| 研究生: |
藍成均 Lan, Cheng-Jiun |
|---|---|
| 論文名稱: |
利用導光柱、反射式電極及網狀透明導電膜結構增加氮化鎵系列藍光發光二極體光輸出功率之研究 Enhancement in output power of blue GaN-based light emitting diodes with pillar waveguide and Ag reflector electrode pad and TCL mesh-textured structure |
| 指導教授: |
許進恭
Sheu, Jinn-Kong |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程研究所 Institute of Electro-Optical Science and Engineering |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 83 |
| 中文關鍵詞: | 氮化鎵 、發光二極體 、導光柱 、反射式電極 |
| 外文關鍵詞: | reflective electrode pad, GaN, LEDs, Pillar waveguide |
| 相關次數: | 點閱:67 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對具有微米導光柱、反射式電極(Ag/Cr/Au)以及透明導電層氧化銦錫(ITO)/氧化鋅鎵(GZO)表面網狀粗化結構應用於氮化鎵發光二極體之製作與研究。
在電極部分,我們利用未經合金處理之傳統電極(鉻/金)以及反射式電極(銀/鉻/金)作為LEDs之金屬電極,首先探討金屬接觸於N型氮化鎵上之歐姆接觸特性研究。由實驗可知,傳統電極(Cr/Au)以及反射式電極(Ag/Cr/Au) 在N型氮化鎵上皆具有良好的歐姆接觸特性,特徵接觸電阻值(ρ_c)皆能達到~10^(-4)Ω-cm^2。而在光特性部分,由於傳統電極通常由不透光或低反射率的金屬構成,其電極面積會遮蔽或吸收來自多重量子井(MQW)的光源,所以我們利用反射式電極的高反射率特性,避免光子被電極遮蔽或吸收,進而提升光萃取效率。接著,為了進一步提升光萃取效率,透過黃光微影的方式,經過乾蝕刻及濕蝕刻,分別在發光二極體的周圍形成微米導光柱以及在ITO/GZO薄膜表面形成網狀粗化結構。
為了能夠顯著的提升光萃取效率,我們將上述方法應用於LEDs。首先我們利用ITO/GZO當作透明導電層,在GZO薄膜表面作網狀粗化結構,由實驗可知,在20mA電流注入下,ITO/mesh GZO LED其光輸出功率相較於傳統ITO/Planar GZO LED增加20.6%,進一步的加入反射式電極取代傳統電極,更可將光輸出功率增加至32.9%。
接著我們利用同樣的實驗方式,將這兩種結構應用於尺寸大小為575×250μm^2的LED上,在20mA電流注入下,ITO/mesh GZO LED其光輸出功率相較於傳統ITO/Planar GZO LED增加20.9%,進一步的加入反射式電極取代傳統電極,可將光輸出功率增加至29.4%。
為了要更進一提升光輸出功率,在元件周圍加入微米導光柱,與ITO/GZO薄膜表面網狀粗化結構及反射式電極結合,在20mA電流注入下,將光輸出功率增加百分比由29.4%提升至38.6%。
綜合上述,具有微米導光柱、反射式電極及ITO/GZO表面網狀粗化結構應用於發光二極體上,其光輸出功率相較於傳統LED增加了38.6%,能夠有效的提升外部量子效率,而操作電壓只有些微上升0.1~0.15V。
In this study, we demonstrated GaN-based light-emitting diodes(LEDs) with non-alloyed metal contacts on n-GaN and transparent contact layer(TCL), which was indium tin oxide and/or gallium-doped zinc oxide, to serve as the n-type electrode and the p-type electrode, respectively. The TCLs had rough surface with mesh structure. Besides, photolithography process was applied to form micro-pillar waveguide at the periphery of LEDs to enhance the light extraction efficiency. The result will be discussed in detail in this thesis.
In this study, the non-alloyed metal contacts including Cr/Au and Ag/Cr/Au were used to serves as electrodes and reflectors at the same time. The conventional electrode pad (Cr/Au) and the reflective electrode pad (Ag/Cr/Au) deposited on n-GaN layer can exhibit Ohmic characteristics on n-GaN. The specific contact resistance(ρ_c) was as low as ~10^(-4)Ω-cm^2. The non-alloyed metal contacts(Ag/Cr/Au) used in the present experimental blue LEDs also play the role of reflector to prevent the emitted light from absorption by the opaque electrode pads(Cr/Au) with low reflectivity.
The experiments implemented by the above-mentioned schemes exhibited a marked enhancement in light-extraction efficiency, and their electrical properties were comparable with the conventional LEDs. With an injection current of 20mA, the light output power of the ITO/mesh GZO LEDs can be markedly improved by 20.6% of magnitude as compared to the conventional ITO/planar GZO LEDs. Furthermore, the enhancement can be boosted to 32.9% if the Cr/Au electrode pads were replace by the reflective Ag/Cr/Au electrode pads.
The same experiment were also performed to GaN-based LEDs with different sizes which chip size was 575×250 μm^2. With an injection current of 20mA, the light output power of the ITO/mesh GZO LEDs can be markedly improved by 20.9% of magnitude as compared to the conventional ITO/planar GZO LEDs. Similarly, the enhancement can be further boosted like the technique was used in the LEDs with chip size of 300×300 μm^2. The enhancement in light output power was as high as 29.4% of magnitude if the Cr/Au electrode pads were replace by the reflective Ag/Cr/Au electrode pads.
In order to further increase the light output power, micro-pillar waveguides at the periphery of LEDs were implemented. As a result, the light output power is boosted to 38.6%.
In summary, we had demonstrated GaN-based LEDs with micro-pillar waveguides, reflective pads and roughed TCL. The light output power of the LEDs could be enhanced about 38.6% of magnitude, and the operation voltage of the LEDs had just a slightly increase of 0.1~0.15v as compared to the conventional LEDs.
[1] S.Nakamura, M.Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita,H.Kiyoku, Y.Sugimoto, T. Kozaki, H. Umemoto, M. Sano, and K.Chocho, “Continuous-wave operation of InGaN/GaN/AlGaN-based laser diodes grown on GaN substrates”Appl. Phys. Lett., Vol.72, No.16, p.2014-2016,(1998)
[2] M. Razeghi , and A. Rogalski , “Semiconductor ultraviolet detectors” J. Appl. Phys,Vol.79, p.7433,(1996)
[3] S. J. Pearton, J. C. Zolper, R. J. Shul, and F. Ren , “GaN: Processing, defects, and devices” J. Appl. Phys.,Vol.86, p.1(1999)
[4] S. Nakamura et al. “GaN growth using GaN buffer layer” Jpn. J. Appl. Phys.Vol.30,pp.L1708-1711(1991)
[5] S. Nakamura et al. “Hole compensation mechanism of p-type GaN films”, Jpn. J. Appl. Phys.Vol.31,pp.1258-1266(1992)
[6] 洪逸修,“利用銀/鋁反射式電極增加氮化鎵系列藍光發光二極體光輸出功率之研究”,國立成功大學光電與工程研究所,碩士論文(2008)
[7] Keunjoo Kim , Jaeho Choi ,Tae Sung Bae ,Deok Ha Woo, “Enhanced Light Extraction from Nanoporous Surfaces of InGaN/GaN-Based Light Emitting Diodes” Jpn. J. Appl. Phys, 46,pp.6682-6684(2007)
[8] Chia-Feng Lin, Zhong-Jie Yang, Jing-Hui Zheng, Jing-Jie Dai, “Enhanced light output in nitride-based light-emitting diodes by roughening the mesa sidewall” IEEE Photonics Technology Letters,VOL.17,NO.10,pp.2038-2040(2005)
[9]Shen, C.F., Chang, S.J., Ko, T.K., Kuo, C.T., Shei, S.C., Chen, W.S., Lee, C.T., Chang, C.S., Chiou, Y.Z., “Nitride-Based Light Emitting Diodes With Textured Sidewalls and Pillar Waveguides” IEEE Photonics Technology Letters,Vol.18,No.23,pp.2517-2519(2006)
[10]Lee, Y.J.; Hwang, J.M.; Hsu, T.C.; Hsieh, M.H.; Jou, M.J.; Lee, B.J.; Lu, T.C.; Kuo, H.C.; Wang, S.C.; “Enhancing the output power of GaN-based LEDs grown on wet-etched patterned sapphire substrates” IEEE Photonics Technology Letters,Vol.18,No.10,pp.1152-1154(2006)
[11] 莊基陽, “不同電流阻障層對氮化鎵發光二極體之光電特性研究”國立中央大學光電科學研究所,碩士論文(2007)
[12] 呂彥興,“氧化鋅鎵薄膜成長在氮化鎵發光二極體上之應用” 國立成功大學光電與工程研究所,碩士論文(2007)
[13] 陳秉宏,“利用電子束蒸鍍技術成長氧化鋅鋁摻雜釔之透明導電薄膜應用於氮化鎵藍色發光二極體之研究” 國立成功大學光電與工程研究所,碩士論文(2008)
[14] J. K. Sheu, I-Hsiu Hung, W. C. Lai, S. C. Shei, M. L. Lee, “Enhancement in output power of blue gallium nitride-based light-emitting diodes with omnidirectional metal reflector under electrode pads”Appl. Phys. Lett.,Vol.93,103507(2008)
[15] Ming-Lun Lee, Jinn-Kong Sheu, C. C. Hu, “Nonalloyed Cr/Au-based Ohmic contacts to n-GaN” Appl. Phys. Lett.,Vol.91,182106 (2007)
[16] S. Lee, J. H. Son, G. H. Jung, Y. G. Kim, C. Y. Kim, Y. J. Yoon, J.-L. Lee, “Highly reflective MgAl alloy/Ag/Ru Ohmic contact with low contact resistivity on p-type GaN ”Appl. Phys. Lett.,Vol.91,222115 (2007)