| 研究生: |
林碩彥 Lin, Shou-Yen |
|---|---|
| 論文名稱: |
電流式醋酸薄膜感測器 Amperometric Thin-Film Acetic acid Sensor |
| 指導教授: |
周澤川
Chou, Tse-Chuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2003 |
| 畢業學年度: | 91 |
| 語文別: | 中文 |
| 論文頁數: | 148 |
| 中文關鍵詞: | 醋酸 、感測器 |
| 外文關鍵詞: | sensor, acetic acid |
| 相關次數: | 點閱:107 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
醋酸的多用途,除了常被當作化學用劑外,也是食醋與葡萄酒製品中重要的成份,因此能即時偵測醋酸濃度於排放廢棄物或食品品管中是相當重要的。然而目前被開發的醋酸感測器,多以生化酵素間接依耗氧量來推算醋酸濃度;或是以傳統方式來量測,其中包括酸鹼滴定法、氣相層析法、光聲光譜與近紅外線吸收光譜,用傳統方法偵測樣品的醋酸濃度不僅耗時,且需耗費額外的儀器操作。故能以電化學原理發展出一個能精確、價廉與應答快速的感測器,作為現場監控樣品中醋酸濃度是相當重要的。
本研究嘗試以常被運用在有機電化學合成中的氧化還原媒子來間接催化醋酸而得到應答電流。在初步工作電極選擇方面,是將電極置於感測系統環境,在溫度300K下含 0.005M的V2O5電解液,以循環伏安法測試該電極在原始溶液pH值(2.85)時是否有穩定的表現,如不與電解質起反應或電位窗向正方向偏移等,在測試白金、石墨、鉛與鎳等電極後,發現只有鎳電極能在該感測環境下,作為與電解液間穩定轉移電子的介面。
在靜置傳統三極式電極系統中,發現媒子濃度與電解液pH對於感測的影響是最直接的,而溫度與攪拌速率對於感測結果則會相互影響,實驗結果在300K下,pH值為2.85與0.005M的V2O5電解液,維持攪拌速率在600 rpm時有最好的感測表現,當施加電位在-1.1 V(vs. Ag/AgCl),可得到應答電流與醋酸濃度的校正曲線i(uA)=-0.006359[HAc(ppm)]-0.482,靈敏度則為6.359 uA/ppm*cm2,線性係數0.992,偵測醋酸極限1800 ppm,應答時間33秒。
在電極微小化方面,以真空濺鍍方式製作濺鍍電極,並嘗試改變濺鍍因素來討論感測表現,結果發現真空度60 W、濺鍍功率 0.25torr及濺鍍時間20分鐘下,能得到均勻的濺鍍鎳層,而感測的結果也較好;相反的,高真空度、高濺鍍功率及短濺鍍時間下,會得到大鎳顆粒表面的薄膜或鍍層過薄,因此感測的結果也較差。
在靜置微小化電極系統中,在300K下pH值為2.85與0.005M的V2O5電解液,維持攪拌速率在60 rpm時能獲得最佳感測表現,即當施加電位在-1.8 V(vs. Ag/AgCl),可得到應答電流與醋酸濃度的校正曲線i(uA)=-0.32[HAc(ppm)]-15.041,靈敏度則為1.28 uA/ppm*cm2,線性係數0.983,偵測醋酸極限600 ppm,應答時間7秒。
在反應控制系統中,對於鎳工作電極,由理論求得應答電流與醋酸濃度的關係式為:
r2=I2/nFA
=[k2K'1CV2O5*(CH+^2)/CH2O+K'1(CH+)^2]CHAc-(Ι-1)
其中,k2、K'1 、[V2O5] 、 [H2O]與 [H+]為常數,則應答電流與醋酸濃度成現性關係,因此理論與實際實驗結果幾乎相符;在擴散控制系統方面,由理論可推導出感測電流與醋酸濃度關係式。
i(t)=[nFA(Do^1/2)/(pi*t)^0.5]Co (Ι-2)
若上式中的n、F、A、Do與t均為常數,可由 i(t)與Co 一次方線性關係求得擴散係數Do。
Acetic acid is very useful, not only chemical agent but also the most important ingredient in vinegar and red wine. Hence, it is essential to detect acetic acid concentration immediately in discharged waste water or during quality control process in food industry. Up to now, the majority of the developed acetic acid sensors are enzyme-based. The enzyme-based sensors take advantage of indirect oxygen-consumed concentration to count acetic acid content un this study. The others are traditional methods including titration, gas chromatography, photoacoustic spectroscopy and near-infrared absorption spectroscopy. But the traditional methods are time-consuming and need extra expensive instruments. Therefore, it is very important to develop an exact, low-cost and fast-responding electrochemical sensor which can be in situ applied in the processes related to acetic acid concentration.
In this study, the concept of redox mediators is applied to catalyze acetic acid reduction indirectly. About initial choice of the working electrodes, the electrodes are set in a batch system as figure 3-3 shown. The sensing solution contained0.005MV2O5at 300K. During cyclic voltammogram test, nickel foil is much more stable interface for electron transference between sensing solution (pH=2.85) and electrode than platinum, carbon and lead.
In the three-electrode batch system, the optimal sensing conditions are as following: temperature at 300K, stirred rate at 600 rpm, pH 2.85 and0.005M V2O5 supporting electrolyte. When the applied potential set at -1.1V (vs. Ag/AgCl), the relationship between acetic acid concentration and response current was plotted resulting a straight line, i(uA)=-0.006359[HAc(ppm)]-0.482. The sensitivity of this system is 6.359 uA/ppm*cm2, the linear coefficient is 0.992, the detecting concentration range is from 0 to 1800ppm and the response time is 33 seconds.
The sputtered electrodes for sensing acetic acid were prepared at the conditions: degree of vacuum, sputtered power and sputtered time set at 0.25 torr, 60 W and 20 minutes, respectively. At this preparing condition, the optimal sensing conditions of a sputtered Ni electrode can be gained. As the optimal electrode test in a batch system was carried out resulting a straight line, i(uA)=-0.32[HAc(ppm)]-15.041. The sensitivity is 1.28 uA/ppm*cm2, the linear coefficient is 0.983, the detecting concentration range is from 0 to 600ppm and the response time is 7 seconds.
In kinetic control system, the relationship between response current and acetic acid concentration was derived theoretically as shown in equation (I-1) for Ni foil working electrode.
r2=I2/nFA
=[k2K'1CV2O5*(CH+^2)/CH2O+K'1(CH+)^2]CHAc-(Ι-1)
Where,k2 is, K'1is, [V2O5] is, [H2O] is, and [H+] is. Almost these parameters were constant. The relationship between response current and acetic acid concentration is linear. Experimental results are nearly fitting the theoretically analysis. In this case, when the diffusion was the rate determining step, the relationship between response current and acetic acid concentration was simplified to equation (I-2),
i(t)=[nFA(Do^1/2)/(pi*t)^0.5]Co (Ι-2)
Where, the constants, n is, F is, A is, Do is, and t is. Based on equation (I-2) and experimental data of a linear relationship between i(t) and the diffusion coefficient, Do, was obtained.
[1] Baizer, M. , Organic electrochemistry, M. Dekker, New York, P. 435 (1993).
[2] Baliga, L. , Semiconductor Industry Association, International Technology Roadmap for Semiconductors, SEMATECH Austin, TX(1997).
[3] Barbier, Jr. J. ; Delanoe, F. ; Jabouille, F. ; Duprez, D. ; Blanchard, G. ; and Isnard, P. , Total Oxidation of Acetic Acid over Noble Metal Caltalysts, Journal of Catalysis, 177, 378-385(1998).
[4] Bard, A. J. ; and Faulkner, L. R. , Electrochemical Methods, John Wiley&Sons, New York(2001).
[5] Bianchini, R. ; Calucci, L. ; Caretti, C. ; Lubello, C. ; Pinzino, C. ; and Piscicelli, M. , An EPR Study on Wastewater Disinfection by Peracetic acid, Hydrogen peroxide and UV Irradiation, Annali Di Chimica, 92(9), 783-793(2002).
[6] Brown, W. H. ; and Foote, C. S. , Organic Chemistry, Saunders College Publishing, New York(1998).
[7] Chapman, B. , Glow Discharge Processes – Sputtering and Plasma Etching, New York, Wiley, 106-109(1980).
[8] Chavez, K. L. ; and Hess, D. W. , A Novel Method of Etching Copper Oxide Using Acetic acid, Journal of the Electrochemical Society, 148(11), G640-G643(2001).
[9] Chung, H. ; and Ku, M. S. , Feasibility of Monitoring Acetic acid Process Using Near-Infrared Spectroscopy, Vibrational Spectroscopy, 31(1), 125-131(2003).
[10] Constantin, D. M. ; Rus, E. M. ; Oniciu, L. ; and Ghergari, L. , The Influence of Some Additives on the Electrochemical Behavior of Sintered Nickel Electrodes in Alkaline Electrolyte, Electrochimica Acta, 74(2), 188-197(1998).
[11] Cvijin, P. V. ; Gilmore, D. A. ; and Atkinson, G. H., Determination of Gaseous Formic acid and Acetic acid by Pulsed Ultraviolet Photoacoustic Spectroscopy, Applied Spectroscopy, 42, 770(1988).
[12] Dobos, D. , Electrochemical Data-A Handbook for Electrochemists in Industry and Universities, Elservier Scientific publishing company, New York(1975).
[13] Du Toit, W. J. ; and Lambrechts, M. G. , The Enumeration and Identification of Acetic acid Bacteria from South African Red Wine Fermentations, International Journal of food microbiology, 74(1-2), 57-64(2002).
[14] El-Shafei, A. A. ; Shabanah, H. M. ; and Mousa, M. N. H., Electrocatalystic Oxidation of Formic acid on Pt Binary and Trinary Electrodes in H3PO4, Journal of Electroanalytical Chemistry, 362(1), 159(1993).
[15] Feng, F. ; and Northwood, D. O. , Improved Performance of a Metal Hydride Electrode for Nickel/Metal Hydride Batteries through Copper-Coating, Surface & Coatings technology, 167(2-3), 263-268(2003).
[16] Fleischmann, M. ; Korinek, K. ; and Pletcher, D. , The Oxidation of Organic Compounds at a Nickel Anode in Alkaline Solution, Journal of Electranalytical Chemistry, 3(1), 39(1971).
[17] Gopel, W. ; Hesse, J. ; and Zemel, J. N. , Sensors, VCH, New York (1991).
[18] Grinberg, V. A. ; and Vassiliez, Y. B. , The Mechanism of the Kolbe Electrosynthesis and Related Reaction, 32(3), 309-332(1996).
[19] Hatton, J. V. ; Satto, Y. ; and Schneider, W. G. , Nuclear Magnetic Resonance Investigations of Some Group V Mental Fluoride and Oxyions, Canadian Journal of chemistry, 43, 47-56(1965).
[20] Hicks, M. T. ; and Fedkiw, P. S. , Effects of Supporting Electrolyte on the Mass-Transfer Limited Current for Coupled Chemical-Electrochemical Reactions, Journal of Electroanalytical Chemistry, 424(1-2), 75-92(1997).
[21] Acetic acid with Immobilized Trichosporon Brassicae, Analytica Chimica Acta, 109(1), 33(1979).
[22] Howarth, O. W. ; and Richards, R. E. , Nuclear Magnetic Resonance Study of Polyvanadate Equilibria by Use of Vanadium-51, Journal of the Chemical Society, 198(2), 864-870(1965).
[23] Janata, J. , Principle of Chemical Sensor, Plenum Press, New York (1989).
[24] Jaret P. , A Simpler Test for Cervical Cancer, Environmental Health Perspectives, 107(10), A498(1999).
[25] Lamotte, C. E. ; and Li, X. , Definitive Identification of Indole-3-Acetic acid and Abscisic acid in Shoots of Coleus Blumei bu Gas Chromatography-Mass Spectrometry, Plat Growth Regulation, 25, 201(1998).
[26] Leyva, J. M. A. ; and Cisneros, J. L. H. , A Coated Piezoelectric Crystal Sensor foe Acetic acid Vapor Detection, Talanta, 40, 1725(1993).
[27] Louis, D. ; Lajoinie, E. ; Pires, F. ; Lee, W. M. ; and Holmes, D. , Post Etch Cleaning of Low-k Dielectric Materials for Advanced Interconnects: Characterization and Process Optimization, Microelectronic Engineering, 41-42, 415-418(1998).
[28] Lu, C. J. ; and Shin, J. S. , Detecting Identification of Polar Organic Vapors with Piezoelectric Crystals Coated with Crown Ethers, Analytica Chimica Acta, 306(1), 129(1995).
[29] Lund, H. ; and Hammerich, O. , Organic Electrochemistry, M. Dekker, New York(2001).
[30] Mi, X. ; Ma, Z. ; Cui, N. ; Wang, L. Y. ; Ke, Y. C. and Hu, Y. L. , Vinyl Polymerization of Norbornene with Dinuclear Diimine Nickel Dichloride/MAO, Journal of Applied Polymer Science, 88(14), 3273-3278(2003).
[31] Mizutani, F. ; Sawaguchi, T. ; Sato, Y. ; Yakuki, A. ; and Iijima, S. , Amperometric Determination of Acetic acid with a Trienzyme/Poly(dimethylsiloxane)-Bilayer-Based Sensor, Analytical Chemistry , 73(23), 5738-5742, (2001).
[32] Muilenberg, G. E. ; Wagner, C. D. ; Riggs, W. M. ; Davis, L. E. ; Moulder, J. F. , Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer(1978).
[33] Passerini, S. ; and Scrosati, B. , Characteristization of Nonstoichiometric Nickel Oxide Thin-Film Electrodes, Journal of Electrochemical Chemistry, 111(4), 889(1994).
[34] Peters, L. , Semiconductor Industry Association, International Technology Roadmap for Semiconductors, SEMATECH Austin, TX(1999).
[35] Rachmady, W. ; and Vannice, M. A. , Acetic acid Reduction to Acetaldehyde over Iron Catalysts Ι. Kenetic Behavior, Journal of catalysis, 208(1), 138-169(2002).
[36] Ramkumar, B. , Kinetics of Oxidation of Furfural by N-bromosaccharin in Aqueous Acetic acid medium, Asian Journal of Chemistry, 14(1), 463-466(2002).
[37] Rickerby, D. S. ; and Matthews, A. , Advanced Surface Coatings: a Handbook of Surface Engineering, Blackie & Son Ltd., London, 196( 1991).
[38] Scherer, J. ; Ocko, B. M. ; and Magnussen, O. M. , Structure Dissolution and Passivation of Ni(111) Electrodes in Sulfuric acid Solution: an in STM, X-ray Scattering, and Electrochemical Study, Electrochimica Acta, 48(9), 1169-1191(2003).
[39] Sidgwick, N. V. , The Chemical Elements and their Compounds. Vol. I., Clarendon Press, Oxford(1930).
[40] Singh, J. V. ; Mishra, K. ; Pandey, A. ; and Agrawal, G.L. , Kinetics and Mechanism of Oxidation of D-glucose by quinolinium chlorochromate (QCC) in Aqueous Acetic acid Medium, Oxidation Communications, 26(1), 72-79(2003).
[41] Solvay Chemicals, Peracetic acid, Oxymaster® 15, Solvay Chemicals, American.
[42] Stampi, S. ; De Luca, G. ; Onorato, M. ; Ambrogiani, E. ; and Zanetti, F. , Peracetic acid as an Alternative Wastewater Disinfectant to Chlorine dioxide, Journal of Applied Microbiology, 93(5), 725-731(2002).
[43] Sunley, G. J. ; and Watson, D. J. , High Productivity Methanol carbonylation Catalysis Using Iridium: The Cativa™ Process for the Manufacture of Acetic acid, Catalysis Today, 58(4), 293-307(2000).
[44] Tomat, R. ; and Rigo, A. , Electrochemical Oxidation of Toluene Promoted by OH Radicals, Journal of Applied Electrochemistry, 14(1), 1-8(1984).
[45] Volke, J. ; and Liška, F. , Electrochemistry in Organic Synthesis, Springer-Verlag, New York(1994).
[46] Vossen, J. L. ; and Kern, W. , Thin Film Processes II, Academic Press Inc., Bonton(1991).
[47] Wittmann, G. ; Lagenhave, H. V. ; and Dewulf, J. , Determination of Acetic acid in Aqueous Sample, by Water-Phase Derivatisation, Solid-Phase Microextraction and Gas Chromatography, Journal of Chromatography, 874, 225(2000).
[48] Zen, J. M. ; and Wu, J. W. , Analytical Chemistry, A Voltammetric Method for the Determination of Lead(II) at a Poly(4-vinylpyridine)/Mercury Film Electrode, 68(22), 3966-3972(1996).
[49] Zen, J. M. ; Tsai, D. M. ; Senthil, K.A. ; and Dharuman, V. , Amperometric determination of ascorbic acid at a ferricyanide-doped Tosflex-modified electrode, Electrochemical Communication, 2(11), 782-785(2000).
[50] Zuili, D. ; Maurice, V. ; and Marcus, P. , Surface Structure of Nickel in Acid Solution Studied by in-situ Scanning Tunneling Microscopy, 147(4), 1393-1400(2000).
[51] 王佳琪,應用於糖尿病症診斷之高選擇性電流式丙酮感測器及其研究,國立成功大學碩士論文,民國九十年。
[52] 邱秋燕、周澤川,化學感測器之原理與應用,化工,第16卷,第6期,第49頁 (1993)。
[53] 邱秋燕、周澤川,化學感測器之原理與應用,化工,第16卷,第六期,第49頁(1997)。
[54] 李福臨,Recent research on vinegar and acetic acid bateria,食品工業,第33卷,第6期,第1頁(2001)。
[55] 杜景順,相間轉移觸媒存在下間接電解氧化苯甲醇之研究,國立成功大學博士論文,民國七十九年。
[56] 何主亮,教育部材料科技改進計畫,電漿技術,薄膜技術光碟教材,台中,1996。
[57] 吳朗,感測器原理與應用,全華出版社,臺北市,第24頁(1987)
[58] 林敬二,林宗義,儀器分析,美亞書版股份有限公司,臺北市,第252頁(1994)。
[59] 林金絲,以過醋酸取代戊二醛做為內視鏡化學滅菌劑,院內感染控制雜誌,第9卷,第6期,第368頁(1999)。
[60] 林鑫,利用柯爾伯法反應研發電化學式醋酸感測器,國立成功大學碩士論文,民國九十年。
[61] 周澤川、林宗榮,台灣地區石化工廠中之化學感測器使用概況,化工技術,第8卷,第2期,第116頁(2000)。
[62] 洪文通、廖鎔瑜、何國川,有機揮發性氣體感測技術及現況,化工技術,第8卷,第2期,第126頁(2000)。
[63] 涂泓先,以超音波與濺鍍法製備電化學式銨離子與氨氣感測器,國立成功大學碩士論文,民國八十九年。
[64] 姚關穆,污水消毒藥劑的「明日之星」?,環保月刊,第2卷,第6期,第210頁(2002)。
[65] 時國城,新穎醋酸製程-Cativa Process簡介,化工技術,第10卷,第10期,第112頁(2002)。
[66] 陳孟娟、呂學重,內視鏡消毒的探討,院內感染控制通訊,第3卷,第4期,第76頁 (1993)。
[67] 葉國輝,化學,藝軒圖書出版社,臺北市,第957頁(1986) 。
[68] 葉陶淵,化學感測器中氣體感測器的新動向,新儀新知,第20卷,第4期,第72頁 (1999)。
[69] 鄭煜騰、鄭耀宗,氣體感測器的市場分析與發展概況,新儀新知,第18卷,第5期,第76頁 (1997)。
[70] 廖德章、莊彥和,有機化學實驗,高立出版社,臺北市(1991)。
[71] 蔡明瞭,間接電極觸媒之丙酮合成與縮合反應,國立成功大學博士論文,民國八十六年。
[72] 廖云英,電流式酒精感測器之改良與微小化之研究,國立成功大學碩士論文,民國八十九年。
[73] 鍾協訓、曾志明,液體電化學感測器的介紹與應用,化學,第59卷,第2期,第201頁(2001)。