. 50, 769 (2000).
    [31]Rothstein, J. P. Slip on Superhydrophoboic Surface. Annual Review of Fluid Mechanics. 42, 89–109 (2010).
    [32]Tsai, P., Pacheco, S., Pirat, C., Lefferts, L. and Lohse, D. Drop Impact upon Micro- and Nanostructured Superhydrophobic Surfaces. Langmuir. 25(20), 12293-12298 (2009).
    [33]Wenzel, R. N. Resistance of solid surface to wetting by water. Ind. Eng. Chem. 28, 988 (1936).
    [34]Young, T. An Essay on the Cohesion of Fluids. Phil. Trans. R. Soc. Lond. 95, 65–87 (1805).
    [35]Yoshimitsu, Z., Nakajima, A., Watanabe, T., Hashimoto, K. Effects of Surface Structure on the Hydrophobicity and Sliding Behavior of Water Droplets. Langmuir. 18(15), 5818–5822 (2002).
    [36]Zheng, Q. S., Yu, Y., and Zhao, Z. H. Effects of Hydraulic Pressure on the Stability and Transition of Wetting Modes of Superhydrophobic Surfaces. Langmuir. 21(26), 12207–12212 (2005).
    [37]Yu, Y., Zhao, Z. H. and Zheng, Q. S. Mechanical and Super-hydrophobic Stabilities of Two-Scale Surfacial Structure of Lotus Leaves. Langmuir. 23, 8212–8216 (2007).
    [38]張德威, 國立台灣大學工程科學及海洋工程學系碩士論文(2007).
    [39]廖士貴, 國立成功大學機械工程學系碩士論文(2010).
    [40]鄭總輝、鄭欽峰、陳致源、陳永志, 超疏水自清潔塗料概談,工業材料雜誌206期2月. 120–126 (2004)。

    下載圖示 校內:2013-08-04公開
    校外:2013-08-04公開
    QR CODE