簡易檢索 / 詳目顯示

研究生: 趙俊榮
Chao, Chun-Jung
論文名稱: 磁性奈米粒子/團聯共聚物複合材料的製備與特性研究
Study on Synthesis and Properties of Magnetic Nanoparticles/Block Copolymer Composite
指導教授: 羅介聰
Lo, Chieh-Tsung
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 129
中文關鍵詞: 複合材料團聯共聚物自組裝磁性奈米粒子
外文關鍵詞: self-assembly, magnetic nanoparticle, block copolymer, composite
相關次數: 點閱:96下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以TOPO作為界面活性劑,Fe(CO)5為前驅物,用熱裂解法合成氧化鐵奈米粒子,並藉由TEM、XRD及SQUID來鑑定粒子的大小、結構及磁特性。以加熱包系統合成的氧化鐵奈米粒子的粒徑較高溫爐系統的粒子小,磁化量也較低。此外,沒有通氬氣所合成的粒子,也會造成粒徑的上升及磁化量的降低。
    藉由觀察不同系統的氧化鐵奈米粒子/團聯共聚物PS-P2VP複合物的形態,可看出粒子磁性大小的影響。由於氧化鐵粒子表面披覆TOPO,因此選擇性進入P2VP的區塊。然而,隨著粒子濃度的增加,由於磁性粒子間的磁性作用力,粒子聚集的現象也漸趨嚴重,這也造成複合物變為不規則的形態。導致複合物規則-不規則形態轉變的臨界粒子濃度,會隨著粒徑及磁化量的降低而增加。
    以氧化鐵奈米粒子作為晶種可合成出氧化鐵-金核殼奈米粒子,藉由改變金前驅物的濃度可控制粒子的金殼層厚度。此外,氧化鐵-金核殼粒子之金殼層厚度對於其UV-Vis光譜有相當大的影響。

    Fe3O4 nanoparticles were prepared by thermolysis using TOPO as a surfactant and Fe(CO)5 as a precursor. Transmission electron microscopy, X-ray diffraction and superconducting quantum interference device were employed to characterize the size, structure and magnetic properties of these particles. It was obtained that Fe3O4 nanoparticles synthesized by heating mantle system exhibited smaller size and lower magnetization than those by oven system. In addition, the synthesis of particles without argon flow caused the increasing particle size and decreasing magnetization.
    The effect of the magnetic properties of nanoparticles on the phase behavior of polymer nanocomposite composed of as prepared Fe3O4 particles and polystyrene-b-poly(2-vinylpyridine) (PS-P2VP) diblock copolymer was studied. Because Fe3O4 nanoparticles were modified with TOPO, particles prefer to locate in the P2VP domains. However, the aggregation of nanoparticles occurred with increasing particle concentration due to the strong magnetic interaction between particles. This caused the disordering of composite. The critical particle concentration to induce the order-disorder transition of composite increases with decreasing particle size and magnetism.
    Fe3O4-Au core-shell nanoparticles were prepared using Fe3O4 as seeds. The thickness of Au shell can be manipulated by varying the concentration of Au precursor. The UV-Vis spectra of these core-shell particles showed a strong function of the Au shell thickness.

    中文摘要 I Abstract II 誌謝 III 總目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 3 第二章 理論基礎與文獻回顧 5 2.1奈米材料與技術 5 2.1.1奈米材料簡介 5 2.1.2奈米材料的定義與特性 7 2.1.3奈米科技的原理 10 2.2磁性奈米粒子 16 2.2.1磁性奈米粒子的特性 17 2.2.2磁性奈米粒子的合成 24 2.3磁性理論 31 2.3.1磁性簡介 31 2.3.2磁性與粒徑的關係 38 2.4團聯共聚物 43 2.4.1團聯共聚物的結構 45 2.4.2團聯共聚物的應用 49 2.5自組裝的簡介 55 第三章 實驗 57 3.1實驗架構 57 3.1.1奈米粒子的合成 57 3.1.2複合材料的製備 58 3.2實驗藥品與儀器 59 3.3實驗方法 62 3.3.1氧化鐵奈米粒子的合成 62 3.3.2氧化鐵-金核殼奈米粒子的製備 63 3.3.3奈米粒子與團聯共聚物(PS-P2VP)複合材料的製備 64 3.4分析儀器 66 3.4.1穿透式電子顯微鏡 66 3.4.2 X射線繞射儀 67 3.4.3超導量子干涉磁量儀 68 3.4.4微差熱掃描卡計 69 3.4.5熱重分析儀 69 3.4.6紫外光-可見光-近紅外光分光光度計 70 第四章 結果與討論 72 4-1氧化鐵奈米粒子的特性分析 73 4-1-1氧化鐵奈米粒子的粒徑分析 73 4-1-2氧化鐵奈米粒子的晶體結構鑑定 77 4-1-2氧化鐵粒子的磁性量測 80 4-2氧化鐵奈米粒子/團聯共聚物複合材料之特性分析 87 4-2-1奈米粒子添加方式對複合物形態的影響 87 4-2-2分散劑對複合物形態的影響 90 4-2-3氧化鐵奈米粒子對複合物形態的影響 95 4-2-4氧化鐵粒子/PS-P2VP複合物的熱性質分析 107 4-3氧化鐵-金核殼奈米粒子的特性分析 109 4-3-1氧化鐵-金核殼奈米粒子的粒徑分析 109 4-3-2氧化鐵-金核殼奈米粒子的晶體結構鑑定 115 4-3-3氧化鐵-金核殼奈米粒子的UV-Vis圖譜 116 4-3-4氧化鐵-金核殼奈米粒子的磁性量測 117 4-3-5氧化鐵-金核殼奈米粒子對複合物形態的影響 120 第五章 結論 123 參考文獻 125

    1. 馬振基,奈米材料科技原理與應用,全華科技圖書股份有限公司,2003
    2. 伊邦躍,奈米時代,五南出版社,2002
    3. 張立德,奈米材料,五南出版社
    4. Amy L. Linsebigler, Guangquan. Lu, John T. Yates, Chem. Rev., 1995, 95 (3), 735–758
    5. S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, M. Setogawa, Y. Kurihara, J. Magn. Magn. Mater. 1987, 65, 245.
    6. A.-H. Lu, W. Schmidt, N. Matoussevitch, H. BPnnermann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. SchVth, Angew. Chem. 2004, 116, 4403; Angew. Chem. Int. Ed. 2004, 43, 4303.
    7. S. C. Tsang, V. Caps, I. Paraskevas, D. Chadwick, D. Thompsett, Angew. Chem. 2004, 116, 5763; Angew. Chem. Int. Ed. 2004, 43, 5645.
    8. A. K. Gupta, M. Gupta, Biomaterials 2005, 26, 3995.
    9. S. Mornet, S. Vasseur, F. Grasset, P. Verveka, G. Goglio, A. Demourgues, J. Portier, E. Pollert, E. Duguet, Prog. Solid State Chem. 2006, 34, 237.
    10. Z. Li, L. Wei, M. Y. Gao, H. Lei, Adv. Mater. 2005, 17, 1001.
    11. T. Hyeon, Chem. Commun. 2003, 927.
    12. X. Batlle, A. Labarta, J. Phys. D 2002, 35, R15
    13. C. M. Sorensen, Magnetism in Nanoscale Materials in Chemistry (Ed.: K. J. Klabunde), Wiley-Interscience Publication, New York, 2001, pp. 169–222
    14. An-Hui Lu, E. L. Salabas, Ferdi Schüth, Angew. Chem. Int. Ed. 2007, 46, 1222
    15. R. H. Kodama, J. Magn. Magn. Mater. 1999, 200, 359
    16. A. Homola, M. Lorenz, C. Mastrangelo, T. Tilbury, IEEE Trans. Magn. 2003, 22, 716
    17. P. M. Paulus, H. BPnnemann, A. M. van der Kraan, F. Luis, J. Sinzig, L. J. de Jongh, Eur. Phys. J. D 1999, 9, 501
    18. J. Nogu;s, J. Sort, V. Langlais, V. Skumryev, S. SuriUach, J. S. MuUoz, M. D. BarW, Phys. Rep. 2005, 422, 6
    19. E. L. Salabas, A. Rumplecker, F. Kleitz, F. Radu, F. SchVth, Nano Lett. 2006, 6, 2977
    20. H. Zeng, J. Li, L. Zhong, S. Sun, Nature 2002, 420, 395
    21. S. Neveu, A. Bee, M. Robineau, D. Talbot, J. Colloid Interface Sci. 2002, 255, 293
    22. F. Grasset, N. Labhsetwar, D. Li, D. C. Park, N. Saito, H. Haneda, O. Cador, T. Roisnel, S. Mornet, E. Duguet, J. Portier, J. Etourneau, Langmuir 2002, 18, 8209
    23. S. Sun, H. Zeng, J. Am. Chem. Soc. 2002, 124, 8204
    24. S.-J. Park, S. Kim, S. Lee, Z. Khim, K. Char, T. Hyeon, J. Am. Chem. Soc. 2000, 122, 8581
    25. V. F. Puntes, K. M. Krishan, A. P. Alivisatos, Science 2001, 291, 2115
    26. J. Lee, T. Isobe, M. Senna, Colloids Surf. A 1996, 109, 121
    27. A. L. Willis, N. J. Turro, S. O’Brien, Chem. Mater. 2005, 17, 5970
    28. B. L. Cushing, V. L. Kolesnichenko, C. J. O’Connor, Chem. Rev. 2004, 104, 3893
    29. S. Sun, H. Zeng, D. B. Robinson, S. Raoux, P. M. Rice, S. X. Wang, G. Li, J. Am. Chem. Soc. 2004, 126, 273
    30. F. X. Redl, C. T. Black, G. C. Papaefthymiou, R. L. Sandstrom, M. Yin, H. Zeng, C. B. Murray, S. P. O’Brien, J. Am. Chem. Soc. 2004, 126, 14 583
    31. D. Farrell, S. A. Majetich, J. P.Wilcoxon, J. Phys. Chem. B 2003, 107, 11022
    32. N. R. Jana, Y. Chen, X. Peng, Chem. Mater. 2004, 16, 3931
    33. A. C. S. Samia, K. Hyzer, J. A. Schlueter, C.-J. Qin, J. S. Jiang, S. D. Bader, X.-M. Lin, J. Am. Chem. Soc. 2005, 127, 4126
    34. T. Hyeon, S. S. Lee, J. Park, Y. Chung, H. B. Na, J. Am. Chem. Soc. 2001, 123, 12798
    35. B. K. Paul, S. P. Moulik, Curr. Sci. 2001, 80, 990
    36. A. K. Gupta, M. Gupta, Biomaterials 2005, 26, 3995
    37. C. Liu, B. Zou, A. J. Rondinone, Z. J. Zhang, J. Phys. Chem. B 2000, 104, 1141
    38. X. Wang, J. Zhuang, Q. Peng, Y Li, Nature 2005, 437, 121
    39. D. L. Huber, small 2005, 1, No. 5, 482
    40.李世莉,鐵-氧化鐵核殼奈米粒子的合成及研究,國立交通大學材料科學與工程研究所碩士論文,2006
    41. W. C. Elmore, Phys. Rev. 1938, 54, 1092–1095
    42. R. Lawrence Comstock, Introduction to magnetism and magnetic recording, John Wiley & Sons, Inc.
    43.蘇品書,超微粒子材料技術,臺南復漢,1998
    44.莊萬發,超微粒子理論應用,臺南復漢,1998
    45.李中斌,探討金及硒化鎘自身組織排列於PS-b-P4VP雙快式高分子薄膜之P4VP區塊中之集合電子傳導性質,國立交通大學材料科學與工程研究所博士論文,2006
    46. F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem. 1990, 41, 525
    47. I. W. Hamley The Physics of Block Copolymers (Oxford: Oxford University Press) 1998
    48. F. Drolet and G. H. Fredrickson, Phys. Rev. Lett. 1999, 83, 4317
    49. C. Park, J. Yoon, E. L. Thomas, Polymer 2003, 44, 6725
    50. F. S. Bates and G. H. Fredrickson Phys. Today 1999, 52, 32
    51. S. Förster and M. Antonietti, Adv. Mater. 1998, 10, 195
    52. R. E. Cohen, Curr. Opin. Solid State Mater. Sci. 1999, 4, 587
    53. Seregina M V, Bronstein L M, Platonova O A, Chernyshov D M, Valetsky P M, Hartmann J, Wenz E and AntoniettiM, Chem. Mater. 1997, 9, 923
    54. Bronstein L, Chernyshov D and Valetsky P, Langmuir 1999, 15, 83
    55. Bronstein L M, Sidorov S N, Valetsky P M, Hartmann J, Cölfen H and Antonietti M, Langmuir1999, 15, 6256
    56. Clay R T and Cohen R E, Supramol. Sci. 1995, 2, 183
    57. Sohn B H and Seo B H, Chem. Mater. 2001, 13, 1752
    58. S. W. Yeh, K. H. Wei, Y. S. Sun, U. S. Jeng, K. S. Liang, Macromolecules 2003, 36, 7903
    59. S. W. Yeh, T. L. Wu and K. H. Wei, Nanotechnology 2005, 16, 683
    60. Y. Lin, A. Boker, J. He, K. Sill, H. Xiang, C. Abetz, X. Li, J. Wang, T. Emrick, S. Long, Q. Wang, A. Balazs, T. P. Russell Nature 2005, 434, 55
    61. J. J. Chiu, B. J. Kim, E. J. Kramer, D. J. Pine, J. Am. Chem. Soc. 2005, 127, 5036
    62. G. M. Whitesides, B. Grzybowski, Science 2002, 295, 2418
    63.宋建宏,含醣類團基之液晶分子之自組裝奈米結構研究,國立交通大學應用化學研究所博士論文,2007
    64. G. M. Whitesides, J. P. Mathias, Science 1991, 254, 1312
    65. E. A. Chandross, R. D. Miller, Chem. Rev. 1999, 99, 1641
    66.許瓊姿,毫微米通訊,第九卷第一期,22-31
    67.林麗娟,工業材料,86期,100-109 (1994)
    68.楊鴻昌,科儀新知,第十二卷第六期,72-79 (1991)
    69. Chen Xu, Kohji Ohno, Vincent Ladmiral, Russell J. Composto, Polymer 2008, 49, 3568
    70. S. W. Yeh; K. H. Wei; Macromolecules 2005, 38, 6559-6565
    71. Z. Yang and C. D. Han; Macromolecules 2008, 41, 2104-2118
    72. L. Wang, J. Luo, M. M. Maye, Q. Fan, Q. Rendeng, M. H. Engelhard, C. Wang, Y. Lin and C. J. Zhong, J. Mater. Chem. 2005, 15, 1821
    73. Y. Lin, A. Böker, J. He, K. Sill, H. Xiang, C. Abetz, X. Li, J. Wang, T. Emrick, S. Long, Q. Wang, A. Balazs, Thomas P. Russell1, Nature 2005, 434, 55

    下載圖示 校內:2011-07-21公開
    校外:2011-07-21公開
    QR CODE