簡易檢索 / 詳目顯示

研究生: 蔡沛澄
Tsai, Pei-Cheng
論文名稱: 以添加碳黑之多孔性矽藻土擷取環境中的水能量
Energy Harvesting from Water Potential Gradient Using Porous Diatomite by Adding Carbon Black
指導教授: 楊瑞珍
Yang, Ruey-Jen
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 69
中文關鍵詞: 蒸發發電裝置矽藻土碳黑
外文關鍵詞: Evaporative power generation device, Diatomite, Carbon Black
相關次數: 點閱:54下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 能源是現在各國重要的社會議題之一,面對化石能源耗盡的問題,開發新能源成為熱門發展的項目。由水循環中的蒸發得到啟發,本研究透過蒸發做為水的驅動力,以石膏、矽藻土與碳黑製作直立式實驗裝置(EDPG),並探討了EDPG的碳黑含量、電極位置與毛細位置對其蒸發發電性能的影響。除此之外,透過添加氯化鋰(LiCl)至EDPG之中,使裝置達到除濕與發電並行的效果。結果指出,EDPG可獨自站立於去離子水(DI water)之中,其單一EDPG最大輸出功率可達7.73 nW,且在去離子水中具有高穩定性。此外,我們研究了裝置發電原理,透過實驗我們了解到,由於電離電壓效應 (Ionovoltaic effect),實驗裝置(EDPG)之水位高低、通道內離子流向以及電極位置,對其發電機制有著重大影響。最後,透過在EDPG中摻入氯化鋰(LiCl)後,達到了同時除濕與發電性能,結果顯示其電性響應與EDPG兩側之濕度變化有很高的靈敏度,在相對濕度差為60 %時可擷取約為150 nA的電流。透過本研究能夠了解蒸發發電機的發展潛能,並且由於體積小、製作過程簡易以及低成本,使得該裝置得以有望在未來發展出達到同時發電與除濕的高效能裝置。

    Energy is one of the most important social issues in various countries. Inspired by the evaporation in the water cycle, this study uses evaporation as the driving force of water to design an upright experimental device (EDPG) which is composed of gypsum, diatomite and carbon black. The results show that EDPG can stand alone in deionized water (DI water), the maximum output power of a single EDPG can reach 7.73 nW. Also, due to the Ionovoltaic effect, the water level of the experimental device (EDPG), the ion flow in the channel and the electrode position have a significant impact on its power generation mechanism. And last, by adding lithium chloride (LiCl) into EDPG, the electrical response is highly sensitive to the humidity change on both sides of EDPG. The short circuit current can reach about 150 nA under the situation (the relative humidity difference is 60 %). Through this study, we can understand the potential of EDPG as an evaporative generator, and it is expected to develop into high-efficiency devices that can generate electricity and dehumidify at the same time in the future.

    中文摘要I 致謝XII 目錄XIII 圖目錄XVI 縮寫說明XXII 符號說明XXIII 第 1 章 緒論 1 1.1 簡介 1 1.2 矽藻土(Diatomite) 2 1.3 碳黑(Carbon black) 8 1.4 水電形式發電機 10 1.4.1電動能源轉換(Electrokinetic energy conversion) 11 1.4.2偽流機制(Pseudostreaming mechanism) 15 1.4.3離子梯度擴散(Ion gradient diffusion) 18 1.4.4電子拖曳效應(Electron drag effect) 18 1.4.5電離電壓效應(Ionovoltaic effect) 19 第 2 章 原理 24 2.1 電雙層(Electric Double Layer) 24 2.2 能斯登-普朗克方程(Nernst-Plank equation) 25 2.3 波茲曼分佈與帕松-波茲曼方程式(Boltzmann distribution & Poisson Boltzmann equation) 26 2.4 德拜長度(Debye length) 27 2.5 表面電荷密度(Surface charge density) 28 2.6 電離電壓效應 (Ionovoltaic effect) 28 第 3 章 實驗材料與方法 29 3.1 實驗儀器 29 3.1.1 超音波細胞粉碎儀 29 3.1.2 電源電錶量測儀器 30 3.1.3 真空泵 31 3.1.4 數位式電子天秤 32 3.1.5 3D印表機 33 3.1.6 超純水製造機 34 3.1.7 高解析掃描式電子顯微鏡(Scanning Electron Microscope) 35 3.1.8 高溫爐 36 3.1.9 數位式氧電漿機 37 3.2 實驗材料 38 3.3 實驗材料製備 39 3.3.1 PDMS製備 39 3.3.2 Epoxy製備 39 3.3.3 CB-SDBS溶液製備 39 3.3.4樣品模具製作 41 3.4 實驗裝置(Evaporation Driven Power Generator EDPG)製作 42 3.5 蒸發實驗架設 43 3.6 濕度控制盒實驗架設 44 3.7 材料分析 48 3.7.1 實驗裝置(EDPG)組成元素分析 48 3.7.2 實驗裝置結構分析 48 第 4 章 結果與討論 49 4.1 實驗裝置(EDPG)結構分析解果 49 4.2 實驗裝置(EDPG)組成元素分析結果 51 4.3 實驗裝置(EDPG)性能、蒸發實驗量測 53 4.4浸塗法(dip coating)對裝置之蒸發發電的效應 54 4.5改變實驗裝置(EDPG)電極位置實驗量測 56 4.6實驗裝置(EDPG)之毛細水位位置實驗 58 4.7實驗裝置(EDPG)發電機制探討 59 4.8實驗裝置濕度量測實驗 63 第 5 章 結論與展望 65 5.1 結論 65 5.2 未來展望 66 參考文獻 67

    [1] Zaman, K. and Abd-el Moemen, M., Energy consumption, carbon dioxide emissions and economic development: evaluating alternative and plausible environmental hypothesis for sustainable growth. Renewable and Sustainable Energy Reviews, 74, 1119-1130,(2017).
    [2] Hamududu, B. and Killingtveit, A., Assessing climate change impacts on global hydropower. Energies, 5(2), 305-322,(2012).
    [3] Mai, V.-P. and Yang, R.-J., Boosting power generation from salinity gradient on high-density nanoporous membrane using thermal effect. Applied Energy, 274, 115294,(2020).
    [4] Chang, C.-C., Huang, W.-H., Mai, V.-P., Tsai, J.-S., and Yang, R.-J., Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide. Energy, 229, 120715,(2021).
    [5] Xue, G., Xu, Y., Ding, T., Li, J., Yin, J., Fei, W., Cao, Y., Yu, J., Yuan, L., and Gong, L., Water-evaporation-induced electricity with nanostructured carbon materials. Nature nanotechnology, 12(4), 317-321,(2017).
    [6] Zhou, X., Zhang, W., Zhang, C., Tan, Y., Guo, J., Sun, Z., and Deng, X., Harvesting electricity from water evaporation through microchannels of natural wood. ACS applied materials & interfaces, 12(9), 11232-11239,(2020).
    [7] Zhang, Y., Wu, L., Wang, X., Yu, J., and Ding, B., Super hygroscopic nanofibrous membrane-based moisture pump for solar-driven indoor dehumidification. Nature communications, 11(1), 1-11,(2020).
    [8] Ivanov, S.É. and Belyakov, A., Diatomite and its applications. Glass & Ceramics, 65,(2008).
    [9] Ma, S.-C., Wang, Z.-G., Zhang, J.-L., Sun, D.-H., and Liu, G.-X., Detection analysis of surface hydroxyl active sites and simulation calculation of the surface dissociation constants of aqueous diatomite suspensions. Applied Surface Science, 327, 453-461,(2015).
    [10] Zheng, J., Shi, J., Ma, Q., Dai, X., and Chen, Z., Experimental study on humidity control performance of diatomite-based building materials. Applied Thermal Engineering, 114, 450-456,(2017).
    [11] Liu, C., Cai, C., and Zhao, X., Overcoming salt crystallization during solar desalination based on diatomite-regulated water supply. ACS Sustainable Chemistry & Engineering, 8(3), 1548-1554,(2020).
    [12] Fang, J., Liu, Q., Zhang, W., Gu, J., Su, Y., Su, H., Guo, C., and Zhang, D., Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. Journal of materials chemistry A, 5(34), 17817-17821,(2017).
    [13] Marinho, B., Ghislandi, M., Tkalya, E., Koning, C.E., and de With, G., Electrical conductivity of compacts of graphene, multi-wall carbon nanotubes, carbon black, and graphite powder. Powder technology, 221, 351-358,(2012).
    [14] Jiao, S., Liu, M., Li, Y., Abrha, H., Wang, J., Dai, Y., Li, J., Kang, N., Li, Y., and Liu, X., Emerging hydrovoltaic technology based on carbon black and porous carbon materials: A mini review. Carbon,(2022).
    [15] Zhao, Y., Lu, P., Li, C., Fan, X., Wen, Q., Zhan, Q., Shu, X., Xu, T., and Zeng, G., Adsorption mechanism of sodium dodecyl benzene sulfonate on carbon blacks by adsorption isotherm and zeta potential determinations. Environmental technology, 34(2), 201-207,(2013).
    [16] Li, J., Liu, K., Ding, T., Yang, P., Duan, J., and Zhou, J., Surface functional modification boosts the output of an evaporation-driven water flow nanogenerator. Nano Energy, 58, 797-802,(2019).
    [17] Yun, T.G., Bae, J., Rothschild, A., and Kim, I.-D., Transpiration driven electrokinetic power generator. ACS nano, 13(11), 12703-12709,(2019).
    [18] Bae, J., Kim, M.S., Oh, T., Suh, B.L., Yun, T.G., Lee, S., Hur, K., Gogotsi, Y., Koo, C.M., and Kim, I.-D., Towards Watt-scale hydroelectric energy harvesting by Ti 3 C 2 T x-based transpiration-driven electrokinetic power generators. Energy & Environmental Science, 15(1), 123-135,(2022).
    [19] Liu, K., Yang, P., Li, S., Li, J., Ding, T., Xue, G., Chen, Q., Feng, G., and Zhou, J., Induced potential in porous carbon films through water vapor absorption. Angewandte Chemie International Edition, 55(28), 8003-8007,(2016).
    [20] Zou, J., Fang, W., He, X., Chen, H., Du, X., Jiang, T., Qin, J., and Zhao, L., Carbonization temperature dependence of hydrovoltaic conversion of natural wood. Journal of Materials Science, 56(29), 16387-16398,(2021).
    [21] Park, J., Song, S., Yang, Y., Kwon, S.-H., Sim, E., and Kim, Y.S., Identification of droplet-flow-induced electric energy on electrolyte–insulator–semiconductor structure. Journal of the American Chemical Society, 139(32), 10968-10971,(2017).
    [22] Yoon, S.G., Yang, Y., Yoo, J., Jin, H., Lee, W.H., Park, J., and Kim, Y.S., Natural evaporation-driven ionovoltaic electricity generation. ACS Applied Electronic Materials, 1(9), 1746-1751,(2019).
    [23] Bae, J., Yun, T.G., Suh, B.L., Kim, J., and Kim, I.-D., Self-operating transpiration-driven electrokinetic power generator with an artificial hydrological cycle. Energy & Environmental Science, 13(2), 527-534,(2020).
    [24] Schoch, R.B., Han, J., and Renaud, P., Transport phenomena in nanofluidics. Reviews of modern physics, 80(3), 839,(2008).
    [25] Behrens, S.H. and Grier, D.G., The charge of glass and silica surfaces. The Journal of Chemical Physics, 115(14), 6716-6721,(2001).
    [26] Tsai, T.-C., Liu, C.-W., and Yang, R.-J., Power generation by reverse electrodialysis in a microfluidic device with a nafion ion-selective membrane. Micromachines, 7(11), 205,(2016).

    下載圖示
    2024-08-30公開
    QR CODE