| 研究生: |
陳冠瑜 Chen, Kuan-Yu |
|---|---|
| 論文名稱: |
急性單側腦缺血性中風之心率變異分析 Analysis of Heart Rate Variability in Acute Ischemic Stroke |
| 指導教授: |
陳家進
Chen, Jia-Jin |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 生物醫學工程學系 Department of BioMedical Engineering |
| 論文出版年: | 2020 |
| 畢業學年度: | 108 |
| 語文別: | 英文 |
| 論文頁數: | 36 |
| 中文關鍵詞: | 心率變異分析 、缺血性中風 |
| 外文關鍵詞: | Heart rate variability analysis, ischemic stroke |
| 相關次數: | 點閱:85 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於缺血性中風患者,大腦中有限的血液流動是造成發病和死亡率的最重要原因。為了預防永久性殘疾以及死亡,對於急性缺血性中風患者而言需要一種快速可靠的中風評估工具來持續監測中風的嚴重程度。心率變異是一種廣為人知的現象,它源自於心電圖,能反映我們自主神經的功能性。有很多研究顯示缺血性中風會影響心率變異。在我們目前的研究中,我們招募了15位來自國立成功大學醫院的缺血性中風患者。根據患者的中風區域體積大小,將其分為小體積(SIV)組,中體積(MIV)和大體積(LIV)組。而這項研究的目的是分析急性期不同腦損傷、不同中風區域大小以及中風後不同天數的缺血性中風患者的心率變異。我們進行了時域和頻域分析,並計算了時域和頻域參數以評估中風嚴重程度以及其相關性。在信號分析方面,模板匹配技術用於檢測心電訊號中的R值,並且計算R-R間隔的標準差以及低頻(0.04 Hz-0.15 Hz)和高頻(0.15 Hz-0.4 Hz)之比值來量化自主神經系統的活性。此外,中大腦動脈阻塞缺血性中風以及島葉缺血性中風大鼠動物模型用來模擬缺血性中風患者。研究結果顯示,缺血性中風會造成心率變異的下降,以及交感神經活性的增加和副交感神經活性的下降。且右側腦部病變造成的心率變異會低於左側腦部病變。另外,中風嚴重程度會隨著中風區域大小而變化,較大的中風區域會造成較低的心率變異甚至心律不整。總結來說,心率變異分析可以用來診斷自主神經功能障礙,並且未來能用來預測缺血性中風的預後。
Ischemic stroke, resulting from limited blood flow to the brain, is one of the most important causes of morbidity and mortality. To prevent permanent disability or death, a fast and reliable stroke assessment tool is desired for continuous monitoring the severity or progress of stroke. Heart rate variability (HRV) is a well-known phenomenon reflecting the autonomic nervous function, which can be derived from electrocardiographic (ECG) of heart beats. Previous studies have shown that ischemic stroke affects characteristics of HRV. In the present study, 15 patients with ischemic stroke were recruited. According to the size of infarct volume, all patients were separated into small size of infarct volume (SIV), middle size of infarct volume (MIV) and large size of infarct volume (LIV) groups. The aim of this study is to analyze the HRV in the ischemic stroke patients with different degree of cerebral lesions, size of infarct volume and days after stroke onset in acute stage. We conducted time domain and frequency domain analysis and calculated time domain parameters and frequency domain parameters for assessing the correlation to severity and progress of stroke. Template matching techniques were used to detect R peaks on ECG signals. The standard deviation of the R-R interval (SDNN) and the ratio of low frequency (0.04 Hz - 0.15 Hz) and high frequency (0.15 Hz - 0.4 Hz) were used to quantify the activity of autonomic nervous system (ANS). Furthermore, middle cerebral artery occlusion (MCAO) and insular ischemic stroke animal models were included to simulate the different situations in ischemic stroke patients. Our results showed that subjects with ischemic stroke exhibited lower HRV indicating higher sympathetic nervous activity and lower parasympathetic nervous activity than healthy one. In addition, the right-side cerebral lesion caused lower HRV than left side cerebral lesion. Furthermore, the severity determined from the size of infarct volume, larger infarct volume caused lower HRV even caused AF. In conclusion, HRV analysis may be applied as a diagnostic tool for detecting autonomic impairment and predicting prognosis in ischemic stroke.
Barron, S. A., Rogovski, Z., & Hemli, J. (1994). Autonomic consequences of cerebral hemisphere infarction. Stroke, 25(1), 113-116. doi:10.1161/01.str.25.1.113
Belayev, L., Alonso, O. F., Busto, R., Zhao, W., & Ginsberg, M. D. (1996). Middle cerebral artery occlusion in the rat by intraluminal suture. Neurological and pathological evaluation of an improved model. Stroke, 27(9), 1616-1622; discussion 1623. doi:10.1161/01.str.27.9.1616
Bilchick, K. C., & Berger, R. D. (2006). Heart rate variability. J Cardiovasc Electrophysiol, 17(6), 691-694. doi:10.1111/j.1540-8167.2006.00501.x
Cechetto, D. F., & Hachinski, V. (1997). Cardiovascular consequence of experimental stroke. Baillieres Clin Neurol, 6(2), 297-308.
Chen, C. H., Huang, P. W., Tang, S. C., Shieh, J. S., Lai, D. M., Wu, A. Y., & Jeng, J. S. (2015). Complexity of Heart Rate Variability Can Predict Stroke-In-Evolution in Acute Ischemic Stroke Patients. Sci Rep, 5, 17552. doi:10.1038/srep17552
Cheung, R. T., & Hachinski, V. (2000). The insula and cerebrogenic sudden death. Arch Neurol, 57(12), 1685-1688. doi:10.1001/archneur.57.12.1685
Cheung, R. T., & Hachinski, V. (2004). Cardiac Effects of Stroke. Curr Treat Options Cardiovasc Med, 6(3), 199-207. doi:10.1007/s11936-996-0014-x
Coles, A. (1999). Hospitalist neurology. Blue books of practical neurology. J Neurol Neurosurg Psychiatry, 67(5), 699f. doi:10.1136/jnnp.67.5.699f
Colivicchi, F., Bassi, A., Santini, M., & Caltagirone, C. (2004). Cardiac autonomic derangement and arrhythmias in right-sided stroke with insular involvement. Stroke, 35(9), 2094-2098. doi:10.1161/01.STR.0000138452.81003.4c
Cygankiewicz, I., & Zareba, W. (2013). Heart rate variability. Handb Clin Neurol, 117, 379-393. doi:10.1016/b978-0-444-53491-0.00031-6
DOBBS, S. E., SCHMITT, N. M., & OZEMEK, H. S. (1984). QRS Detection By Template Matching Using Real-Time Correlation On A Microcomputer. Journal of Clinical Engineering, 9(3), 197-212. Retrieved from https://journals.lww.com/jcejournal/Fulltext/1984/07000/QRS_Detection_By_Template_Matching_Using_Real_Time.2.aspx
Durukan, A., & Tatlisumak, T. (2007). Acute ischemic stroke: overview of major experimental rodent models, pathophysiology, and therapy of focal cerebral ischemia. Pharmacol Biochem Behav, 87(1), 179-197. doi:10.1016/j.pbb.2007.04.015
Fisher, M. (2003). Recommendations for advancing development of acute stroke therapies: Stroke Therapy Academic Industry Roundtable 3. Stroke, 34(6), 1539-1546. doi:10.1161/01.Str.0000072983.64326.53
Heart rate variability. Standards of measurement, physiological interpretation, and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology. (1996). Eur Heart J, 17(3), 354-381.
Hunter, A. J., Green, A. R., & Cross, A. J. (1995). Animal models of acute ischaemic stroke: can they predict clinically successful neuroprotective drugs? Trends Pharmacol Sci, 16(4), 123-128. doi:10.1016/s0165-6147(00)88999-3
Kleiger, R. E., Stein, P. K., & Bigger, J. T., Jr. (2005). Heart rate variability: measurement and clinical utility. Ann Noninvasive Electrocardiol, 10(1), 88-101. doi:10.1111/j.1542-474X.2005.10101.x
Klingelhöfer, J., & Sander, D. (1997). Cardiovascular consequences of clinical stroke. Baillieres Clin Neurol, 6(2), 309-335.
Kodama, T., Kamata, K., Fujiwara, K., Kano, M., Yamakawa, T., Yuki, I., & Murayama, Y. (2018). Ischemic Stroke Detection by Analyzing Heart Rate Variability in Rat Middle Cerebral Artery Occlusion Model. IEEE Trans Neural Syst Rehabil Eng, 26(6), 1152-1160. doi:10.1109/tnsre.2018.2834554
Koizumi, J.-i., Yoshida, Y., Nakazawa, T., & Ooneda, G. (1986). Experimental studies of ischemic brain edema
1. A new experimental model of cerebral embolism in rats in which recirculation can be introduced in the ischemic area. Nosotchu, 8(1), 1-8. doi:10.3995/jstroke.8.1
Korpelainen, J. T., Huikuri, H. V., Sotaniemi, K. A., & Myllylä, V. V. (1996). Abnormal heart rate variability reflecting autonomic dysfunction in brainstem infarction. Acta Neurol Scand, 94(5), 337-342. doi:10.1111/j.1600-0404.1996.tb07076.x
Korpelainen, J. T., Sotaniemi, K. A., Suominen, K., Tolonen, U., & Myllylä, V. V. (1994). Cardiovascular autonomic reflexes in brain infarction. Stroke, 25(4), 787-792. doi:10.1161/01.str.25.4.787
Kuzemczak, M., Białek-Ławniczak, P., Torzyńska, K., Janowska-Kulińska, A., Miechowicz, I., Kramer, L., . . . Siminiak, T. (2016). Comparison of Baseline Heart Rate Variability in Stable Ischemic Heart Disease Patients with and without Stroke in Long-Term Observation. J Stroke Cerebrovasc Dis, 25(10), 2526-2534. doi:10.1016/j.jstrokecerebrovasdis.2016.06.033
Lahiri, M. K., Kannankeril, P. J., & Goldberger, J. J. (2008). Assessment of autonomic function in cardiovascular disease: physiological basis and prognostic implications. J Am Coll Cardiol, 51(18), 1725-1733. doi:10.1016/j.jacc.2008.01.038
Naver, H. K., Blomstrand, C., & Wallin, B. G. (1996). Reduced heart rate variability after right-sided stroke. Stroke, 27(2), 247-251. doi:10.1161/01.str.27.2.247
Randolph, S. A. (2016). Ischemic Stroke. Workplace Health Saf, 64(9), 444. doi:10.1177/2165079916665400
Sacco, R. L., Wolf, P. A., & Gorelick, P. B. (1999). Risk factors and their management for stroke prevention: outlook for 1999 and beyond. Neurology, 53(7 Suppl 4), S15-24.
Sicard, K. M., & Fisher, M. (2009). Animal models of focal brain ischemia. Exp Transl Stroke Med, 1, 7. doi:10.1186/2040-7378-1-7
Smith, S. D., & Eskey, C. J. (2011). Hemorrhagic stroke. Radiol Clin North Am, 49(1), 27-45. doi:10.1016/j.rcl.2010.07.011
Zhang, Y. M., Xu, H., Sun, H., Chen, S. H., & Wang, F. M. (2014). Electroacupuncture treatment improves neurological function associated with regulation of tight junction proteins in rats with cerebral ischemia reperfusion injury. Evid Based Complement Alternat Med, 2014, 989340. doi:10.1155/2014/989340
校內:立即公開