簡易檢索 / 詳目顯示

研究生: 王亮鈞
Wang, Liang-Chun
論文名稱: 奈米複合碳膜之成長與應用
Growth and Applications of Nanocomposite Carbon Films
指導教授: 洪昭南
Hong, Chau-Nan Franklin
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 229
中文關鍵詞: 類鑽碳奈米複合材料
外文關鍵詞: DLC, nanocomposite
相關次數: 點閱:152下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究添加奈米微結構於類鑽碳膜中以製備多功能性之奈米複合類鑽碳薄膜,以改變類鑽碳膜之親疏水性、導電性及耐熱性。
      本研究可得到親水性良好且硬度不錯之奈米複合類鑽碳膜,硬度13GPa,水接觸角可於照射UV光1小時內降至0度。膜中有大小約10nm的奈米粒子(cluster),經分析可知為TiO2之rutile及anatase結晶和TiC之結晶。
      在導電類鑽碳膜方面,本研究得到導電性良好且硬度高的類鑽碳膜,電阻率0.10 W-cm,硬度25.0 GPa。無論碳源是苯或乙炔,其導電度皆隨著N含量的增加而提高,也隨著鍍膜溫度的增加也提高,經由IR及Raman分析可知N對於類鑽碳膜有摻雜和使sp2/sp3上升的效果,而加熱的效應使類鑽碳膜石墨化,電阻率因此下降。
      以苯為碳源,在不同的N2流量比例下,硬度皆隨著鍍膜溫度的上升而增加。當鍍膜溫度在170℃及250℃時,硬度隨著N2比例的增加而下降;當鍍膜溫度在320℃及390℃時,硬度在N2比例為20%時有一最大值,當N2比例再進一步增加時,硬度則隨著N2比例的增加而下降。當鍍膜溫度較高時,適當的N含量可提升膜的硬度。高溫硬度上升的原因為其鍵結的扭曲,造成應力及硬度的提高。由於乙炔在高溫下沈積之類鑽碳膜其硬度及應力皆隨著鍍膜溫度上升而下降,本研究認為苯本身的環狀結構是硬度維持的關鍵之一。
      TEM分析發現以苯沈積的類鑽碳膜內有類似碳洋蔥的石墨結構,而乙炔於相同的條件下卻未發現。苯於低的偏壓下也無此結構。因此本研究認為苯本身的環狀結構及高自我偏壓是石墨結構的關鍵成因。
      在耐高溫類鑽碳膜的研究方面,類鑽碳膜的應力及硬度皆隨著Si含量的增加而下降。熱穩定性則隨著Si含量的增加而上升。在Si含量為52%時,溫度提升到600℃以上時類鑽碳膜才會開始石墨化。Si含量52%的類鑽碳膜中有大小約2-4nm的奈米粒子。奈米粒子主要是以C和Si為主之非晶結構。
      本研究並以感應耦合電漿化學氣相沉積法在多孔性基板上沈積一同時具有高透過率及高選擇率的碳分子篩膜,探討其薄膜成長機構及氣體分離機制。
      表面改質的時間長短及偏壓大小對於薄膜的氣體分離行為影響很大。然而薄膜若僅進行表面改質而未經過高溫烘烤,表面改質只會降低透過率,而不會增加選擇率。表面改質必須伴隨著之後的高溫烘烤才能產生只有H2分子可通過的孔洞,只有表面改質本身並不足以產生具分離功能的孔洞。若未經過表面改質,薄膜烘烤後雖然產生大量的孔洞使H2和N2透過率大幅上升,但由於其孔洞大小讓H2和N2分子皆可通過,產生的孔洞並無分離功能。
      一般CVD法進行表面改質,是為了把孔洞封小來提高選擇率,但由於透氣孔洞變小,透氣率也跟隨著大幅降低。和本研究可同時提升透過率及選擇率的表面改質機構,有明顯的差異。本研究之表面改質與其後之高溫烘烤除了影響薄膜表面的微結構,也同時改變了薄膜本身的內部結構,因此才能在提升選擇率的同時,使透過率亦能大幅增加。
      當氣相組成為20%O2/HMDSO,H2透過率高達2x10-6 mol m-2s-1Pa-1,H2/N2選擇率可高達100,O2/N2選擇率也高達5.4。不含Si的碳分子篩膜的分離效果雖然不及以HMDSO沈積之薄膜,然而H2/N2選擇率最高仍可達50,H2透過率為1.6x10-6 mol·m-2·s-1·Pa-1,O2/N2選擇率最高可達2.5。

     Multifunctional diamond-like carbon (DLC) nanocomposite films containing a high concentration of TiO2 nanoparticles are to be synthesized for optical, tribological and MEMS applications. The nanocomposite films had good hydrophilic property under ultraviolet (UV) radiation and hardness of 14 GPa. The XRD, XPS, Raman, and TEM analysis revealed that the films were incorporated TiO2 and TiC nanoparticles in the DLC matrix. The nanocomposite films were highly abrasion-resistant and had long-life hydrophilic surface.
     DLC films were deposited using benzene or acetylene with or without nitrogen doping at elevated temperatures by capacitive RF plasma chemical vapor deposition (CVD). The method for preparing DLC films with a high hardness and a good electrical conductivity was simultaneously achieved by combining the effects of nitrogen doping and raising deposition temperature. The film resistivity could reach 0.10 Wcm with hardness of 25 GPa. The film resistivity decreased with increasing N2 concentration or deposition temperature. At a lower deposition temperature, the hardness of films decreased with increasing the nitrogen content. Appropriate nitrogen content enhanced the hardness at a higher deposition temperature. However, a nitrogen concentration too high induced the formation of CºN bonds which obstructed the carbon-carbon cross-linking structure of DLC films. The formation of fullerene-like structure was observed in the DLC films using benzene as carbon source. According to TEM images, the microstructure of DLC films is significantly varied with the deposition temperature. By FT-IR, Raman, and residual stress analysis, we concluded that the formation of fullerene-like nanoparticles was attributed to the benzene structure and the induced local thermal spike at a high substrate bias of –1500 V. The growth mechanism was studied and will be discussed.
     To improve thermal resistance of DLC films, we incorporated a high concentration of silicon in the films. Acetylene was employed as the carbon source, and argon was used to sputter Si target for low temperature depositions. Low stress and thermally stable silicon-containing DLC films were deposited on the silicon wafer substrates. We found that the hardness decreased with increasing the concentration of silicon. When the atomic percent of silicon was higher than 50 %, the DLC films stress was only 0.48 GPa, and the films was stable up to 600℃, in comparison to the conventional undoped DLC films with a high stress of 2.13 GPa and thermal stability only below 400℃. However, the hardness was decreased from 18.6 GPa to 10.9 GPa when the atomic percent of silicon was increased from 0 % to 50 %.
     A new method in preparing carbon-based molecular sieve (CMS) membranes for gas separation has been proposed. Carbon-based films are deposited on porous Al2O3 disks using hexamethyldisiloxane (HMDSO) by remote inductively-coupled-plasma (ICP) CVD. After treating the film with ion bombardment and subsequent pyrolysis at a high temperature, carbon-based molecule sieve membranes can be obtained, exhibiting a very high H2/N2 selectivity around 100 and an extremely high permeance of H2 around 1.5x10-6 mol·m-2·s-1·Pa-1 at 298 K. The O2/N2 selectivity could reach 5.4 with the O2 permeance of 2x10-7 mol·m-2·s-1·Pa-1 at 423 K.
     During surface treatments, HMDSO ions were found to be more effective than CH4, Ar, O2 and N2 ions to improve the selectivity and permeance. Short and optimized surface treatment periods were required for high efficiency. Without pyrolysis, surface treatments alone greatly reduced the H2 and N2 permeances and had no effect on the selectivity. Besides, without any surface treatment, pyrolysis alone greatly increased the H2 and N2 permeances, but had no improvement on the selectivity, owing to the creation of large pores by desorption of carbon. A combination of surface treatment and pyrolysis is necessary for simultaneously enhancing the permeance and the selectivity of CMS membranes, very different from the conventional pore-plugging mechanism in typical CVD.

    中文摘要....................................................................I 英文摘要...................................................................IV 誌 謝....................................................................VII 目錄.....................................................................VIII 表目錄 ...................................................................XVI 圖目錄..................................................................XVIII 符號說明................................................................XXVII 第一章 緒論.................................................................1 1-2奈米複合類鑽碳薄膜.......................................................4 1-2-1~1 奈米複合薄膜之概念..................................................4 1-2-1~2 奈米材料的製作技術..................................................7 1-2-2 奈米複合類鑽碳薄膜之研究動機..........................................8 1-2-2~1 含TiO2奈米粒子之類鑽碳膜............................................9 1-2-2~2 含Carbon Onion-like奈米粒子導電類..................................10 1-2-2~3 含Si之耐高溫類鑽碳膜...............................................10 1-2-3奈米複合類鑽碳薄膜之研究方向..........................................13 1-3 碳分子篩膜.............................................................14 1-3-1無機薄膜技術與應用....................................................14 1-3-2 碳分子篩膜之研究現況與技術瓶頸.......................................15 1-3-3 碳分子篩膜之研究動機與方向...........................................17 第二章 理論基礎...........................................................19 2-1 奈米複合類鑽碳膜.......................................................19 2-1-1 類鑽碳膜之組成與成長機構.............................................19 2-1-2 奈米複合薄膜之理論基礎...............................................24 2-1-3~1.1 TiO2光觸媒.......................................................34 2-1-3~1.2 光觸媒之氧化還原原理.............................................35 2-1-3~1.3 光觸媒文獻回顧...................................................37 2-1-3~2 類鑽碳膜的導電機制.................................................39 2-1-3~2.1 ⅤA族元素的摻雜..................................................39 2-1-3~2.2 高溫退火的效應...................................................40 2-1-3~3 提升類鑽碳膜熱穩定性的主要方向.....................................41 2-2 碳分子篩膜.............................................................46 2-2-1 類鑽碳膜的分子篩性質.................................................46 2-2-2 文獻回顧.............................................................47 第三章、實驗步驟與方法.....................................................52 3-1-1 實驗流程.............................................................47 3-1-2 奈米複合類鑽碳薄膜之實驗設計.........................................53 3-1-2~1含Onion-like奈米粒子導電類鑽碳膜....................................53 3-1-2~1.1氮的加入..........................................................53 3-1-2~1.2 碳源的選擇.......................................................53 3-1-2~1.3 高溫鍍膜.........................................................54 3-1-2~1.4 高自我偏壓.......................................................54 3-1-2~1.5 實驗參數.........................................................55 3-1-2~2 含Si之耐高溫類鑽碳膜...............................................55 3-1-2~2.1 濺射輔助電漿化學氣相沉基法的設計.................................55 3-1-2~2.2 碳源的選擇.......................................................57 3-1-2~2.3 實驗參數.........................................................57 3-1-3 系統設備.............................................................59 3-1-3~1 含TiO2奈米粒子之類鑽碳膜...........................................59 3-1-3~2 含Carbon Onion-like奈米粒子導電類鑽碳膜............................60 3-1-3~3含Si之耐高溫類鑽碳膜................................................61 3-1-4 實驗材料.............................................................62 3-1-4~1基板材料............................................................62 3-1-5 實驗操作.............................................................64 3-1-5~1 基板前處理.........................................................64 3-1-5~2 實驗操作步驟.......................................................64 3-1-5~3 TEM試片的準備與分析................................................65 3-1-6 分析與鑑定...........................................................66 3-1-6~1 表面型態觀察.......................................................66 3-1-6~2 成長速率測定.......................................................66 3-1-6~3 薄膜結構分析.......................................................66 3-1-6~4 薄膜組成及鍵結型態分析.............................................68 3-1-6~5 殘留應力測試.......................................................69 3-1-6~6 硬度值測定.........................................................70 3-1-6~7 微結構分析.........................................................70 3-1-6~8 接觸角分析.........................................................70 3-1-6~9 電性量測..........................................................70 3-2 碳分子篩膜.............................................................74 3-2-1實驗流程..............................................................74 3-2-2 真空鍍膜系統.........................................................75 3-2-3 氣體透過率量測系統...................................................76 3-2-4 實驗材料.............................................................79 3-2-4~1基板................................................................80 3-2-4~2反應氣體............................................................80 3-2-4~3量測透過率用氣體....................................................80 3-2-5 實驗操作.............................................................81 3-2-5~1基板前處理..........................................................81 3-2-5~2實驗操作步驟........................................................81 3-2-5~3分析................................................................81 第四章 奈米複合類鑽碳薄膜結果與討論........................................85 4-1含TiO2奈米粒子之類鑽碳膜................................................85 4-1-1 薄膜組成分析.........................................................85 4-1-2 XRD結晶分析..........................................................86 4-1-3 ESCA鍵結分析.........................................................86 4-1-4 Raman光譜分析........................................................87 4-1-5 TEM微結構分析........................................................88 4-1-6硬度及應力分析........................................................89 4-1-7 Contact Angle分析....................................................90 4-2 含Onion-like奈米粒子導電類鑽碳膜......................................107 4-2-1 添加N對類鑽碳膜的影響...............................................107 4-2-1~1 苯沈積類鑽碳膜的特性..............................................107 4-2-1~2 鍍膜速率及N含量...................................................108 4-2-1~3 N含量對導電性的影響...............................................108 4-2-1~3.1 IR分析..........................................................109 4-2-1~3.2 Raman光譜分析...................................................110 4-2-1~4 N含量對硬度的影響.................................................111 4-2-1~5 比較以乙炔沈積之類鑽碳膜..........................................112 4-2-2 高溫鍍膜對類鑽碳膜的影響............................................114 4-2-2~1 高溫鍍膜對導電性及硬度的影響......................................114 4-2-2~1.1 苯沈積之類鑽碳膜的導電性及硬度..................................114 4-2-2~1.2 乙炔沈積之類鑽碳膜的導電性及硬度................................115 4-2-2~1.3 苯和乙炔沈積之類鑽碳膜的異同....................................116 4-2-2~2 TEM及EELS分析.....................................................117 4-2-2~2.1 苯沈積之類鑽碳膜的TEM影像.......................................117 4-2-2~2.2 Onion-like奈米粒子之成長機制....................................118 4-2-2~2.3 EELS分析........................................................119 4-2-2~2.4 乙炔沈積之類鑽碳膜的TEM分析.....................................121 4-2-2~3 高溫成長之類鑽碳膜的硬度與應力分析................................122 4-2-2~4 Raman光譜分析.....................................................124 4-3 含Si之耐高溫類鑽碳膜..................................................147 4-3-1 靶材功率的影響......................................................147 4-3-2 基板偏壓的影響......................................................147 4-3-3 Si含量對類鑽碳膜性質之影響..........................................148 4-3-3~1 影響硬度的因素....................................................148 4-3-3~2 應力分析..........................................................149 4-3-3~3 薄膜組成分析......................................................150 4-3-3~3.1 IR分析..........................................................150 4-3-3~3.2 ESCA鍵結分析....................................................151 4-3-3~3.3 Raman光譜分析...................................................152 4-3-3~4 薄膜結構分析......................................................153 4-3-3~4.1 SEM表面結構分析.................................................153 4-3-3~4.2 TEM微結構分析...................................................153 4-3-3~4.3 XRD結晶分析.....................................................154 4-3-3~5 熱穩定性分析......................................................154 第五章 碳分子篩膜結果與討論...............................................168 5-1 Carbon-based molecular sieve membranes by HMDSO.......................168 5-1-1 Selectivity improvement by surface treatment........................168 5-1-2 The effects of time periods of surface treatments...................170 5-1-3 The effects of gas composition during surface treatment.............174 5-1-4 Characterization of chemical bonding and surface structure..........177 5-1-5 Mechanism of Separating Layer Formation.............................178 5-2 Carbon molecular sieve membranes by CH3COCH3/CH4......................180 5-2-1 Selectivity improvement by surface treatment........................180 5-2-2 The effects of time periods of surface treatments...................182 5-2-3 Characterization of chemical bonding and surface structure..........185 第六章 總結論.............................................................205 第七章 參考文獻...........................................................209 自述......................................................................228

    1. a)Philippe Poncharal, Z. L. Wang, Daniel Ugarte, and Walt A. de Heer, Science, 283, 1513 (1999).
    2. Z. L. Wang, P. Poncharal, and W. A. de Heer, Pure Appl. Chem., 72(1), 209, 2000.
    3. R. W. Hertzberg, Deformation and Fracture Mechanics of Engineering Materials, 3rd ed. (Wiley, New York, 1989).
    4. A. A. Griffith, Philos. Trans. R. Soc. Lond. Ser. A 22(4), 13 (1920).
    5. a) J. S. Koehler, Phys. Rev. B. 2(2), 547 (1970); b) Stan Vepřek, Thin Solid Films, 297, 145 (1997); b) Chia-Chun Chen, A. B. Herhold, C. S. Jhnson, A. P. Alivisatos, Science, 276, 398 (1997).
    6. 蘇品書,超微粒子材料技術,民88.06。
    7. 呂英治、洪敏雄,儀器新知第22卷第6期,民90.06,頁21-26。
    8. 林景正,電子月刊第6卷第3期,民89.03,頁206-225。
    9. E. G. Spence, P. H. Schmidt, D. H. Joy, and F. J. Sansalone, Appl. Phys. Lett. 29, 118 (1976).
    10. a) J. Robertson, J. Non-Cryst. Solid, 164-166, 1115 (1993); b) C. A. David, Thin Solid Films, 226, 30 (1993); Y. Lifshitz, S. R. Kasi, J. W. Rabalais, and W. Eckstein, Phys. Rev. B, 41(15), 10468 (1990).
    11. S. S. Camargo Jr., R. A. Santos, W. Beyer, Diamond and Related Materials 9, 658 (2000).
    12. Myeong-Geun Kim, Kwang-Ryeol Lee, Kwang Yong Eun, Surf. & Coat. Technol., 112, 204 (1999).
    13. a) Q. F. Huang, S. F. Yoon, Rusli, K. Chew, and J. Ahn, J. Appl. Phys. 90(9), 4520 (2001); b) Ivan R. Videnović, Verena Thommen, and Peter Oelhafen, Daniel Mathys, Marcel Düggelin, abd Richard Guggenheim, Appl. Phys. Lett. 80(16), 2863 (2002); c) Da-Yung Wnag, Ko-Wei Weng, Shi-Yao Hwang, Diamond and Related Materials 9, 1762 (2000).
    14. M. P. Siegal, J. C. Barbour, P. N. Provencio, D. R. Tallant, and T. A. Friedmann, Appl. Phys. Lett. 73(6), 759 (1998).
    15. Jianjun Dong and David A. Drabold, Phys. Rev. B 57(24), 15591 (1998).
    16. F. Cellier, J. F. Nowak, Diamond and Related Materials, 3, 1112 (1994).
    17. Throu Hara, Kouichi Yani, Ken Inoue, Shigeaki Nakamura, and Takwshi Murai, Appl. Phys. Lett. 57(16), 1662 (1990).
    18. J. Sasaki, K. Hayyashi, K. Sugiyama, O. Ichiko, and Y. HaShiquchi, Surf. & Coat. Technol., 65, 160 (1994).
    19. R. Kurt, J.-M. Bonard, and A. Karimi, Carbon 39, 1723 (2001)
    20. Chia-Fu Chen, and Hui-Chen Hsieh, Diamond Relat. Mater. 9, 1257 (2000)
    21. W. I. Milne, Appl. Surf. Sci. 146, 262 (1999)
    22. R. D. Forrest, A. P. Burden, R. U. A. Khan, and S. R. P. Silva, Surf. Coat. Technol. 108-109, 577 (1998)
    23. K. Lmimouni, C. Legrand, C. Dufour, and A. Chapoton, Appl. Phys. Lett. 78(17), 2437 (2001)
    24. H. Kinoshita and A. Yamauchi, J. Vac. Sci. Technol. A 14(3), 1933 (1996)
    25. H. Kinoshita, J. Takahashi, and T. Hando, Thin Solid Films 373, 251 (2000)
    26. J. Musil, Surf. Coat. Tech., 125, (2000) 322.
    27. 陳慧英,”氧化鋁薄膜之製備及其在氣體分離上之應用”,國立成功大學化學工程研究所博士論文(1994)
    28. H. P. Hsieh, Catal. Rev. Sci. Eng., 33, 1(1991).
    29. H. P. Hsieh, AICHE Sym. Ser., 84(261), 1﹣18 (1988).
    30. J. N. Armor, Applied Catalysis, 49, 1﹣25 (1989).
    31. J. Charpin, et al, Industrial Ceramics, 11(2), 84﹣89 (1991).
    32. J. Charpin, et al, Industrial Ceramics, 8(1), 23﹣27 (1988).
    33. 黃定加,陳慧英,化工,40(3),101-119(1993).
    34. 葉惠娟,觸媒與製程,1(3),32(1992).
    35. 李星迓,觸媒與製程,2(2),46(1993).
    36. R. T. Yang, et al, Separation Science and Technology, 20(9, 10), 725(1985).
    37. R. T. Yang, et al, Chemical Engineering Science, 44(8), 1723(1980).
    38. R. T. Yang, et al, Separation Science and Technology, 23(1-3), 153(1988).
    39. J. E, Koresh, et al. J. Chem. Soc. , Faraday Trans, 1(79),1147(1983).
    40. J. E. Koresh, et al, J. Chem. Soc. , Faraday Trans. ,1(77),3005(1981).
    41. J. E. Koresh, et al, J. Chem. Soc. , Faraday Trans. ,1(76),2507(1980).
    42. J. E. Koresh, et al, J. Chem. Soc. , Faraday Trans. ,1(76),2472(1980).
    43. J. E. Koresh, et al, J. Chem. Soc. , Faraday Trans. ,1(76),2457(1980).
    44. M. M. Hassan, et al, Chemical Engineering Science, 42(8), 2037(1987).
    45. M. M. Hassan, et al, Chemical Engineering Science, 41(5), 1333(1986).
    46. D. M. Ruthven, et al, Chemical Engineering Science, 41(5), 1325(1986).
    47. H. C. Foley, "Perspectives in molecular sieve science", American Chemical Society, 1988, P.335.
    48. P. L. Walker, Jr. et al, Carbon, 30(6), 829(1992).
    49. J. Chlopek, et al, Carbon, 29(2), 127(1991).
    50. A. J. Bird, et al, Carbon, 21(3), 177(1983).
    51. H. Hatori. et al, Carbon , 719(1991).
    52. R. R. McCaffrey, et al, Journal of Membrane Science, 28, 47(1986).
    53. T. Kashima, et al, Materials Science and Engineering, A139, 79(1991).
    54. K. H. Lee, et al, Ceram. Eng. Sci. Proc., 8(1-2), 85(1987).
    55. H. Tobias, et al, Journal of Membrane Science, 75, 213(1992).
    56. J. E. Koresh, et al, Separation Science and Technoloy, 22(2, 3), 973(1987).
    57. J. E. Koresh, et al, J. Chem. Soc. , Farady Trans. ,1(82), 2057(1986).
    58. J. E. Koresh, et al, Separation Science and Technology, 18(8), 723(1983).
    59. G. C. Grumewald, et al, J. Am. Chem. Soc., 113, 1636(1991).
    60. W. D. Kingery, H. K. Bowen, and D. R. Uhlmann, Introduction to Ceramics, Chapter 2, John Wiley & Sons, Canada, 1991
    61. 余樹貞,晶體之結構與性質,第十二章,渤海堂文化公司,台北台灣,1993
    62. J. C. Angus, and C. C. Hayman, Science 241, 913 (1998)
    63. J.Robertson, Surf. Coat. Technol. 50, 185 (1992)
    64. 張瑞發, 化工資訊, 4, 68 (1993)
    65. C. D. Martino, F. Demichelis, and A. Tagliaferro, Diamond Relat. Mater. 4, 1210 (1995)
    66. V. F. Dorfman, Thin Solid Films, 212, 267 (1992).
    67. B. Dorfman, M. Abraizov, Fred H. Pollak, D. Yan, M. Strongin, X.-Q. Yang and Z.-Y. Rong, Mat. Res. Soc. Symp. Proc. 349, 547 (1994).
    68. V. F. Dorfman, A. Bozhko, B. N. Pypkin, R. T. Borra, A. R. Srivatsa, H. Zhang, T. A. Skotheim, J. Khan, D. Rodichev, and G. Kirpilenko, Thin Solid Films, 212, 274 (1992).
    69. B. Dorfman, M. Abraizov, B. Prpkin, M. Strongin, X.-Q. Yang, D. Yan, Fred H. Pollak, J. Grow and R. Levy, Mat. Res. Soc. Symp. Proc. 351, 43 (1994).
    70. Xing-Zhao Ding, Fu-Min Zhang, Xiang-Huai Liu, P. W. Wnag, W. G. Durrer, W. Y. Cheung, S. P. Wong, I. H. Wilson, Thin Solid Films, 346, 82 (1999).
    71. V. V. Voevodin, J. S. Zabinski, Diamond and Related Materials, 7, 463 (1998).
    72. V. V. Voevodin, S. V. Peasas, and J. S. Zabinski, J. Appl. Phys. 82(2), 855 (1997).
    73. V. V. Voevodin, M. A. Capano, A. J. Safriet, M. S. Donley, and J. S. Zabinski, Appl. Phys. Lett. 69(2), 188 (1996).
    74. V. V. Voevodin, J. P. O’Neill, J. S. Zabinski, Surf. & Coat. Technol. 116-119, 36 (1999).
    75. G. A. J. Amaratunga, M. Chhowalla, C. J. Kiely, I. Alexandrou, R. Aharonov, and R. M. Devenish, Nature, 383, 321 (1996).
    76. M. P. Siegal, P. N. Provencio, D. R. Tallant, and R. L. Simpson, B. Kleinsorge and W. I. Milne, Appl. Phys. Lett. 76(15), 2047 (2000).
    77. T. A. Friedmann, J. P. Sullivan, J. A. Knapp, D. R. Tallant, and D. M. Follstaedt, D. L. Medlin, and P. B. Mirkarimi, Appl. Phys. Lett. 71(26), 3820 (1997).
    78. M. P. Siegal, J. C. Barbour, P. N. Provencio, D. R. Tallant, and T. A. friedmann, Appl. Phys. Lett. 73(6), 759 (1998).
    79. L. J. Martinez-Miranda, M. P. Siegal, amd P. P. Provencio, Appl. Phys. Lett. 79(4), 542 (2001).
    80. a) M. P. Siegal and D. R. Tallant, L. J. Martinez-Miranda, J. C. Barbour, R. L. Simpson, and D. L .Overmyer, Phys. Rev. B 61(15), 10451 (2000); b) M. P. Siegal, D. R. Tallant, P. N. Provencio, D. L. Overmyer, and R. L. Simpson, L. J. Martinez-Miranda, Appl. Phys. Lett. 76(21), 3052 (2000).
    81. J. Musil, J. Vlček, Thin Solid Films, 343-344, 47 (1999)
    82. C. Mitterer, P. H. Mayrhofer, M. Beschkiesser, P. Losbichler, P. Warbichler, F. Hofer, P. N. Gibson, W. Gissler, H. Hruby, J. Musil, J. Vl ček, Surface & Coat. Technol., 120-121, 405 (1999).
    83. J. Musil, Surface & Coat. Technol., 125, 322 (2000).
    84. Stan Vepřek, J. Vac. Sci. Technol A, 17(5), 2401 (1999).
    85. S. Vepřek, S. Reiprich, Thin Solid Films, 268, 64 (1995).
    86. S. Vepřek, S. Reiprich, and Li Shizhi, Appl. Phys. Lett., 66(20), 2640 (1995).
    87. S. Vepřek, M. Haussmann, and S. Reiprich, J. Vac. Sci. Technol A, 14(1), 46 (1996).
    88. S. Vepřek, M. Hsussmann, S. Reiprich, Li Shizhi, J. Dian, Surf. & Coat. Technol., 86-87, 394 (1996).
    89. Stan Vepřek, Thin Solid Films, 297, 145 (1997).
    90. S. Vepřek, Surf. & Coat. Technol., 97, 15 (1997).
    91. S. Vepřek, P. Nesládek, A. Niederhofer and F. Glatz, Nanostrucured Materials, 10(5), 679 (1998).
    92. Stan Vepřek, Thin Solid Films, 317, 449 (1998).
    93. a)S. Vepřek, P. Nesládek, A. Niederhofer, F. Glatz, M. ilek, M. Šima, Surf. & Coat. Technol., 108-109, 138 (1998); b) A. Niederhofer, K. Moto, P. Nesiadek and S. Vepřek, Phys. Rev. B (submitted).
    94. Jakob Schiotz, Francesco D. Si Tolla and Karsten W. Jacobsen, Nature, 391, 561 (1998).
    95. A. Sclafani, J. H. Herrmann, J. Phys. Chem. , 100 , 13655-13661 (1996).
    96. A. Sclafani, L. Palmisano, M. Schiavello, J. Phys. Chem., 94, 829 (1990).
    97. A. Fujishima, T. N. Rao, and D. A. Tryk, J. Phochem. Potobiol. C:
    Photochem review 1 (2000) 1-21.
    98. A. Heller, Acc. Chem. Res. 14 (1981) 154-162.
    99. R. W. Mattews, J. Phys. Chem. 91 (1987) 3328-3333.
    100. M. A. Fox, and M.Y. Dulay, Chem. Rev. 93(1) (1993) 341-357
    101. J. Willetts, L. C. Chen, J. F. Graefe, and R.W. Wood, Life Science Including Pharmacology Letters 57 (15) (1995) 225-230.
    102. A. Fernandez, G. Lassaletta, V. M. Jimenez, A. Justo, A. R. Gonzalez-Elipe, J-M. Herrmann, H, Tahri, and Y. Ait-Ichou, Applied Catalysis B: Environmental 7 (1995) 49-63.
    103. Merta I. Litter, Applied Catalysis B: Environmental 23 (1999) 89-114.
    104. Merta I. Litter, Applied Catalysis B: Environmental 23 (1999) 89-114.
    105. D. Dumitriu, A.R. Bally, C. Ballif, P. Hones, P. E Schmid, R. Sanjinés, and F. Lévy, Applied Catalysis B: Environmental 25 2-3 (2000) 83-92.
    106. V. S. Veerasamy, J. Yuan, G. A. J. Amaratunga, W. I. Milne, K. W. R. Gilkers, M. Weiler, and L. M. Brown, Phys. Rev. B 48, 8016 (1993)
    107. J. Robertson and C. A. Davis, Diamond Relat. Mater. 4, 441 (1995)
    108. S. R. P. Sliva and G. A. J. Amaratunga, Thin Solid Films 270, 194 (1995)
    109. S. R. P. Silva, J. Robertson, G. A. J. Amaratunga, B. Rafferty, L. M. Brown, J. Schwan, D. F. Franceschini, and G. M. Mariotto, J. Appl. Phys. 81, 2626 (1997)
    110. K. Ogata, J. F. D. Chubaci, and F. Fujimato, J. Appl. Phys. 76, 3791 (1994)
    111. N. V. Novikov, M. A. Voronkin, A. A. Smekhnov, N. I. Zaika, and A. P. Zakharchuk, Diamond Relat. Mater. 4, 3905 (1995)
    112. S. Kumar, K. S. A. Butcher, and T. L. Tonsley, J. Vac. Sci. Technol. A 14, 2687 (1996)
    113. H. Sjostrom, L. Hultman, J. E. Sundgren, S. V. Hainsworth, T. F. Page, and G. S. A. M. Theunissen, J. Vac. Sci. Technol. A 14, 56 (1996)
    114. A. Bousetta, M. Lu, A. Bensaoula, and A. Schultz, Appl. Phys. Lett. 65, 696 (1994)
    115. D. R. Mckenzie, D. A. Muller, and B. A. Pailthorpe, Phys. Rev. B 54, 144 (1996)
    116. J. G. Naeni, B. M. Way, J. R. Dahn, and J. C. Irwin, Phys. Rev. B 54, 144 (1996)
    117. J. H. Kaufman, S. Metin, and D. D. Saperstein, Phys. Rev. B 39, 13053 (1989)
    118. B. Kleinsorge, A. C. Ferrari, J. Robertson, and W. I. Milne, J. Appl. Phys. 88, 1149 (2000)
    119. S. Bhattacharyya, C. Vallee, C. Cardinaud, O. Chauvet, and G. Turban, J. Appl. Phys. 85, 2162 (1998)
    120. S. Prawer, B. Ran, R. Kakish, C. Johnston, P. Chalker, S. J. Bull, A. McCabe, and A. M. Jones, Diamond Relat. Mater. 5, 405 (1996)
    121. S. Prawer, R. Kalish, M. Adel, and V. Richter, J. Appl. Phys. 61, 4492 (1987)
    122. S. S. Camargo, Jr, A.L. Baia Neto, R.A. Santos, F.L. Freire,Jr, R. Carius, F. Finger, Diamind and Related Materials 7 (1998) 1155-1162.
    123. D.R. Tallant, J.E. Parmeter, M.P. Siegal, R.L. Sompson, Diamond Relat. Mater. 4 (1995) 191-199.
    124. X. Jiang, W. Beyer, and K. Reichelt, J. Appl. Phys., 68 (1990) 1378
    125. Z.L. Akkerman, H. Efstathiadis, and F.W. Smith, J. Appl. Phys.,80 (1996) 3068
    126. X.Jamal, W. Beyer, and K. Reichelt, J. Appl. Phys., 68 (1990) 2531
    127. a) S. S. Camargo, Jr., R. A. Santos, W. Beyer, Diamond and Relat. Mater. 9, 658 (2000); b) Myeong-Geun Kim, Kwang-Ryeol Lee, Kwang Yong Eun, Surf. & Coat. Technol. 112, 204 (1999); c) T. Hioki, K. Pkumura, Y. Itoh, S. Hibi and S. Noda, Surf. & Coat. Technol. 65, 106 (1994).
    128. a) X. Wang, H. Harris, H. Temki, and S. Gangopadhyay, M. D. Strathman and M. West, Appl. Phys. Lett. 78(20), 3079 (2001); b) Hosun Lee and In-Young Kim, S. –S. Han and B. –S. Bae, M. K. Choi and In-Sang Yang, J. Appl. Phys. 90(2), 813 (2001); c) M. Hakovitra, D. H. Lee, X. M. He, M. Nastasi, J. Vac. Sci. Technol. A 19(3), 782 (2001).
    129. a) Q. F. Huang, S. F. Yoon, Rusli, K. Chew, J. Ahn, J. Appl. Phys. 90(9), 4520 (2001); b) Ivan R. Videnovic, Verena Thommen, and Peter Oelhafrn, Daniel Mathys, Marcel Düggelin, and Richard Guggenheim, Appl. Phys. Lett. 80(6), 2863 (2002); Andreas Schüler, Ronald Gampp, and Peter Oelhafen, Phys. Rev. B. 60(23), 16164 (1999).
    130. L. Khriachtchev, E. Vainonen-Ahlgren, T. Sajavaara, T. Ahlgren, and J. Keinonen, J. Appl. Phys., 88 (2000) 2118
    131. Simone Anders, Javier Diaz, Joel W. Agerlll, Appl. Phys. Lett., 71, (1997) 3367
    132. S. Rey, F. Antoni, B. Prevot, E. Fogarassy., J.C. Arnault, J. Hommet, F. Le Normand, P. Boher, Appl. Phys. A, 71 (2000) 433
    133. T.A. Friedmann, K. F. McCarty, J.C. Barbour, M.P. Siegal and Dean C. Dibble, Appl. Phys. Lett., 68 (1996) 1643
    134. R. Kalish, Y. Lifshitz, K. Nugent and S. Prawer, Appl. Phys. Lett. 74 (1999) 2936
    135. A.C. Ferrari, B. Kleinsorge, N.A. Morrison, A. Hart, V.Stolojan, and J. Robertson, J.Appl. Phys., 85 (1999) 7191
    136. C. Romming, M. Buttner, U.Vetter, H. Feldermann, O. Wondratschel, and H. Hofsass ,J. Appl. Phys., 90, (2001) 4237
    137. L. Valentini, E. Braca, J.M. Kenny, G. Fedosenko, J. Engemann, L. Lozzi, S.Santucci, Thin Solid Film, 408 (2002) 291
    138. N. Ariel, M. Eizenberg, Y. Wang, S.P. Murarka, Materials Science in Semiconductor Processing, 4, (2001) 383
    139. A.L. Baia Neto, S.S. Camargo Jr., R. Carius, F. Finger, W. Beyer, Surf. Coat. Tech., 120-121 (1999) 395
    140. H. Huck, E.B. Halac, C. Oviedo, G. Zampieri, R.G. Pregliasco, E.V. Alonso, M.E. Reinoso, M.A.R. de Benyacar, Appl. Surf. Sci., 141 (1999) 141
    141. W.C. Vassell, A.K. Gangopadhyay, T.J. Potter, M.A. Tamor, and M.J. Rokosz, Journal of Materials Engineering Performance, 6 (1997) 426
    142. Racine B, Ferrari AC, Morrison NA, et al., J. Appl. Phys. 90 (2001) 5002
    143. a) M. A. Tamor, Applications of Diamond Films and Related Materials 3rd International Conference, 691 (1995); b) Won Jae Yang, Yong-Ho Choa, Tohru Sekino, Kwang Bo Shim, Koichi Nihara, Keun Ho Auh, Diamond and Relat. Mater. 434, 49 (2003).
    144. M.H. Hon, Surface Coatings Technology, 111 (1999) 134
    145. R. E. Collins et al, J. Appl. Phys. 71(8), 3806, 1992.
    146. R. E. Collins et al, Langmuir, 8(5), 1417, 1992.
    147. R. E. Collins et al, Carbon, 31(8), 1333, 1993.
    148. R. E. Collins et al, Langmuir, 10(1), 142, 1994.
    149. Y. Yamada et al, Carbon, 31(7), 1049, 1993.
    150. P. Koidl et al, Appl. Phys. Lett. 51(19), 1506, 1987.
    151. D. L. Trimm et al, Carbon, 15, 177, 1977.
    152. K. Chihara et al, Carbon, 17, 339, 1979.
    153. S. K. Verma et al, Carbon, 28(1), 175, 1990.
    154. D. S. Lafyatis et al, Ind. Eng. Chem. Res. , 30, 865, 1991.
    155. K. Miura et al, Carbon, 29(4/5), 653, 1991.
    156. S. N. Vyas et al, Fuel, 72(4), 551, 1993.
    157. P. L. Walker, Jr. et al, Carbon, 31(7), 1203, 1993.
    158. J. N. Armor et al, Carbon, 31(6), 969, 1993.
    159. J. N. Armor et al, Carbon, 32(3), 445, 1994.
    160. P. L. Trimm et al, Carbon, 21(3), 177, 1983.
    161. V. Linkov et al, J. Mater. Sci. Lett. ,13, 600, 1994.
    162. V. Linkov et al, J. Membrane Sci, 95, 93, 1994.
    163. V. Linkov et al, Carbon, 32, 361, 1994.
    164. V. Linkov et al, Third International Conference on Inorganic Membranes, July 10-14, 1994.
    165. Y. Yamada et al, Carbon, 30, 303, 1992.
    166. Y. Yamada et al, Carbon, 30, 719, 1992.
    167. A. S. Damle et al, Gas Separation&Purification 8(3), 137, 1994.
    168. A. K. Gupta et al, JMS﹣REV. Macromol. Chem. Phys. ,C31(1), 1, 1991.
    169. L. H. Peebles, Jr. et al, Carbon, 28(5), 707, 1990.
    170. E. Fitzer et al, Carbon, 7, 643, 1969.
    171. C. Morterra et al, Carbon, 23(5), 525, 1985.
    172. M. Inagaki et al, Carbon, 27(2), 253, 1989.
    173. E. Fitzer et al, Carbon, 13, 149, 1975.
    174. E. Fitzer et al, Carbon, 8, 353, 1970.
    175. G. R. Gavalas, C. E. Megiris, and S. W. Nam, Deposition of H2-permselective SiO2 films. Chem. Eng. Sci. 44 (1989) pp. 1829-1835
    176. M. Tsapatsis and G. Gavalas, Structure and aging characteristics of H2-permselective SiO2-Vycor films. J. Membrane Sci. 87 (1994) pp. 281-296
    177. S. Yan, H. Maeda, K. Kusakabe, S. Morooka, and Y. Akiyama, Hydrogen-permselective SiO2 membrane formed in pores of alumina support tube by chemical vapor deposition with tetraethyl orthosilicate. Ind. Eng. Chem. Res. 33 (1994) pp. 2096-2101
    178. S. Morooka, S. Yan, K. Kusakabe, and Y. Akiyama, Formation of hydrogen-permselective SiO2 membrane in macropores of a-alumina support tube by thermal decomposition of TEOS. J. Membrane Sci. 101 (1995) pp. 89-98
    179. Z. Li, K. Kusakabe, and S. Morooka, Pore structure and permeance of amorphous Si-C-O membranes with high durability at elevated temperature. Sep. Sci. Technol. 32 (1997) pp. 1233-1254
    180. 蔡大翔,SiC濾材製備與CVD技術表面改質之研究(III),國科會”無機膜研究群子計劃二”結果報告
    181. 何以侃主編,儀器分析,文京圖書有限公司,台北台灣,1997
    182. I. Watanabe, T. Matsushita and K. Sasahara, Jpn. J. Appl., Phys. 31, 1428 (1992)
    183. R. Nonogaki, S. Yamada, T. Araki, and T. Wada, J. Vac. Sci. Technol. A 17(3), 731 (1999)
    184. F.Tuinstra and J.L. Koenig, J. Chem. Phys. 53(3), 1126 (1970)
    185. S.A. Solin, Physica B 99, 443 (1980)
    186. M. A. Capano, N. T. McDeutt, R. K. Singh, and F. Qian, J. Vac. Sci. Technol. A, 14(2), 431 (1996)
    187. M. A. Tamor and W. C. Vassel, J. Appl. Phys., 76(6), 3823 (1994)
    188. H. C. Tasi, D. B. Bogy, M. K. Kundmann, D. K. Veirs, M. R. Hilton and S. T. Mayer, J. Vac. Sci. Technol. A 6(4), 2307 (1998)
    189. 何主亮,常挽瀾,陳育智,真空科技,第9卷,第二期,34,1996
    190. S. Prawer, K. W. Nugent, Y. Lifshitz, G. D. Lempert, E. Grossman, J. Kulik, I. Avigal, and R. Kalish, Diamond Relat. Mater. 5, 433 (2996)
    191. F. Tuinstra and J. L. Koening, J. Chem. Phys. 53, 1126 (1970)
    192. C. Mapelli, C. Casiglioni, C. Zerbi, and K. Mullen, Phys. Rev. B 60, 12710 (1999)
    193. R. O. Dillon, J. A. Woollam, and V. Katkanant, Phys. Rev. B 29, 3482 (1984)
    194. R. J. Nemanich, J. T. Glass, G. Lucovsky, and R. E. Shroder, J. Vac. Sci. Technol. A 6, 1783 (1988)
    195. J. R. Shi, X. Shi, Z. Sun, E. Liu, B. K. Tay, S. P. Lau, Thin Solid Films 366, 169 (2000)
    196. L. K. Cheeh, X. Shi, E. Liu, B. K. Tay, J. R. Shi, and Z. Sun, Phil. Mag. B 79, 1647 (1999)
    197. B. Kleinsorge, S. E. Rodil, G. Adamopoulos, J. Robertson, D. Grambole, and W. Fukarek, Diamond Relat. Mater. 10,965 (2001)
    198. S. Logothetidis, and M. Gioti. ,Materials Science and Engineering B 46, 119 (1997)
    199. M. K. Fung, W. C. Chan, Z. Q. Gao, I. Bello, C. S. Lee, and S. T. Tee, Diamond Relat. Mater. 8, 472 (1999)
    200. D. Ugarte, Carbon 33(7), 989 (1995)
    201. R. F. Egerton, Electron Energy-Loss Spectroscopy in the Electron Microscope 2nd ed. (Plenum Press, New York and London)
    202. L. S. Pan, and D. R. Kania, Diamond: Electronic Properties and Applications (Kluwer Academic Publishers, Bosten/Dordrecht/London)
    203. S. Waidmann, M. Knupfer, J. Fink, B. Kleinsorge, and J. Robertson, Diamond Relat. Maters. 9, 722 (2000)
    204. D. R. McKenzie, Y. Yin, N. A. Marks, C. A. Davis, and B. A. Pailthorpe, Diamond Relat. Maters, 3, 353 (1994)
    205. 徐逸明,成功大學化工所博士論文,2001
    206. M. Nath, B. C. Satishkumar, A. Govindaraj, C. P. Vinod, and C.R.N. Rao, Chem. Phys. Letts. 322, 333 (2000)
    207. C. J. Lee, K. H. Son, J. Park, J. E. Yoo, Y. Huh, and J .Y. Lee, Chem. Phys. Letts.338, 113 (2001)
    208. D. C. Li, L. Dai, S. Huang, A.W.H. Mau, and Z. L. Wang, Chem. Phys. Letts. 316, 349 (2000)
    209. B. Marchon, J. Gui, K. Grannen, and G. C. Rauch, IEEE TRANSACTIONS on MAGNETICS 33(5) 3148 (1997)
    210. D. Ugrate, Che. Phys. Lett. 207, 473 (1993)
    211. H. Matsuyama et al, J. Appl. Poly. Sci., 54, 1665(1994)
    212. M. Yamamoto et al, J. Appl. Poly. Sci., 29, 2981(1984)
    213. J. Sakata et al, J. Appl. Poly. Sci., 31, 1999(1986)

    下載圖示
    2009-10-14公開
    QR CODE