| 研究生: |
廖全偉 Liao, Chiuan-Wei |
|---|---|
| 論文名稱: |
應用晶格波茲曼法於攪拌混合器之對流混合特性分析 Analysis of Convection Mixing Characteristics in the impeller stirred tank by the Lattice Boltzmann method |
| 指導教授: |
陳介力
Chen, Chieh-Li |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 航空太空工程學系 Department of Aeronautics & Astronautics |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 晶格波茲曼法 、攪拌 、對流擴散 、混合 、濃度 |
| 外文關鍵詞: | Lattice Boltzmann method, Stirred tank, Convection diffusion, Concentration |
| 相關次數: | 點閱:61 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文利用晶格波茲曼法結合邊界格點判斷法討論一開放圓型攪拌混合器於流體的擴散問題,其中採用不可壓縮的D2Q9晶格速度模型,並使用被動純量法推得濃度模型求得濃度場。流場的擾動可經由改變葉片運動模式產生不同的混合效益。本文主要包含二種葉片運動模式:(1)等角速度旋轉(2)區間擺動並透過改變入口之間距、流體雷諾數、振幅等情況的速度場及濃度場變化。結果顯示在水平區間擺動的混合效益最差,原因是攪拌棒置放在兩入口之間,而擺動振幅不夠大時反而會把流體推走對混合並無助益反而會使混合效率降低。垂直區間擺動下在振幅 時混合效益最好,主要是因為振幅小的情況下,攪拌棒近乎垂直,可以有效地阻擋流體無法直接流出,並且使流體改變流動方向,增加混合效益。結果亦發現等角速度旋轉的混合效益介於兩者之間。
In this dissertation, the Lattice Boltzmann method is applied to simulate the effect of flow field and convection diffusion of the open stirred tank with an impeller, which moves in difference patterns, i.e., constant angular velocity motion, horizontal oscillating motion and vertical oscillating motion. It reveals that the vertical oscillating motion could lead to a better mixing performance, and the mixing performance of the constant angular speed is between the horizontal oscillating and the vertical oscillating.
An, S.-J., Kim, Y.-D., Heu, S., and Maeng, J.-S., Numerical Study of the Mixing Characteristics for Rotating and Oscillating Stirrers in a Microchannel. J. Korean Phys. Soc. 49, 651-659,2006
An, S.-J., Kim, Y.-D., and Maeng, J.-S., A Study on Mixing Enhancement by Rotating and Oscillating Stirrers in the Microchannel. J. Korean Phys. Soc. 30, 430-437,2006
An, S.-J., Kim, Y.-D., and Maeng, J.-S., Numerical Analysis of the Fluid Mixing Behaviors in a Microchannel with a Circular Cylinder and an Oscillating Stirrer. J. Korean Phys. Soc. 50, 505-513,2007
Bhatnagar, P. L., Gross, E. P., and Krook, M. A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems. Physical review, 94(3), 511,1954
Bouzidi, M. h., Firdaouss, M., and Lallemand, P. Momentum transfer of a Boltzmann-lattice fluid with boundaries. Physics of Fluids , 13(11), 3452-3459,2001
Chang, S.-C., Chen, C.-L., and Cheng, S.-C. Analysis of convective heat transfer improved impeller stirred tanks by the lattice Boltzmann method. International Journal of Heat and Mass Transfer, 87, 568-575,2015
Chang, S. C., Hsu, Y. S., and Chen, C. L. Lattice Boltzmann simulation of fluid flows with fractal geometry: An unknown-index algorithm. Journal of The Chinese Society of Mechanical Engineers, 32(6), 523-531,2011
Chen, S., Martinez, D., and Mei, R. On boundary conditions in lattice Boltzmann methods. Physics of Fluids, 8(9), 2527-2536,1996
He, X., Chen, S., and Doolen, G. D. A novel thermal model for the lattice Boltzmann method in incompressible limit. Journal of Computational Physics, 146(1), 282-300,1998
Higuera, F., and Jimenez, J. Boltzmann approach to lattice gas simulations. EPL (Europhysics Letters), 9(7), 663,1989
Hou, S., Sterling, J., Chen, S., Doolen, G., Lawniczak, A., and Karpal, R. Pattern formation and lattice gas automata. Fields Institute Communications, 6, 151,1996
Inamuro, T., Yoshino, M., and Ogino, F. A non‐slip boundary condition for lattice Boltzmann simulations. Physics of Fluids, 7(12), 2928-2930,1995
Lallemand, P., and Luo, L.-S. Lattice Boltzmann method for moving boundaries. Journal of Computational Physics, 184(2), 406-421,2003
Lu, L.-H., Ryu, K.-S., Liu, C., A magnetic microstirrer and array formicrofluidic mixing”, Journal of Microelectromechanical Systems, 11(5), 462-469, 2002
McNamara, G. R., and Zanetti, G. Use of the Boltzmann equation to simulate lattice-gas automata. Physical Review Letters, 61(20), 2332,1988
Noble, D. R., Chen, S., Georgiadis, J. G., and Buckius, R. O. A consistent hydrodynamic boundary condition for the lattice Boltzmann method. Physics of Fluids, 7(1), 203-209,1995
Peng, Y., Shu, C., and Chew, Y. Simplified thermal lattice Boltzmann model for incompressible thermal flows. Physical Review E, 68(2), 026701,2003
Qian, Y., d'Humières, D., and Lallemand, P. Lattice BGK models for Navier-Stokes equation. EPL (Europhysics Letters), 17(6), 479,1992
Shan, X. Simulation of Rayleigh-Bénard convection using a lattice Boltzmann method. Physical Review E, 55(3), 2780,1997
Shih, Y.-C., Khodadadi, J., Weng, K.-H., and Ahmed, A. Periodic fluid flow and heat transfer in a square cavity due to an insulated or isothermal rotating cylinder. Journal of Heat Transfer, 131(11), 111701,2009
Ziegler, D. P. Boundary conditions for lattice Boltzmann simulations. Journal of Statistical Physics, 71(5-6), 1171-1177,1993
Zou, Q., and He, X. On pressure and velocity boundary conditions for the lattice Boltzmann BGK model. Physics of Fluids, 9(6), 1591-1598,1997
何雅玲,王勇,李慶. 格子 Boltzmann 方法的理论及应用: 科学出版社, 2009.
郭照立,鄭楚光. 格子 Boltzmann 方法的原理及应用: 科学出版社, 2009.
校內:2018-08-22公開