簡易檢索 / 詳目顯示

研究生: 廖全偉
Liao, Chiuan-Wei
論文名稱: 應用晶格波茲曼法於攪拌混合器之對流混合特性分析
Analysis of Convection Mixing Characteristics in the impeller stirred tank by the Lattice Boltzmann method
指導教授: 陳介力
Chen, Chieh-Li
學位類別: 碩士
Master
系所名稱: 工學院 - 航空太空工程學系
Department of Aeronautics & Astronautics
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 63
中文關鍵詞: 晶格波茲曼法攪拌對流擴散混合濃度
外文關鍵詞: Lattice Boltzmann method, Stirred tank, Convection diffusion, Concentration
相關次數: 點閱:61下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文利用晶格波茲曼法結合邊界格點判斷法討論一開放圓型攪拌混合器於流體的擴散問題,其中採用不可壓縮的D2Q9晶格速度模型,並使用被動純量法推得濃度模型求得濃度場。流場的擾動可經由改變葉片運動模式產生不同的混合效益。本文主要包含二種葉片運動模式:(1)等角速度旋轉(2)區間擺動並透過改變入口之間距、流體雷諾數、振幅等情況的速度場及濃度場變化。結果顯示在水平區間擺動的混合效益最差,原因是攪拌棒置放在兩入口之間,而擺動振幅不夠大時反而會把流體推走對混合並無助益反而會使混合效率降低。垂直區間擺動下在振幅 時混合效益最好,主要是因為振幅小的情況下,攪拌棒近乎垂直,可以有效地阻擋流體無法直接流出,並且使流體改變流動方向,增加混合效益。結果亦發現等角速度旋轉的混合效益介於兩者之間。

    In this dissertation, the Lattice Boltzmann method is applied to simulate the effect of flow field and convection diffusion of the open stirred tank with an impeller, which moves in difference patterns, i.e., constant angular velocity motion, horizontal oscillating motion and vertical oscillating motion. It reveals that the vertical oscillating motion could lead to a better mixing performance, and the mixing performance of the constant angular speed is between the horizontal oscillating and the vertical oscillating.

    摘要 i Extended Abstract ii 誌謝 xi 目錄 xii 圖目錄 xiv 符號表 xvi 第一章緒論 1 1.1研究背景與動機 1 1.2晶格波茲曼法文獻回顧 2 1.3本文架構 5 第二章晶格波茲曼法理論與基本模型 6 2.1晶格波茲曼法理論 6 2.2晶格波茲曼法D2Q9模型與巨觀方程式 7 2.3邊界格點判別法 9 2.4濃度方程式 10 第三章邊界處理與程式流程及驗證 16 3.1晶格波茲曼法的邊界條件 16 3.1.1反彈邊界 16 3.1.2速度與壓力邊界 16 3.1.3曲面邊界 18 3.1.4移動邊界 19 3.1.5濃度方程反彈邊界 19 3.2晶格波茲曼法程式流程驗證 20 3.2.1程式流程 20 3.2.2文獻程式驗證 21 第四章結果與討論 28 4.1模型之幾何與相關參數設定 28 4.1.1模型幾何及邊界條件 28 4.1.2攪拌棒運動模方式定義 29 4.2等角速旋轉於不同雷諾數下之混合效益影響 30 4.3振幅對混合效益之影響 31 4.3.1水平區間擺動對於振幅不同之混合效益影響 31 4.3.2垂直區間擺動對於振幅不同之混合效益影響 31 4.3.3垂直區間擺動和水平區間擺動之差異 32 4.4入口間距改變對於流場之混合效益影響 32 第五章結論與未來展望 50 5.1結論 50 5.2未來展望 51 參考文獻 52 附錄A 平衡態分佈函數使用擬設法之推導 55

    An, S.-J., Kim, Y.-D., Heu, S., and Maeng, J.-S., Numerical Study of the Mixing Characteristics for Rotating and Oscillating Stirrers in a Microchannel. J. Korean Phys. Soc. 49, 651-659,2006

    An, S.-J., Kim, Y.-D., and Maeng, J.-S., A Study on Mixing Enhancement by Rotating and Oscillating Stirrers in the Microchannel. J. Korean Phys. Soc. 30, 430-437,2006

    An, S.-J., Kim, Y.-D., and Maeng, J.-S., Numerical Analysis of the Fluid Mixing Behaviors in a Microchannel with a Circular Cylinder and an Oscillating Stirrer. J. Korean Phys. Soc. 50, 505-513,2007

    Bhatnagar, P. L., Gross, E. P., and Krook, M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical review, 94(3), 511,1954

    Bouzidi, M. h., Firdaouss, M., and Lallemand, P. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Physics of Fluids , 13(11), 3452-3459,2001

    Chang, S.-C., Chen, C.-L., and Cheng, S.-C. Analysis of convective heat transfer improved impeller stirred tanks by the lattice Boltzmann method. International Journal of Heat and Mass Transfer, 87, 568-575,2015

    Chang, S. C., Hsu, Y. S., and Chen, C. L. Lattice Boltzmann simulation of fluid flows with fractal geometry: An unknown-index algorithm. Journal of The Chinese Society of Mechanical Engineers, 32(6), 523-531,2011

    Chen, S., Martinez, D., and Mei, R. On boundary conditions in lattice Boltzmann methods. Physics of Fluids, 8(9), 2527-2536,1996

    He, X., Chen, S., and Doolen, G. D. A novel thermal model for the lattice Boltzmann method in incompressible limit. Journal of Computational Physics, 146(1), 282-300,1998

    Higuera, F., and Jimenez, J. Boltzmann approach to lattice gas simulations. EPL (Europhysics Letters), 9(7), 663,1989

    Hou, S., Sterling, J., Chen, S., Doolen, G., Lawniczak, A., and Karpal, R. Pattern formation and lattice gas automata. Fields Institute Communications, 6, 151,1996

    Inamuro, T., Yoshino, M., and Ogino, F. A non‐slip boundary condition for lattice Boltzmann simulations. Physics of Fluids, 7(12), 2928-2930,1995

    Lallemand, P., and Luo, L.-S. Lattice Boltzmann method for moving boundaries. Journal of Computational Physics, 184(2), 406-421,2003

    Lu, L.-H., Ryu, K.-S., Liu, C., A magnetic microstirrer and array formicrofluidic mixing”, Journal of Microelectromechanical Systems, 11(5), 462-469, 2002

    McNamara, G. R., and Zanetti, G. Use of the Boltzmann equation to simulate lattice-gas automata. Physical Review Letters, 61(20), 2332,1988

    Noble, D. R., Chen, S., Georgiadis, J. G., and Buckius, R. O. A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Physics of Fluids, 7(1), 203-209,1995

    Peng, Y., Shu, C., and Chew, Y. Simplified thermal lattice Boltzmann model for incompressible thermal flows. Physical Review E, 68(2), 026701,2003

    Qian, Y., d'Humières, D., and Lallemand, P. Lattice BGK models for Navier-Stokes equation. EPL (Europhysics Letters), 17(6), 479,1992

    Shan, X. Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method. Physical Review E, 55(3), 2780,1997

    Shih, Y.-C., Khodadadi, J., Weng, K.-H., and Ahmed, A. Periodic fluid flow and heat transfer in a square cavity due to an insulated or isothermal rotating cylinder. Journal of Heat Transfer, 131(11), 111701,2009

    Ziegler, D. P. Boundary conditions for lattice Boltzmann simulations. Journal of Statistical Physics, 71(5-6), 1171-1177,1993

    Zou, Q., and He, X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids, 9(6), 1591-1598,1997

    何雅玲,王勇,李慶. 格子 Boltzmann 方法的理论及应用: 科学出版社, 2009.

    郭照立,鄭楚光. 格子 Boltzmann 方法的原理及应用: 科学出版社, 2009.

    無法下載圖示 校內:2018-08-22公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE