簡易檢索 / 詳目顯示

研究生: 廖原億
Liao, Yuan-Yi
論文名稱: 應用微振動判釋地層特性與地震災害相關性之研究:以臺中及北彰化地區為例
Interpretation of Subsurface Characteristics and the Seismic hazards Using Microtremor : Taichung and Northern Changhua Areas
指導教授: 吳建宏
Wu, Jian-Hong
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 182
中文關鍵詞: 微振動標準貫入試驗卓越頻率卓越週期地震災害
外文關鍵詞: Microtremor, Standard Penetration Test (SPT), Predominant Frequency, Predominant Period, Seismic Hazards
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1999年921集集地震,造成了台中及北彰化地區許多災害, 包含建築結構損害及倒塌等,考量地震對各地可能造成損害易受到地層條件影響,應深入研究兩者之間相關性,然傳統工程作法上常使用標準貫入試驗(SPT)或圓錐貫入試驗(CPT)需要耗費大量時間及成本,且亦受到龐大機具施作之空間限制,本研究使用之微振儀為非破壞性檢測儀器,具有簡便性、快速性、經濟性及不受地點限制等優勢,經由單站頻譜比法分析為基礎建立快速及簡便辨識地層特性之方法。
    研究分為兩個部分,首先,第一部分採用不同量測頻率與時程探討H/V功率頻譜圖穩定性及分析地震加速度與微振動資料相關性,接著使用將微振動量測分析得到之H/V功率頻譜圖搭配f=Vs/4H轉換之(H/V)pr-土層深度圖,推估地層深度及比對與土層強弱指標(SPT-N值)關聯性,並評估此方法在本研究區域地層下的適用性與準確性。第二部分,於本研究區域將微振動量測所得之地層卓越頻率,經由內插法繪製全區分布圖與地形及地質比對相關性。同時,針對921集集地震期間發生災損之建築物案例,進行綜合比對與探討,分析其主要損害原因是否來自地盤卓越週期與建築物基本振動週期接近所產生之共振效應、脆弱指數較高之場址放大效應,或是由於結構系統配置不良與結構強度不足等因素所導致。
    第一部分研究結果發現,微振動量測無論季節變化或測量頻率改變,所得H/V功率頻譜波形及卓越頻率皆相當穩定;微振動與地震加速度訊號之H/V功率頻譜在波形及卓越頻率上具一致性,僅放大係數略有差異,驗證微振儀在缺乏地震測站區域可用於模擬地震時之場址效應;以Nakamura (1996) 提出之轉換公式F=V_s/4H 可有效應用於工程基盤深度之初步推估,且(H/V)pr與土層強弱指標(SPT-N值)呈現明顯正相關性,即使在本研究區域內之卵礫石層中仍具有良好適用性。
    第二部分研究結果發現,卓越頻率與本研究區域地形及地質比對後具有高度相關性;彙整台中地區 7 處於 921 地震中受嚴重災損之建築物,經分析所有案例皆受到建築物結構配置不良的顯著影響。部分案例位於中、高度應變潛勢區域,顯示該類區域於地震動作用下可能存在較高的場址效應放大潛勢。另外,比對地盤卓越頻率與建築物固有週期後,並未發現明顯的共振效應。整體而言,結構配置不良仍為主要災損原因,場址放大效應雖可能加劇損害,但在本研究案例中並非主要因素。

    The 1999 Chi-Chi earthquake caused severe damage in Taichung and northern Changhua, including structural failures and building collapses. Since earthquake damage is closely related to subsurface conditions, understanding this relationship is crucial. Traditional site investigations, such as Standard Penetration Tests (SPT) and Cone Penetration Tests (CPT), are time-consuming, costly, and limited by site constraints. This study employs microtremor measurements with the H/V spectral ratio method to develop a fast, simple, and non-invasive approach for identifying subsurface characteristics.
    The research consists of two main parts. The first part examines the stability of H/V spectral curves under different measurement frequencies and durations, and evaluates the correlation between microtremor data and seismic acceleration records. The H/V spectral data are further converted into (H/V)pr-depth profiles using the equation f = Vs / 4H and compared with SPT-N values to assess soil strength and estimate layer depths.
    In the second part, the predominant frequencies derived from microtremor measurements were interpolated to generate distribution maps for the entire study area and compared with topographic and geological features. At the same time, building damage cases from the 1999 Chi-Chi Earthquake were comprehensively analyzed to determine whether the primary causes of damage were due to resonance effects arising when the site’s predominant period approached the building’s fundamental period, site amplification effects associated with higher vulnerability index values, or factors such as poor structural configuration and insufficient structural strength.
    The results show that (H/V)pr spectral curves and predominant frequencies from microtremor measurements are stable across seasons and conditions, and closely match those from seismic records. The bedrock depth estimated using the conversion formula f = Vs / 4H proposed by Nakamura (1996) is highly consistent with the engineering bedrock position, defined as the layer where the SPT-N value exceeds 50. In addition, (H/V)pr shows a strong positive correlation with the soil strength indicator (SPT-N value). This study analyzed seven severely damaged buildings in Taichung City during the 1999 Chi-Chi Earthquake. The results indicate that poor structural configuration was the primary cause of damage. Although some cases were located in areas with moderate to high strain potential, no clear resonance effects were observed. Site amplification may have exacerbated the damage but was not considered a dominant factor.

    摘要I AbstractIII 誌謝XVIII 目錄XIX 表目錄XXII 圖目錄XXIII 第一章緒論 1 1.1前言1 1.2研究動機及目的2 1.3研究流程4 1.4論文大綱5 第二章 文獻回顧6 2.1微振動(Microtremor)介紹6 2.2微振動評估場址效應之適用性8 2.3微振動分析方法10 2.4單站頻譜比法(HVSR)11 2.5微振動之H/V頻譜圖波形穩定性15 2.6微振動與沖積層厚度及剪力波速估算之應用18 2.7脆弱指數評估地震災害之應用22 第三章研究區域介紹26 3.1台中研究區地形與地質概況26 3.1.1地形概況26 3.1.2地質概況29 3.2北彰化研究區地形與地質概況32 3.2.1地形概況32 3.2.2地質概況33 第四章研究方法36 4.1微振動分析36 4.1.1儀器介紹37 4.1.2測量孔位位置38 4.1.3現地微振動測量45 4.1.4資料轉換49 4.1.5數據判讀54 4.2地理運算內插法58 第五章H/V功率頻譜圖穩定性與土層鑽探分析結果59 5.1微振動之H/V功率頻譜圖波形穩定性59 5.2地震站與微振動資料之關係61 5.3H/V功率頻譜圖推估基盤深度及土層強弱關係65 5.3.1已知基盤深度轉換67 5.3.2未知基盤深度轉換70 5.3.3(H/V)pr與土層強弱之關係72 5.4小結76 第六章H/V功率頻譜圖在場址效應上之應用研究77 6.1卓越頻率分布圖分布結果討論77 6.2卓越週期及脆弱指數與建築物損害之關係88 6.2.1中樓層建築物之災損討論92 6.2.2高樓層建築物之災損討論95 第七章結論與建議113 7.1結論113 7.2建議114 參考文獻115 附錄A本研究鑽孔點位座標123

    [1]工程地質探勘資料庫整合查詢平台。經濟部地質調查及礦業中心。檢自https://geotech.gsmma.gov.tw/imoeagis/Home/Map (2022、2023、2024)
    [2]中央氣象署地震測報中心。檢自: https://scweb.cwa.gov.tw/zh-tw/stationnew (2022、2023)
    [3]臺灣水文地質資訊系統。內政部國土測繪中心。檢自https://hydro.geologycloud.tw/map( 2022、2023、2024)
    [4]全國強震測站場址工程地質資料庫。財團法人國家實驗研究院國家地震工程研究中心。檢自https://egdt.ncree.org.tw/news.htm (2022、2023、2024)
    [5]全球災害事件簿。國家災害防救科技中心。檢自https://den.ncdr.nat.gov.tw/1328/2422/(2025)
    [6]台中都市資訊網。台中行政區含地形分區圖。檢自http://taichung.s-club.tw/viewthread.php?tid=69 (2025)
    [7]國家文化記憶庫2.0,文化部。檢自https://tcmb.culture.tw/zh-tw (2025)
    [8]國立臺灣歷史博物館典藏網。檢自https://collections.nmth.gov.tw/(2025)
    [9]臺灣地質知識服務網。檢自https://twgeoref.gsmma.gov.tw/GipOpenWeb/wSite/mp?mp=6 (2025)
    [10]921大地震豐原受災建物震後重建現況。檢自https://www.cs.nccu.edu.tw/~lien/921After/ (2025)
    [11]國土測繪圖資服務網。內政部國土測繪中心。檢自https://maps.nlsc.gov.tw/ (2025)
    [12]台灣世曦工程顧問股份有限公司 (2018、2019)。106年度推動土壤液化潛勢區防治改善示範計畫技術服務工作。臺中市政府都市發展局報告,台中市。台灣。
    [13]台灣世曦工程顧問股份有限公司 (2022)。台中市109土壤液化調查與風險評估計畫委託技術服務工作。臺中市政府都市發展局報告,台中市。台灣。
    [14]台灣世曦工程顧問股份有限公司 (2023、2024)。台中市109土壤液化調查與風險評估計畫委託技術服務工作(110年度後續擴充) 。臺中市政府都市發展局報告,台中市。台灣。
    [15]台灣世曦工程顧問股份有限公司 (2019)。彰化縣土壤液化潛勢區中級圖資第一期建置暨地質改善示範工程評估調查及設計技術服務案。彰化縣政府建設處。彰化縣。台灣。
    [16]台灣世曦工程顧問股份有限公司 (2021)。彰化縣109年度土壤液化調查與風險評估計畫委託技術服務-委託地質鑽探工作。彰化縣政府建設處。彰化縣。台灣。
    [17]內政部國土管理署 (2024)。建築物耐震設計規範與解說。第十一章: 其他耐震相關規定。
    [18]內政部營建署(2001)。921震災住宅重建進度雙週報。臺北:內政部營建署。
    [19]陳冠宇 (2019)。地表微振動與土壤液化潛勢關係之研究:以台南都會區為 例。國立成功大學土木工程研究所,碩士論文,台南,台灣。
    [20]李振毓(2020),以微震儀 H/V 頻譜圖波形進行地層力學特性判釋之研究, 國立成功大學土木工程研究所,碩士論文,台南。台灣。
    [21]莊東霖 (2021)。以地表微振動評估台南、北高雄地區場址效應與土壤液化潛勢之研究。國立成功大學土木工程研究所,碩士論文,台南,台灣。
    [22]郭子源 (2022)。應用地表微振動判釋地層特性與地震場址效應之研究:以台南、高雄地區為例。國立成功大學土木工程研究所,碩士論文,台南, 台灣。
    [23]林宇軒(2023)。以微震儀H/V頻譜圖波行進行地層力學特性判釋之研究。國立成功大學土木工程研究所,碩士論文,台南, 台灣。
    [24]劉博翔、吳建宏(2023)。花東地區地盤微振動量測與分析。地工技術,第176期,第73-80頁。
    [25]黃有志(2003),蘭陽平原場址效應及淺層 S 波速度構造,國立中央大學 地球物理所,碩士論文,桃園,台灣。
    [26]涂嘉勝 (2003)。利用微地動量測探討台灣中部地區之場址效應。國立中央大學地球物理所,碩士論文,桃園,台灣。
    [27]黃雋彥 (2009)。利用微地動量測探討台灣地區之場址效應,國立中央大學 地球物理所,碩士論文,桃園,台灣。
    [28]林呈、孫洪福 (2000)。見證 921 集集大地震:震害成因與因應對策。
    [29]林朝棨 (1957)。臺灣省通志稿:土地志地理篇第1冊(地形)。台灣:臺灣省文獻委員會。
    [30]林朝棨、周瑞燉 (1974)。臺灣地質。台灣:臺灣省文獻委員會。
    [31]何信昌、陳勉銘 (2000)臺中[臺灣地質圖幅及說明書 1/50,000]。五萬分之一臺灣地質圖及說明書。經濟部中央 地質調查所。新北市。台灣。
    [32]何恭睿、劉佳枚、陳柔妃 (2019)環山[臺灣地質圖幅及說明書 1/50,000]。五萬分之一臺灣地質圖及說明書。經濟部中央 地質調查所。新北市。台灣。
    [33]陳棋炫、江婉綺 、盧詩丁 (2018)大甲[臺灣地質圖幅及說明書 1/50,000]。五萬分之一臺灣地質圖及說明書。經濟部中央 地質調查所。新北市。台灣。
    [34]李錦發(2000) 東勢[臺灣地質圖幅及說明書 1/50,000]。五萬分之一臺灣地質圖及說明書。經濟部中央 地質調查所。新北市。台灣。
    [35]經濟部中央地質調查所(2008)臺中市[環境地質圖數值檔1/25,000] 。經濟部中央地質調查所。新北市。台灣。
    [36]游能悌、顏一勤(2013)鹿港[臺灣地質圖幅及說明書 1/50,000] 。五萬分之一臺灣地質圖及說明書。經濟部中央地質調查所出版。新北市。台灣。
    [37]楊貴三、黃文樹、李孟芬(2014)。新修彰化縣志.卷二.地理志.自然地理篇。彰化縣政府出版。彰化縣。台灣。
    [38]連慧珠、周國屏、龔琪嵐(2018)。新修彰化縣志.卷二.地理志.自然地理篇。彰化縣政府出版。彰化縣。台灣。
    [39]紀宗吉、林錫宏、朱偉嘉、 謝有忠(2022)。臺灣坡地環境地質圖集(中部地區)。經濟部中央地質調查所出版。新北市。台灣。
    [40]林其璋、魏志揚、張長菁(2002)。921地震高層建築之災害分析。國立中興大學土木工程系,921地震工程復健技術之調查研究。
    [41]羅俊雄、鐘立來、黃炯憲、鄧崇任、蔡錦勳、張順益、簡文郁、柴俊甫、劉季宇、廖文義、李政寬、黃富國、鄧慰先、翁作新、張國鎮、黃震興。集集地震初步勘災報告。國家地震工程研究中心。
    [42]AA.VV.-SESAME (2005). Guidelines for the implementation of the H/V spectral ratio technique on ambient vibrations.
    [43]Ansary et al. (2020). Assessment of Seismic Vulnerability Index of Gas Network Area in Dhaka City Using Microtremor Measurements. Proceedings of the 17th World Conference on Earthquake Engineering (17WCEE), Sendai, Japan. Paper No. 1g-0008.
    [44]Stanko et al. (2020). An empirical relationship between resonance frequency, bedrock depth and VS30 for Croatia based on HVSR forward modelling. Natural Hazards, 103(3), 3709–3732.
    [45]Ryanto et al. (2020). Sediment thickness estimation in Serpong Experimental Power Reactor site using HVSR method. Jurnal Pengembangan Energi Nuklir, 22(1), 29–37.
    [46]FEMA. (2020). NEHRP Recommended Seismic Provisions for New Buildings and Other Structures (FEMA P-2082-1). Federal Emergency Management Agency,Chapter 20.2, 86–87.
    [47]Alcock, E.D. (1974). Comments on “Comparison of earthquake and microtremor ground motions in El Centro, California” by F. E. Udwadia and M. D. Trifunac. Bulletin of the Seismological Society of America, 64(2), 495.
    [48]Lu, G. Y., & Wong, D. W. (2008). An adaptive inverse-distance weighting spatial interpolation technique. Computers & Geosciences, 34(9), 1044–1055.
    [49]Delaunay, B. N. (1934). Sur la sphère vide. Bulletin de l'Académie des Sciences de l'URSS. Classe des sciences mathématiques et naturelles, 7, 793–800.
    [50]Asten, M.W. & Henstridge, J.D. (1984). Arrays estimators and the use of microseisms for reconnaissance of sedimentary basins. Geophysics, 49(11), 1828–1837.
    [51]Beroya, M. A. A., Aydin, A., Tiglao, R., & Lasala, M. (2009). Use of microtremor in liquefaction hazard mapping. Engineering Geology, 107(3-4), 140-153.
    [52]Borcherdt, R.D. (1970). Effects of local geology on ground motion near San Francisco Bay. Bulletin of the Seismological Society of America, 60(1), 29-61.
    [53]Boulanger, R.W. & Idriss, I.M. (2007). Evaluation of Cyclic Softening in Silts and Clays. Journal of Geotechnical and Geoenvironmental Engineering, 133(6), 641-652. doi:10.1061/(ASCE)1090-0241(2007)133:6(641)
    [54]Casagrande, A. (1936). Characteristics of Cohesionless Soils Affecting the Stability of Slopes and Earth Fills, Journal of the Boston Society of Civil Engineers, Vol. 23, No. 1, pp. 1332. (Reprinted in Contributions to Soil Mechanics, 1925 to 1940, Boston Society of Civil Engineers, Oct., 1940.)
    [55]Fukuwa, N. & Tobita, J. (2000). Examination of estimated surface layer profiles based on soil data and microtremor records using observed seismic ground motions. 12th World Conference on Earthquake Engineering, Paper No.1343, Auckland, New Zeland.
    [56]Huang, H.C., & Teng, T. L. (1999). An evaluation on H/V ratio vs. spectral ratio for site-response estimation using the 1994 Northridge earthquake sequences. pure and applied geophysics, 156(4), 631-649.
    [57]Huang, H.C., & Tseng, Y.S. (2002). Characteristics of Soil Liquefaction using H/V of Microtremors in Yuan-Lin area, Taiwan, Terrestrial, Atmospheric and Oceanic (TAO), Vol. 13, No.3, September 2002, page 325 - 338
    [58]Ishihara, K. (1985). Stability of natural deposits during earthquakes. Proc. of 11th ICSMFE, 1985, 1, 321-376.
    [59]Ishihara, K., Yoshimine, M. (1992) Evaluation of Settlements in Sand Deposits Following Liquefaction During Earthquakes. Soils and Foundations, Volume 32, Issue 1, March 1992, 173-188.
    [60]Johansson, J (2000). Flow Liquefaction & Cyclic Mobility. Retrieved from https://depts.washington.edu/liquefy/html/what/what2.html
    [61]J-SESAME (2004) J-SESAME User Manual Version 1.08. Retrived May 7 from:https://www.geo.uib.no/public/seismo/SOFTWARE/SESAME/USER-MANUAL/J-SESAME-User-Manual-Ver1-08.pdf
    [62]Cho, I. (2020) BIDO 3.0. Retrived May 10 from: https://staff.aist.go.jp/ikuo-chou/BIDO/2.0/bido_en_manual3.0.pdf
    [63]Kagami, H., Duke, M C., Liang, G C., Ohta, Y. (1982) Observation of 1- to 5-second microtremors and theirapplication to earthquake engineering. Part ii. Evaluation of site effect upon seismic wave amplification due to extremely deep soil deposits. Bulletin of the Seismological Society of America, Vol. 72, No. 3, pp. 987-998.
    [64]Kanai, K., Tanaka, T., & Osada, K. (1954). Measurement of the Microtremor. 1. Bull. Earthq. Res. Inst, 32, 199-209.
    [65]Kanai, K., Tanaka, T., & Osada, K. (1962). On the predominant period of earthquake motions. Bulletin of the Earthquake Research Institute, 40, 855-860.
    [66]Katz, L. J. (1976). Microtremor analysis of local geological conditions. Bulletin of the Seismological Society of America, 66(1), 45–60.
    [67]Kiyono, J., Ono, Y., Sato, A., Noguchi, T., & Putra, R. R. (2011). Estimation of subsurface structure based on microtremor observations at Padang, Indonesia. ASEAN Engineering Journal, Part C, 1(3), 66-81.
    [68]Kyaw, Z.L., Pramumijoyo, S., Husein, S., Fathani, T. F., & Kiyono, J. (2014). Investigation to the local site effects during earthquake induced ground deformation using microtremor observation in Yogyakarta, Central Java-Indonesia. Landslide Science for a Safer Geoenvironment (pp. 241-249).
    [69]Kyaw, Z.L., Pramumijoyo, S., Huseinb, S., Fathanic, T F., Kiyonod, J., And Putra, R R. (2014). Estimation of Subsurface Soil Layers using H/V Spectrum of Densely Measured Microtremor Observations (Case Study: Yogyakarta City, Central Java-Indonesia). International Journal Sustainable Future for Human Security , Vol. 2, No, 1.13-20.
    [70]Lee, C.T., & Tsai , B.R. (2008).Mapping Vs30 in Taiwan. Terr. Atmos. Ocean. Sci., Vol. 19, No. 6, 671-682.
    [71]Lermo, J., & Chávez-García, F. J. (1994). Are microtremors useful in site response evaluation?. Bulletin of the seismological society of America, 84(5), 1350-1364.
    [72]Lermo, J., & Chávez-García, F.J. (1993). Site effect evaluation using spectral ratios with only one station. Bulletin of the seismological society of America, 83(5), 1574-1594.
    [73]Lunne, T., Robertson, P.K. and Powell, J.J.M. (1997). Cone Penetration Testing in Geotechnical Practice. Blackie Academic & Professional, London, 312 p.
    [74]Mogami, T., & Kubo, K. (1953). The behavior of sand during vibration. Proc. 3rd ICSMFE, 1, 152-155.
    [75]Mokhberi, M., Davoodi, M., Haghshenas, E. & Jafari, M. K. (2013). Experimental evaluation of the H/V spectral ratio capabilities in estimating the subsurface layer characteristics. Iranian Journal of Science and Technology, 37(C), 457–468.
    [76]Mucciarelli, M., Gallipoli, M. R., Di Giacomo, D., Di Nota, F., & Nino, E. (2005). The influence of wind on measurements of seismic noise. Geophysical Journal International, 161(2), 303-308.
    [77]Nakamura, Y. (1996).Real-time information systems for seismic hazards mitigation UrEDAS, HERAS and PIC. QUARTERLY REPORT-RTRI, 37(3), 112-127.
    [78]Nakamura, Y. (2008, October). ON THE H/V SPRECTRUM. The 14th World Conference on Earthquake Engineering, Beijing, China.
    [79]Nakamura,Y. (1989). A Method for Dynamic Characteristics Estimation of Surface Layers using Microtremor on the Surface, Quarterly Report of RTRI Vol. 30 No.1, page 18–27
    [80]Ohsaki, Y. & Iwasaki, R. (1973). On dynamic shear moduli and Poisson’s ratio of soil deposits. Soil Found, 13(4), 61–73.
    [81]Ohta, Y., Kagami, H., Goto, N. & Kudo, K. (1978). Observation Of 1- To 5-Second Microtremors And Their Application To Earthquake Engineering. Part I: Comparison With Long-Period Accelerations At The Tokachi-Oki Earthquake Of 1968". Bulletin of the Seismological Society of America, Vol. 68, No. 3, pp. 767-779, June, 1978.
    [82]Omori, F. (1908). Imperial Earthquake Investigation Committee. Bulletin of the Imperial Earthquake Investigation Committee, 2(1), 51–57.
    [83]Tada, T., I. Cho, and Y. Shinozaki. (2010). Analysis of Love-wave components in microtremors, Joint Conference Proceedings, 7th International Conference on Urban Earthquake Engineering (7CUEE) & 5th International Conference on Earthquake Engineering (5ICEE), Center for Urban Earthquake Engineering, Tokyo Institute of Technology, 115-124.
    [84]Terzaghi, K, (1925). Principles of Soil Mechanics: I—Phenomena of Cohesion of Clays, Engineering News-Record, Vol. 95, No. 19, 742-746.
    [85]Terzaghi, K, and Peck, R.B. (1948). Soil Mechanics in Engineering Practice, New York: John Wiley and Sons, 566 p.
    [86]Terzaghi, K. and Peck, R.B. (1967). Soil Mechanics in Engineering Practice. 2nd Edition, John Wiley, New York.
    [87]Tokeshi, J.K., Sugimura, Y., and Sasaki, T. (1996). Assessment of Natural Frequency from Microtremor Measurement using Phase Spectrum, 11th World Conference on Earthquake Engineering, paper no.309
    [88]Udwadia, F.E. & Trifunac, M.D. (1973). Time and amplitude dependent response of structures. The Journal of the International Association for Earthquake Engineering, 2(4), 359–378.
    [89]Wright, S. (1921 a). Correlation and causation. Jour. Agric, Res. 20, p 557-585.

    無法下載圖示 校內:2030-08-08公開
    校外:2030-08-08公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE