簡易檢索 / 詳目顯示

研究生: 盧志邦
Lu, Chih-Pang
論文名稱: 元件尺寸對高壓金氧半場效電晶體特性與可靠度影響之研究
Effects of Device Size on Characteristics and Reliability in High Voltage MOSFET
指導教授: 陳志方
Chen, Jone F.
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 103
中文關鍵詞: 高壓金氧半場效電晶體崩潰電壓熱載子可靠度電腦輔助設計
外文關鍵詞: HVMOSFET, breakdown voltage, hot-carrier reliability, technology computer aided design
相關次數: 點閱:103下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們針對不同佈局參數的高壓金氧半場效電晶體元件的特性以及熱載子可靠度進行深入討論並解釋物理機制。重要的佈局參數分別為L、G及S。分別對應到閘極長度、飄移區的長度與淺溝槽隔離(STI)和汲極之間的長度。
    在本論文中,首先會先簡單介紹目前高壓元件在市場的應用,並介紹熱載子效應與崩潰機制的基本原理。接著介紹在本論文中所用到的元件結構及基本電性的量測。為了更深入了解元件內部的物理機制,將使用電腦輔助設計(TCAD)來進行模擬分析。
    第二部分則會藉由基本電性的量測,觀察不同位置的佈局參數對元件特性的影響。並預期L或G的減少會增強線性區電流和飽和區電流,特別是縮短L會使飽和區電流增加最多。另一方面,縮短G可使線性區電流有最多的增加。
    第三部分則是操作電壓對熱載子效應所引起的元件退化的影響,結果顯示在低閘極電壓的情況下有較大的退化。隨著介面缺陷的增加,會使間隙物底部附近的電位分佈會發生變化,從而重新分佈電場,同時減少碰撞電離,並導致了退化飽和的現象。根據實驗結果,表明元件的退化是在間隙物下方由熱載子引起的介面缺陷生成。推測兩種熱載子都應參與元件的退化,主要的區別在於兩個載子的比率。在低閘極電壓下,熱電洞對退化的貢獻更大。當閘極電壓超過5.75V時,熱電子對退化的貢獻將逐漸增加。此外,本研究中評估熱載子所引起的退化時,除了要考慮峰值碰撞游離率的大小以外,還應考慮垂直電場的大小
    第四部分則是佈局參數對於元件的熱載子生命週期以及崩潰電壓機制的影響。微縮參數L和G將大大地影響元件的電特性和可靠度。然而,微縮參數S則僅影響崩潰電壓,並且對電流特性和熱載子生命週期的影響較小。

    In this thesis, we investigate the mechanism of hot-carrier-induced degradation and characteristics of the N-type high voltage metal-oxide-semiconductor with different layout parameters. The important layout parameters L, G, and S. They correspond to the length of the gate, the length of the drift region, and the length between drain contact and shallow trench isolation (STI), respectively.
    In this thesis, we will first briefly introduce the application of high-voltage devices in the market and the basic mechanism of the device. Subsequently, we will introduce the device structure and basic electrical characteristics used in this thesis. To gain a deeper understanding of the physical mechanism inside the device, TCAD will be used for analysis.
    The second part is will observe the influence of the layout parameters at different positions on the characteristics of the device through basic electrical measurement. It is expected that the decrease of L or G enhances IDlin and IDsat, especially shortening L increases IDsat the most. On the other hand, shortening G increases IDlin the most.
    The third part is the effect of gate voltage on hot-carrier degradation. The results show that there is a greater degradation at low gate voltage. As Nit increases, the potential distribution near the bottom of the spacer changes, redistributing the electric field, resulting in less impact ionization and saturating degradation. According to the results, it shows that the dominant degradation of the device is the hot-carrier induced Nit generation under the spacer. It is speculated that both hot carriers should participate in the degradation of the device. The main difference is the ratio of the two carriers.
    At the low gate voltage, the contribution of hot holes to the degradation is greater. When the gate voltage exceeds 5.75V, the contribution of hot electrons to the degradation will gradually increase. Besides, not only the magnitude of the peak impact ionization rate, but also the magnitude of the vertical electric field should be considered when evaluating the hot-carrier induced degradation in this study.
    The fourth part is the effect of layout parameters on the hot-carrier lifetime and breakdown voltage mechanism of the device. The scaling parameters L and G will greatly affect the characteristics and reliability of the device. However, the scaling parameter S affects the breakdown voltage, but has little effect on the current and hot carrier lifetime.

    Content 摘要 I Abstract III 致謝 V Content VI Table Captions IX Figure Captions X Chapter 1 Introduction 1 1-1 Motivation of the Thesis 1 1-2 Introduction of HV-MOS Devices Applications 3 1-3 Introduction of Off-state Breakdown Mechanism 6 1-4 Introduction of Hot Carrier Reliability 8 1-5 Introduction of Technology Computer Aid Design 11 1-6 About the Thesis 13 Chapter 2 Device Characteristics and Experiment Setup 14 2-1 Introduction 14 2-2 Device Structure Description 14 2-3 Experiment Methodology 16 2-3-1 Measurement Setup 16 2-3-2 ID-VG Measurement 18 2-3-3 ID-VD Measurement 22 2-3-4 Isub-VG Measurement 23 2-3-5 Simulation Setup 27 2-4 Summary 31 Chapter 3 Effects of Gate Voltage on Hot-Carrier Degradation 32 3-1 Introduction 32 3-2 Experiment Setup and Stress Condition 33 3-3 Hot-Carrier-Induced Degradation Data 35 3-4 Discussion on Degradation Saturation 41 3-5 Discussion on Hot Carrier Injection Mechanism 50 3-6 Discussion on Hot Carrier Reliability at Low Gate Voltage 51 3-7 Discussion on Hot Carrier Reliability at High Gate Voltage 63 3-8 Summary 65 Chapter 4 Effects of Device Size on Characteristics and Hot-Carrier Reliability in High Voltage MOSFET 66 4-1 Introduction 66 4-2 Size Shrinking Effect on Breakdown Voltage Mechanism 66 4-3 Discussion on Breakdown Walkout after Hot Carrier Stress 72 4-4 Size Shrinking Effect on Hot Carrier Reliability 80 4-5 Summary 93 Chapter 5 Conclusion and Future Work 94 5-1 Conclusion 94 5-2 Future work 96 References 97

    [1] Bianchi, R. A., et al. "High voltage devices integration into advanced CMOS technologies." 2008 IEEE International Electron Devices Meeting. IEEE, 2008.
    [2] Parpia, Zahir, C. Andre T. Salama, and Robert A. Hadaway. "A CMOS-compatible high-voltage IC process." IEEE Transactions on Electron Devices 35.10 (1988): 1687-1694.
    [3] Meyer, W. G., et al. "Integrable high voltage CMOS: Devices, process application." 1985 International Electron Devices Meeting. IEEE, 1985.
    [4] Terashima, Tomohide, Fumitoshi Yamamoto, and Kenichi Hatasako. "Multi-voltage device integration technique for 0.5/spl mu/m BiCMOS and DMOS process." 12th International Symposium on Power Semiconductor Devices & ICs. Proceedings (Cat. No. 00CH37094). IEEE, 2000.
    [5] Chen, J. F., Chen, S. Y., Wu, K. M., Shih, J. R., & Wu, K. (2009). Convergence of hot-carrier-induced saturation region drain current and on-resistance degradation in drain extended MOS transistors. IEEE transactions on electron devices, 56(11), 2843-2847.
    [6] Manzini, S., A. Gallerano, and C. Contiero. "Hot-electron injection and trapping in the gate oxide of submicron DMOS transistors." Proceedings of the 10th International Symposium on Power Semiconductor Devices and ICs. ISPSD'98 (IEEE Cat. No. 98CH36212). IEEE, 1998.
    [7] Chen, Jone F., et al. "On-resistance degradation induced by hot-carrier injection in LDMOS transistors with STI in the drift region." IEEE Electron Device Letters 29.9 (2008): 1071-1073.
    [8] Chen, Shiang-Yu, et al. "Anomalous hot-carrier-induced increase in saturation-region drain current in n-type lateral diffused metal–oxide–semiconductor transistors." IEEE transactions on electron devices 55.5 (2008): 1137-1142.
    [9] Chen, Jone F., et al. "Drift region doping effects on characteristics and reliability of high-voltage n-type metal–oxide–semiconductor transistors." Japanese Journal of Applied Physics 55.1S (2015): 01AD03.
    [10] Wessels, Piet, et al. "Advanced 100V, 0.13 gm BCD process for next generation automotive applications." 2006 IEEE International Symposium on Power Semiconductor Devices and IC's. IEEE, 2006.
    [11] Wessels, Piet, et al. "Advanced BCD technology for automotive, audio and power applications." Solid-state electronics 51.2 (2007): 195-211.
    [12] Brisbin, Douglas, Andy Strachan, and Prasad Chaparala. "Hot carrier reliability of N-LDMOS transistor arrays for power BiCMOS applications." 2002 IEEE International Reliability Physics Symposium. Proceedings. 40th Annual (Cat. No. 02CH37320). IEEE, 2002.
    [13] Rudolf, Ralf, et al. "Automotive 130 nm smart-power-technology including embedded flash functionality." 2011 IEEE 23rd International Symposium on Power Semiconductor Devices and ICs. IEEE, 2011.
    [14] Park, Il-Yong, et al. "BCD (Bipolar-CMOS-DMOS) technology trends for power management IC." 8th International Conference on Power Electronics-ECCE Asia. IEEE, 2011.
    [15] Casier, Herman, Peter Moens, and Koen Appeltans. "Technology considerations for automotive." Proceedings of the 30th European Solid-State Circuits Conference (IEEE Cat. No. 04EX850). IEEE, 2004.
    [16] Mainetti, Luca, Luigi Patrono, and Antonio Vilei. "Evolution of wireless sensor networks towards the internet of things: A survey." SoftCOM 2011, 19th international conference on software, telecommunications and computer networks. IEEE, 2011.
    [17] Shrivastava, Mayank, et al. "Part I: Mixed-signal performance of various high-voltage drain-extended MOS devices." IEEE transactions on electron devices 57.2 (2009): 448-457.
    [18] Brisbin, D., P. Lindorfer, and P. Chaparala. "Substrate current independent hot carrier degradation in NLDMOS devices." 2006 IEEE International Reliability Physics Symposium Proceedings. IEEE, 2006.
    [19] Chen, Jone F., et al. "An investigation on anomalous hot-carrier-induced on-resistance reduction in n-type LDMOS transistors." IEEE Transactions on Device and Materials Reliability 9.3 (2009): 459-464.
    [20] Chen, Ja-Hao, Shyh-Chyi Wong, and Yeong-Her Wang. "An analytic three-terminal band-to-band tunneling model on GIDL in MOSFET." IEEE Transactions on Electron Devices 48.7 (2001): 1400-1405.
    [21] Choi, Yang-Kyu, et al. "Investigation of gate-induced drain leakage (GIDL) current in thin body devices: single-gate ultra-thin body, symmetrical double-gate, and asymmetrical double-gate MOSFETs." Japanese journal of applied physics 42.4S (2003): 2073.
    [22] Semenov, Oleg, Andrzej Pradzynski, and Manoj Sachdev. "Impact of gate induced drain leakage on overall leakage of submicrometer CMOS VLSI circuits." IEEE Transactions on semiconductor manufacturing 15.1 (2002): 9-18.
    [23] Chan, T. Y., et al. "The impact of gate-induced drain leakage current on MOSFET scaling." 1987 International Electron Devices Meeting. IEEE, 1987.
    [24] Choi, Yang-Kyu, et al. "Investigation of gate-induced drain leakage (GIDL) current in thin body devices: single-gate ultra-thin body, symmetrical double-gate, and asymmetrical double-gate MOSFETs." Japanese journal of applied physics 42.4S (2003): 2073.
    [25] Hu, Chenming. Modern semiconductor devices for integrated circuits. Vol. 2. Upper Saddle River, New Jersey: Prentice Hall, 2010.
    [26] Wolf, Stanley. "Silicon Processing for the VLSI era, Vol. 3: The submicron MOSFET." (1994).
    [27] Hu, Chenming, et al. "Hot-electron-induced MOSFET degradation-model, monitor, and improvement." IEEE Journal of Solid-State Circuits 20.1 (1985): 295-305.
    [28] Silvaco, Int. "ATLAS user’s manual." Santa Clara, CA, Ver 5 (2011).
    [29] Shvetsov-Shilovskiy, I. I., et al. "Measurement system for test memory cells based on keysight B1500A semiconductor device analyzer running LabVIEW software." 2017 International Siberian Conference on Control and Communications (SIBCON). IEEE, 2017.
    [30] Ng, Kwok K., and William T. Lynch. "Analysis of the gate-voltage-dependent series resistance of MOSFET's." IEEE Transactions on Electron Devices 33.7 (1986): 965-972.
    [31] Reggiani, Susanna, et al. "Physics-based analytical model for HCS degradation in STI-LDMOS transistors." IEEE transactions on electron devices 58.9 (2011): 3072-3080.
    [32] Colak, Sel. "Effects of drift region parameters on the static properties of power LDMOST." IEEE transactions on electron devices 28.12 (1981): 1455-1466.
    [33] Chan, T. Y., P. K. Ko, and C. Hu. "A simple method to characterize substrate current in MOSFET's." IEEE Electron Device Letters 5.12 (1984): 505-507.
    [34] Quader, Khandker N., et al. "A bidirectional NMOSFET current reduction model for simulation of hot-carrier-induced circuit degradation." IEEE Transactions on Electron Devices 40.12 (1993): 2245-2254.
    [35] Varghese, D., et al. "Simulation and modeling of hot carrier degradation of cascoded NMOS transistors for power management applications." 2012 IEEE International Reliability Physics Symposium (IRPS). IEEE, 2012.
    [36] Moens, Peter, and Guido Groeseneken. "Hot-carrier degradation phenomena in lateral and vertical DMOS transistors." IEEE Transactions on Electron Devices 51.4 (2004): 623-628.
    [37] Wu, Kuo-Ming, et al. "Effects of gate bias on hot-carrier reliability in drain extended metal-oxide-semiconductor transistors." Applied physics letters 89.18 (2006): 183522.
    [38] Moens, P., et al. "A comprehensive model for hot carrier degradation in LDMOS transistors." 2007 IEEE International Reliability Physics Symposium Proceedings. 45th Annual. IEEE, 2007.
    [39] Moens, Peter, and Geert Van den Bosch. "Characterization of total safe operating area of lateral DMOS transistors." IEEE transactions on device and materials reliability 6.3 (2006): 349-357.
    [40] Chen, Shiang-Yu, et al. "Effect of Gate Voltage on Hot-Carrier-Induced On-Resistance Degradation in High-Voltage n-Type Lateral Diffused Metal–Oxide–Semiconductor Transistors." Japanese Journal of Applied Physics 47.4S (2008): 2645.
    [41] Moens, Peter, et al. "Hot hole degradation effects in lateral nDMOS transistors." IEEE Transactions on Electron Devices 51.10 (2004): 1704-1710.
    [42] Wang, Lei, et al. "Physical description of quasi-saturation and impact-ionization effects in high-voltage drain-extended MOSFETs." IEEE transactions on electron devices 56.3 (2009): 492-498.
    [43] Ng, K. H., et al. "A comparison of interface trap generation by Fowler-Nordheim electron injection and hot-hole injection using the DCIV method." Proceedings of the 1999 7th International Symposium on the Physical and Failure Analysis of Integrated Circuits (Cat. No. 99TH8394). IEEE, 1999.
    [44] Hamada, Akemi, et al. "A new aspect of mechanical stress effects in scaled MOS devices." IEEE transactions on electron devices 38.4 (1991): 895-900.
    [45] Gallon, C., et al. "Electrical analysis of mechanical stress induced by STI in short MOSFETs using externally applied stress." IEEE Transactions on Electron Devices 51.8 (2004): 1254-1261.
    [46] Su, V. C., et al. "Breakdown behavior of 40-nm PD-SOI NMOS device considering STI-induced mechanical stress effect." IEEE electron device letters 29.6 (2008): 612-614.
    [47] Su, V. C., et al. "Shallow-Trench-Isolation (STI)-Induced Mechanical-Stress-Related Kink-Effect Behaviors of 40-nm PD SOI NMOS Device." IEEE transactions on electron devices 55.6 (2008): 1558-1562.
    [48] LaFonteese, D. J., V. A. Vashchenko, and K. G. Korablev. "Breakdown voltage walkout effect in ESD protection devices." 2009 IEEE International Reliability Physics Symposium. IEEE, 2009.
    [49] Chen, Jone-Fang, and Y-S. Feng. "Breakdown voltage walkout resulting from hot-carrier-induced interface states in n-type LDMOS transistors." Electronics Letters 52.17 (2016): 1488-1490.
    [50] Chen, Jone F., et al. "Analysis of high-voltage metal–oxide–semiconductor transistors with gradual junction in the drift region." Japanese Journal of Applied Physics 55.8S2 (2016): 08PD04.

    下載圖示 校內:2025-07-01公開
    校外:2025-07-01公開
    QR CODE