| 研究生: |
江柏宏 Jiang, Bo-Hing |
|---|---|
| 論文名稱: |
以黏彈性有限元素法分析紫杉醇臨床施打計劃對活體PC-12類神經細胞之影響 Effects of Clinical Dosing Schedule of Paclitaxel on Viscoelasticity of Living PC-12 Cells – Finite Element Analysis |
| 指導教授: |
朱銘祥
Ju, Ming-Shaung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 生物力學 、紫杉醇 、化療引發周邊神經病變 、類線性黏彈理論 、共軛聚焦顯微鏡光學切片術 、三维影像模型重建 、有限元素法 |
| 外文關鍵詞: | Biomechanics, paclitaxel, CIPN, quasi-linear viscoelastic theory, finite element method, 3D model reconstruction, AFM, confocal microscope |
| 相關次數: | 點閱:184 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
癌症為一種細胞不正常再生並入侵或轉移至其他組織的疾病並且為全球第二大死因,在癌症的化學藥物治療中,常誘發周邊神經產生病變並迫使降低藥物劑量或終止療程而造成病人的死亡。然而目前此病變作用機轉仍未有定論,故本研究以力學之觀點探討此問題。
本研究以紫杉醇施加於PC-12類神經細胞以模擬人體內神經細胞受紫杉醇之影響,引入臨床現行施打計劃下血漿中的紫杉醇濃度,探討兩種施打計畫對活體PC-12細胞黏彈性力學的影響。以原子力顯微鏡對受損之細胞進行應力鬆弛試驗,並分別以類線性黏彈模型與有限元素法估測細胞黏彈之力學性質。另外,應用共軛對焦顯微鏡建立包含細胞本體與細胞核之三維有限元素模型,並以軸對稱模型所得材料參數模擬單顆細胞三維應力鬆弛。類線性黏彈模型分析顯示細胞結構阻尼參數短時注射組之變化大於長時注射組,表示短時注射對細胞之黏滯性影響較大。有限元素分析顯示藥物濃度改變對細胞核之機械性質之影響不明顯,藥物主要影響細胞胞漿,驗證紫杉醇改變細胞內微管分佈從而造成機械性質之改變。切楊氏模數結果發現短時注射組於施打過程中(12hr)有最劇烈之硬度變化並於施打結束後使細胞變軟,長時注射則是先使細胞變軟後於施打結束後趨於正常值。
關鍵字:生物力學、紫杉醇、化療引發周邊神經病變、類線性黏彈理論、共軛聚焦顯微鏡光學切片術、三維影像模型重建、有限元素法
Chemotherapy treatment of cancer by paclitaxel often results in peripheral neuropathy which is a main reason for patients to withdraw from therapy and reduce the survival rate. Most past researches of chemotherapy induced peripheral neuropathy (CIPN) focused on biochemical field. The goal of this thesis is using finite element (FE) method and quasi-linear viscoelasticity (QLV) theory to analyze the indentation of PC-12 cells subjected to in vitro simulations of two clinical paclitaxel doses. Mechanical properties of the cells were measured by curve fitting to both QLV theory and a FE model. Stress-strain relationship was derived from hyperelastic part for comparison purpose. Full 3D cell geometry model was built from confocal microscope immunofluorescences images of the cells. QLV results show that apparent Young’s modulus rises at 12 hours then goes down at 18 hours for 3-hr infusion groups and rises at 6 and 18 hour for 24-hr infusion groups. Viscous parameter C rises at 6, 12 hours and goes down for 3-hr group. FE results show that relaxation modulus at cytoplasm changes with the decreasing of paclitaxel concentration while that of the nucleus remains unchanged. From the stress-strain results, the Young’s moduli of the cytoplasm are lower than that of control groups for both 3-hr and 24-hr infusion groups, it implies that cytoplasm gets softer after treated by paclitaxel. At nucleus, the stiffness rises at 12 hours for the 3-hr infusion groups and rises from 6 to 18 hour for the 24-hr groups. In conclusion, both stiffness and viscous properties have larger changes in the 3-hr infusion group than the 24-hour group, suggesting that the cells were damaged more severely due to short time infusion dosing schedule. The soften of paclitaxel treated cytoplasm is consistent with the fact that paclitaxel would disrupt the microtubules of the cell. FE simulation results suggest that, regarding the peak indentation force, the axisymmetric model yield similar results as that of the full 3D model, saving the computation effort very much.
Key words: Biomechanics, paclitaxel, CIPN, quasi-linear viscoelastic theory, finite element method, 3D model reconstruction, AFM, confocal microscope
[1] C.D. Scripture, W.D. Figg, A. Sparreboom, “Peripheral Neuropathy Induced by Paclitaxel: Recent Insights and Future Perspectives,” Curr. Neuropharmacol., vol. 4, no. 2, pp. 165–172, 2006.
[2] J.A. Boyette-Davis, E.T. Walters, P.M. Dougherty, “Mechanisms involved in the development of chemotherapy-induced neuropathy,” Pain Manag., vol. 5, no. 4, pp. 285–296, 2015.
[3] J.A. Boyette-Davis, J.P. Cata, H. Zhang et al, “Follow-up psychophysical studies in bortezomib-related chemoneuropathy patients,” J. Pain, vol. 12, no. 9, pp. 1017–1024, 2011.
[4] B. Bhatnagar, C. Pelser, M. Medeiros1 et al, “Chemotherapy dose reduction due to chemotherapy induced peripheral neuropathy in breast cancer patients receiving chemotherapy in the neoadjuvant or adjuvant settings: a single-center experience,” Springer plus, vol. 3, no. 1, pp. 366, 2014.
[5] J. Descoeur, A. Pizzoccaro, A. Francois et al, “Oxaliplatin-induced cold hypersensitivity is due to remodelling of ion channel expression in nociceptors,” EMBO. Mol. Med., vol. 3, no. 5, pp. 266–278, 2011.
[6] H. Zhang, “Enhanced excitability of primary sensory neurons and altered gene expression of neuronal ion channels in dorsal root ganglion in paclitaxel-induced peripheral neuropathy,” Anesthesiology, ivol. 120, no. 6, pp. 1463–1475, 2014.
[7] M. Matsumoto, M. Inoue, A. Hald et al, “Inhibition of paclitaxel-induced A-fiber hypersensitization by gabapentin,” J. Pharmacol. Exp. Ther., vol. 318, no. 2, pp. 735–740, 2006.
[8] K. Thibault, J.V. Steenwinckel, M. Conrath, “Serotonin 5-HT2A receptor involvement and Fos expression at the spinal level in vincristine-induced neuropathy in the rat,” Pain, vol. 140, no. 2, pp. 305-322, 2008.
[9] L.d. Toxicologie, “Pain related behaviour during vincristine‐induced neuropathy in rats,” Neuroreport, vol. 10, no. 5, pp. 965-968, 1999.
[10] N. Authier, F. Coudore, “A new animal model of vincristine-induced nociceptive peripheral neuropathy,” Neurotoxicology, vol. 24, no. 6, pp. 797-805, 2003.
[11] C.R. Robinson, P.M. Dougherty, “Spinal astrocute gap junction and glutamate transporter expression contributes to a rat model of bortezomib-induced peripheral neuropathy,” Neuroscience, vol. 285, no. 1, pp. 1–10, 2015.
[12] J.P. Cata, H.R. Weng, J.H. Chen et al, “Altered discharges of spinal wide dynamic range neurons and down-regulation of glutamate transporter expression in rats with paclitaxel-induced hyperalgesia,” Neuroscience, vol. 138, no. 1, pp. 329–338, 2006.
[13] N.A. Haber, O.A. Dina, E.K. Joseph, et al, “Interaction of transient receptor potential vanilloid 4, integrin, and SRC tyrosine kinase in mechanical hyperalgesia,” Journal of Neuroscience, vol. 28, no. 5, pp. 1046-1057, 2008.
[14] T. Hara, T. Chiba, A. Makabe, K. Taguchi. “Effect of paclitaxel on transient receptor potential vallinoid 1 in rat dorsal root ganglion,” Pain, vol. 154, pp. 882–889, 2013.
[15] S.J. Park, C.H. Wu, J.D. Gordon. “Taxol induces caspase-10-dependent apoptosis,” J. Biol. Chem., vol. 279, no. 49, pp. 51057–51067, 2004.
[16] S.J.L. Flattersa, G.J. Bennetta. “Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction,” Pain, vol. 122, no. 3, pp. 245–257, 2006.
[17] D.A. Barrière, D. Chanteranne, J. Busserolles, et al. “Paclitaxel therapy potentiates cold hyperalgesia in streptozotocin-induced diabetic rats through enhanced mitochondrial reactive oxygen species production and TRPA1 sensitization,” Pain, vol. 153, no. 3, pp. 553–561, 2012.
[18] J.J. Lee, S.M. Swain, “Peripheral neuropathy induced by microtubule-stabilizing agents,” J. Clin. Oncol., vol. 24, no. 10, pp. 1633–1642, 2006.
[19] K.D. Cliffer, J.A. Siuciak, S.R. Carson et al, “Physiological characterization of taxol-induced large fiber sensory neuropathy in the rat,” Ann. Neurol., vol. 43, no. 1, pp. 46–55, 1998.
[20] L.A. Greene, A.S. Tischler, “Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor,” Cell Biology, vol. 73, no. 7, pp. 2424-2428, 1976.
[21] P.B. Schiff, J. Fant, S.B. Horwitz, “Promotion of microtubule assembly in vitro by taxol,” Nature, vol. 277, no. 5698, pp. 665-667, 1979.
[22] P.B. Schiff, S.B. Horwitz, “Taxol stabilizes microtubules in mouse fibroblast cells,” Proceedings of the National Academy of Sciences, vol. 77, no. 3, pp. 1561-1565, 1980.
[23] J.C. Waters, R.H. Chen, A.W. Murray, “Localization of Mad2 to kinetochores depends on microtubule attachment, not tension,” Journal of Cell Biology, vol. 141, no. 5, pp. 1181-1191, 1998.
[24] K. Hayakawa, “Paclitaxel induces axonal microtubules polar reconfiguration and impaired organelle transport: implications for the pathogenesis of paclitaxel-induced polyneuropathy,” Acta Neuropathologica, vol. 119, no. 2, pp. 235-248, 2010.
[25] B.A. Weaver, “How Taxol/paclitaxel kills cancer cells,” Mol. Biol. Cell, Vol. 25, no. 18, pp.2677–2681. 2014.
[26] L.M. Zasadil, D. Yeum, B.A. Weaver. “Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles,” Science Translational Medicine, vol. 6, no. 229, pp. 229-252, 2014.
[27] J. Wanga et al, “Atomic force microscope study of tumor cell membranes following treatment with anti-cancer drugs,” Biosensors and Bioelectronics, vol. 25, no. 4, pp. 721-727, 2009.
[28] K.J. Van Vliet, G. Bao, S. Suresh, “The biomechanics toolbox: experimental approaches for living cells and biomolecules,” Acta Materialia, vol. 51, pp. 5881–5905, 2003.
[29] M.R. Mofrad, R.D. Kamm, “Cytoskeletal mechanics: models and measurements in cell mechanics,” Cambridge University Press, 2006
[30] V.J. Morris, A.R. Kirby, A.P. Gunning, “Atomic force microscopy for biologists,” World Scientific, 2009.
[31] K.L. Johnson, “Contact mechanics,” Cambridge university press, 1987.
[32] I.N. Sneddon, “The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile,” International Journal of Engineering Science, vol. 3, no. 1, pp. 47-57, 1965.
[33] G. Bilodeau, “Regular pyramid punch problem,” J. Appl. Mech., vol. 59, no. 3, pp. 519-523, 1992.
[34] P. Maivald et al, “Using force modulation to image surface elasticities with the atomic force microscope,” Nanotechnology, vol. 2, no. 2, pp. 103-106, 1991.
[35] R.E. Mahaffy, C.K. Shih, F.C. MacKintosh et al, “Scanning probe-based frequency-dependent microrheology of polymer gels and biological cells,” Physical Review Letters, vol. 85, no. 4, pp. 880-883, 2000.
[36] J. Alcaraz et al. “Microrheology of human lung epithelial cells measured by atomic force microscopy,” Biophysical journal, vol. 84, no. 3, pp. 2071-2079, 2003.
[37] K. Peeters, J. Plefka, M. Zamaklar, “Splitting strings and chains,” Fortschr. Phys., vol. 53, no. 5-6, pp. 640-646, 2005.
[38] K. Thorn, “Optical Sectioning and Confocal Microscopy,” Ibiology, 2009.
[39] Dassault Systems Simulia Corp, “Abaqus最新實務入門,” 2013.
[40] J.A. Weiss, B.N. Makerc, S. Govindjeed. “Finite element implementation of incompressible, transversely isotropic hyperelasticity,” Comput. Methods Appl. Mech. Engrg., vol. 135, pp. 107-128, 1996.
[41] M. Kauera, V. Vuskovicb, J. Duala et al, “Inverse finite element characterization of soft tissues,” Medical Image Analysis, vol. 6, pp. 275–287, 2002.
[42] A. Samani, D. Plewes, “A method to measure the hyperelastic parameters of ex vivo breast tissue samples,” Phys. Med. Biol., vol. 49, no.1, pp. 4395-4405, 2004.
[43] G.U. Unnikrishnan, V.U. Unnikrishnan, J.N. Reddy, “Constitutive Material Modeling of Cell: A Micromechanics Approach,” Tran. ASME J. Biomech. Eng., Vol. 129, no. 3, pp. 315-23, 2007.
[44] Y. Kim, M. Kim, J.H. Shin, J. Kim. “Characterization of cellular elastic modulus using structure based double layer model,” Med. Biol. Eng. Comput., vol. 49, pp. 453–462, 2011.
[45] A. Boccaccio et al. “A hybrid characterization framework to determine the visco-hyperelastic properties of a porcine zona pellucida,” Tran. ASME J. Biomech. Eng., vol. 129, no. 3, pp. 315-323, 2007.
[46] A. Boccaccio et al. “Effect of AFM probe geometry on visco-hyperelastic characterization of soft materials,” Nanotechnology. vol. 14, no. 26, pp. 15-29, 2015.
[47] N. Nguyen et al. “Atomic force microscopy indentation and inverse analysis for non-linear viscoelastic identification of breast cancer cells,” Mathematical Biosciences, vol. 277, pp. 77–88, 2016.
[48] G.U. Unnikrishnan, V.U. Unnikrishnan, J. N. Reddy. “Contribution of material properties of cellular components on the viscoelastic, stress-relaxation response of a cell during AFM indentation,” International Journal for Computational Methods in Engineering Science and Mechanics, vol. 17, no. 3, pp. 137-142, 2016.
[49] 陳榮健, “類線性黏彈理論於正常與糖尿病變周邊神經組織在位力學與類神經細胞力學之研究,” 國立成功大學機械工程學系, 博士論文, 2010.
[50] 陳煜欣, “有限元素模型與光學同調斷層掃描術於周邊神經組織之黏彈性力學研究,” 國立成功大學機械工程學系, 碩士論文, 2012.
[51] 曾冠豪, “三維有限元素模型與光學同調斷層掃描術於正常與糖尿病變周邊神經組織黏彈性力學之研究,” 國立成功大學機械工程學系, 碩士論文, 2013.
[52] 許文馨, “應用原子力顯微鏡與有限元素法探討神經細胞髓鞘化過程之機械性質,” 國立成功大學機械工程學系, 碩士論文, 2013.
[53] 張正道, “周邊神經細胞與許旺細胞個別及共培養之生物力學研究,” 國立成功大學機械工程學系, 博士論文, 2013.
[54] 湯君偉, “糖尿病對周邊神經組織及神經內血管於在位環形壓縮下之力學表現之影響,” 國立成功大學機械工程學系, 碩士論文, 2016.
[55] 林慶正, “紫杉醇於臨床施打計畫下對PC-12類神經細胞形態與黏彈性力學之影響,” 國立成功大學機械工程學系, 碩士論文, 2018.
[56] Life technologies, “Media and Balanced Salt Solutions Preparation from Powder and Concentrates,” 2012.
[57] J.R. Jacobs, J.K. Stevens, “Changes in the Organization of the Neuritic Cytoskeleton during Nerve Growth Factor-activated Differentiation of PC12 Cells: A Serial Electron Microscopic Study of the Development and Control of Neurite Shape,” The Journal of Cell Biology, vol. 103, no. 3, pp. 895-906, 1986.
[58] T. Ohtsu, Y. Sasaki, T. Tamura et al, “Clinical Pharmacokinetics and Pharmacodynamics of Paclitaxel: A 3-Hour Infusion versus a 24-Hour Infusion,” Clinical Cancer Research, vol. 1, pp. 599-606, 1995.
[59] A.M.C. Yvon, P. Wadsworth, M.A. Jordan. “Taxol Suppresses Dynamics of Individual Microtubules in Living Human Tumor Cells,” Molecular Biology of the Cell, vol. 10, pp. 947-959, 1999.
[60] H. Richter, E.A. Misawa, D.A. Luccal et al, “Modeling nonlinear behavior in a piezoelectric actuator,” Precision Engineering, vol. 25, no. 2, pp. 128-137, 2001.
[61] Y.C. Fung, “Biomechanics: mechanical properties of living tissues 2nd ed,” Springer-Verlag, New York, 1993.
[62] N. Gavara, R.S. Chadwick, “Determination of the elastic moduli of thin samples and adherent cells using conical AFM tips,” Nature Nanotechnology, vol. 7, no. 11, pp. 733-736, 2012.
[63] Dassault Systemes, “ABAQUS User’s & Theory Manuals-Release 6.13-1,” Providence, 2013.
[64] R.W. Ogden, “Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids,” Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, The Royal Society, vol. 326, no. 1567, pp. 565-584, 1972.
[65] 周辰, “紫杉醇引發PC-12類神經細胞病變之生物力學及形態學研究,” 國立成功大學機械工程學系, 碩士論文, 2017.
[66] M.A. Puso, J.A. Weiss, “Finite Element Implementation of Anisotropic Quasi-Linear Viscoelasticity Using a Discrete Spectrum Approximation,” Tran. ASME J. Biomech. Eng., vol. 120, no. 1, pp.62-70, 1998.
[67] S.T. Wood, B.C. Dean, D. Dean, “A linear programming approach to reconstructing subcellular structures from confocal images for automated generation of representative 3D cellular models,” Medical Image Analysis, vol. 17, no. 3, pp.337-347, 2013.