研究生: |
李思慧 Li, Szu-Hui |
---|---|
論文名稱: |
1-氯-2-丙醇在銅(100)和氧/銅(100)表面上的熱反應研究 Thermal Chemistry of 1-Chloro-2-propanol on Cu(100) and O/Cu(100) Surfaces |
指導教授: |
林榮良
Lin, Jong-Liang |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 程式控溫反應/脫附 、X光光電子能譜 、金屬氧環中間物 、銅(100) 、1-氯-2-丙醇 |
外文關鍵詞: | 1-chloro-2-propanol, temperature-programmed desorption (TPR/D), X-ray photoelectron spectroscopy (XPS), oxametallacycle, Cu(100) |
相關次數: | 點閱:86 下載:2 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文是以程式控溫反應/脫附(TPR/D)、反射式吸收紅外光譜(RAIRS)和X光光電子能譜(XPS)探討超高真空系統中1-氯-2-丙醇在Cu(100)及O/Cu(100)表面上的反應。1-氯-2-丙醇在Cu(100)上,120 K時僅小部分ClCH2CHOHCH3斷O–H鍵而C–Cl鍵幾乎未斷,240 K表面中間物大多為ClCH2CH(CH3)O–及少量金屬氧環中間物(oxametallacycle),–CH2CH(CH3)O–,直到265 K開始分解產生丙烯、丙酮、CO、CO2和H2並脫附,在表面留下殘碳和氧原子並在~510 K形成CO及CO2。
1-氯-2-丙醇在O/Cu(100)表面除了產生與無氧表面相同的產物,~200 K時也有水的生成。ClCH2CHOHCH3之O–H鍵在120 K時即有相當程度的斷裂,而C–Cl鍵到275 K時幾乎保持完整,因此產物也同樣由ClCH2CH(CH3)O–及oxametallacycle中間物分解而來。
The thermal chemistry of 1-chloro-2-propanol (ClCH2CHOHCH3) on a Cu(100) single crystal, with a bare or oxygen-precovered surface (O/Cu(100)), was studied with temperature-programmed reaction/desorption (TPR/D) and X-ray photoelectron spectroscopy (XPS) and reflection-absorption infrared spectroscopy (RAIRS). When 1-chloro-2-propanol is adsorbed on Cu(100) at 120 K, a small portion of the molecules undergo O–H bond scission, but most of them retain intact. On the surface of 240 K, the predominant specie is found to be ClCH2CH(CH3)O–, but there may also have a few oxametallacycles, –CH2CH(CH3)O–. Upon heating to 265K, these intermediates start to decompose to form propene, acetone, CO, CO2 and H2 with residual C and O atoms on the surface, which desorb promptly. The residual carbon and oxygen atoms on the surface react to form CO and CO2 at 510 K.
The presence of preadsorbed oxygen promotes O–H bond cleavage of ClCH2CHOHCH3 at 120 K, but suppresses the C–Cl bond dissociation. Only a trace amount of the molecule breaks their C–Cl bonds even at 275 K. On O/Cu(100), the products and surface intermediates detected from ClCH2CHOHCH3 dissociation are similar to those of clean surface. However, a broad desorption peak of H2O is observed at 200 K in contrast to the case of Cu(100).
[1] G. A. Somorjai Introduction to Surface Chemistry and Catalysis, Wiley & Sons, New York, 1994.
[2] S. J. Gregg; K. S. Sing Adsorption, Surface Area and Porosity, Academic Press, New York, 1967.
[3] J. L. Lin; B. E. Bent J. Phys. Chem. 1992, 96, 8529.
[4] J. L. Lin; A. V. Teplyakov; B. E. Bent J. Phys. Chem. 1996, 100, 10721.
[5] J. L. Lin; B. E. Bent J. Phys. Chem. 1993, 97, 9713.
[6] C. J. Jenks; C. M. Chiang; B. E. Bent J. Am. Chem. Soc. 1991, 113, 6308.
[7] N. Gleason; J. Guevremont; F. Zaera J. Phys. Chem. B 2003, 107, 11133.
[8] M. Bowker; R. J. Madix Surf. Sci. 1980, 95, 190.
[9] M. Bowker; R. J. Madix Surf. Sci. 1982, 116, 549.
[10] Q. Dai; A. J. Gellman J. Phys. Chem. 1993, 97, 10783.
[11] X. Xu; C. M. Friend Langmuir 1992, 8, 1103.
[12] Q. Zhao; F. Zaera J. Am. Chem. Soc. 2003, 125, 10776.
[13] B. C. Wiegand; P. E. Uvdal; J. G. Serafin; C. M. Friend J. Am. Chem. Soc. 1991, 113, 6686.
[14] J. Gong; D. W. Flaherty; T. Yan; C. B. Mullins ChemPhysChem 2008, 9, 2461.
[15] J. L. Davis; M. A. Barteau Surf. Sci. 1988, 197, 123.
[16] S. Hoang; M. Pan; C. B. Mullins J. Phys. Chem. C 2009, 113, 21745.
[17] B. Q. Zhao; F. Zaera J. Phys. Chem. B 2003, 107, 9047.
[18] Q. Zhao; R. Deng; F. Zaera J. Phys. Chem. C 2010, 114, 7913.
[19] G. S. Jones; M. Mavrikakis; M. A. Barteau; J. M. Vohs J. Am. Chem. Soc. 1998, 120, 3196.
[20] G. S. Jones; M. A. Barteau J. Vac. Sci. Technol. A 1997, 15, 1667.
[21] H. Piao; K. Adib; Z. Chang; J. Hrbek; M. Enever; M. A. Barteau; D. R. Mullins J. Phys. Chem. B 2003, 107, 13976.
[22] Y. H. Liao; C. Y. Chen; T. W. Fu; C. Y. Wang; L. J. Fan; Y. W. Yang; J. L. Lin Surf. Sci. 2006, 600, 417.
[23] P. T. Chang; J. J. Shih; K. H. Kuo; C. Y. Chen; T. W. Fu; D. L. Shieh; Y. H. Liao; J. L. Lin J. Phys. Chem. B 2004, 108, 13320.
[24] T. W. Fu; Y. H. Liao; C. Y. Chen; P. T. Chang; C. Y. Wang; J. L. Lin J. Phys. Chem. B 2005, 109, 18921.
[25] C. Y. Chen; P. T. Chang; K. H. Kuo; J. J. Shih; J. L. Lin J. Phys. Chem. B 2003, 107, 10488.
[26] P. T. Chang; K. H. Kuo; J. J. Shih; C. Y. Chen; J. L. Lin Surf. Sci. 2004, 561, 208.
[27] P. A. Redhead Vacuum 1962, 12, 203.
[28] J. L. Lin Carbon-Halogen Bond Dissociation at Copper Surface: Alkyl Radicals versus Metal Alkyls, Columbia University, New York, 1993.
[29] J. C. Vickerman Surface Analysis-The Principle Techniques, Wiley & Sons, New York, 1997.
[30] G. Ertl; J. Küppers Low Energy Electrons and Surface Chemistry, Verlag Chemie, Germany, 1974.
[31] B. A. Sexton Surf. Sci. 1979, 88, 299.
[32] NIST Chemistry WebBook, http://webbook.nist.gov/chemistry/
[33] J. W. Medlin; M. A. Barteau Surf. Sci. 2002, 506, 105.
[34] B. A. Sexton; A. E. Hughes Surf. Sci. 1984, 140, 227.
[35] J. M. Meyers; A. J. Gellman Surf. Sci. 1995, 339, 57.
[36] K. A. Davis; D. W. Goodman J. Phys. Chem. B 2000, 104, 8557.
[37] R. Brosseau; M. R. Brustein; T. H. Ellis Surf. Sci. 1993, 294, 243.
[38] T. Sueyoshi; T. Sasaki; Y. Iwasawa J. Phys. Chem. B 1997, 101, 4648.
[39] T. H. Ellis; E. J. Kruus; H. Wang J. Vac. Sci. Technol. A 1993, 11, 2117.
[40] D. Kolovos-Vellianitis; T. Kammler; J. Küppers Surf. Sci. 2001, 482–485, Part 1, 166.
[41] I. Chorkendorff; P. B. Rasmussen Surf. Sci. 1991, 248, 35.
[42] T. R. Bryden; S. J. Garrett J. Phys. Chem. B 1999, 103, 10481.
[43] P. B. Rasmussen; P. A. Taylor; I. Chorkendorff Surf. Sci. 1992, 269–270, 352.
[44] K. Andersson; G. Ketteler; H. Bluhm; S. Yamamoto; H. Ogasawara; L. G. M. Pettersson; M. Salmeron; A. Nilsson J. Phys. Chem. C 2007, 111, 14493.
[45] W. D. Clendening; J. A. Rodriguez; J. M. Campbell; C. T. Campbell Surf. Sci. 1989, 216, 429.
[46] J. L. Lin; S. J. Tsao; C. W. Chen; Y. S. Lin; T. S. Wu; S. C. Chen; S. H. Li J. Phys. Chem. C 2013, 117, 25488.
[47] E. Vesselli; L. De Rogatis; A. Baraldi; G. Comelli; M. Graziani; R. Rosei J. Chem. Phys. 2005, 122, 144710.
[48] Q. Zhao; R. Deng; F. Zaera Surf. Sci. 2011, 605, 1236.
[49] S. Linic; J. W. Medlin; M. A. Barteau Langmuir 2002, 18, 5197.
[50] H. F. Winters J. Vac. Sci. Technol. A 1985, 3, 786.
[51] X. Xu; C. M. Friend J. Am. Chem. Soc. 1991, 113, 6779.
[52] K. M. S. Gonçalves; D. R. Garcia; T. C. Ramalho; J. D. Figueroa-Villar; M. P. Freitas J. Phys. Chem. A 2013, 117, 10980.
[53] H. M. Badawi Spectrochim. Acta A 2012, 87, 11.
[54] J. R. Durig; X. Zhu; S. Shen J. Mol. Struct. 2001, 570, 1.
[55] P. Buckley; P. A. Giguère; M. Schneider Can. J. Chem. 1969, 47, 901.