簡易檢索 / 詳目顯示

研究生: 林佳儀
Lin, Jia-Yi
論文名稱: 通過藍綠藻和基因編輯衣藻進行碳封存和利用以生產高價值化學品
Carbon Capture Storage and Utilization for Value-added Chemicals Production through Cyanobacterium and Genetically Modified Chlamydomonas reinhardtii
指導教授: 吳意珣
Ng, I-Son
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 200
中文關鍵詞: 微藻藍綠藻萊茵衣藻基因工程CRISPRi系统葉黃素脂質二氧化碳同化作用碳中和
外文關鍵詞: Microalgae, Cyanobacterium, Chlamydomonas reinhardtii, genetic engineering, CRISPRi system, lutein, lipid production, carbon dioxide assimilation, carbon neutrality
ORCID: 0000-0002-0795-1728
相關次數: 點閱:77下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 淨零排放是目前一個全球性的挑戰,主旨為透過減輕大氣中的二氧化碳水平,減少溫室氣體排放,同時利用碳捕獲技術來達到淨零碳排的目的。通過微藻捕捉二氧化碳的獨特能力,用於進行光合作用,提供了一個新的淨零碳排方案。微藻可以透過吸收光能,有效地將二氧化碳轉化為生物質,並提供可持續、再生的能源和高價值的化學品。本文深入探討以二種藻種:藍綠藻及萊茵衣藻作為二氧化碳減排的主要對象,開發高效生物質生產、廢水培養和環境修復方面的潛力,也利用基因工程技術突破二氧化碳同化能力及耐熱性等。最終分析生產之油脂、蛋白質、葉黃素等高價值化合物的產量。
    基於微藻的二氧化碳減排戰略,目前仍需要解決的問題包括選擇具有高二氧化碳吸收率和生物質產率的藻種、優化培養系統以實現最大效率、快速生長的培養策略、開發具有成本效益之收獲和加工方法。所以我們由培養策略開始,優化營養成分、光照條件、二氧化碳濃度、溫度和鹽度,以提高微藻的生物量和化學品產量。其中,藍綠藻PCC10605利用N1A2培養基,在2%的二氧化碳,100 μmol/m2/s的光照強度和16:8的光照/黑暗時間培養,可以獲得最高的生物量1.17 g/L。Synechococcus sp. PCC7002 可利用Tris-HCl萃取溶液直接獲得藻藍蛋白(C-PC),而Cyanobacterium aponinum PCC10605則由磷酸萃取溶液以及破細胞的方法取得藻藍蛋白。其中PCC10605的C-PC最高的產量為0.652 g-CPC/g-DCW。此外,PCC10605藍綠藻具有廢水處理的潛力,生物量達到1.23 g/L,其C-PC對鉛金屬離子的吸附可達84.1 mg/g-CPC,並證明C-PC具有抗氧化和抗菌等活性,表明PCC10605強大的應用價值。
    研究的第二部分,選擇基因組序列已被完全解密的萊茵衣藻進行基因工程改造。分別在萊茵衣藻CC400過表達三個獨立基因,包含吡哆醇激酶(pdxY)、碳酸酐酶(CA)和伴侶蛋白(GroELS)基因;當中PdxY用於提高生物量生產,CA用於增強二氧化碳同化能力,而GroELS用於提高微藻在高溫的耐熱性。由整合pdxY基因在CC400的 PY9藻株中,評估在不同培養系統,即一般燒瓶、雙層光反應器(TLR)和氣舉式光生物反應器(PBR)的生物量產量。當PY9菌株在PBR以1%二氧化碳進行培養時,生物量累積明顯增強,達到1.442 g/L,這是野生型藻株生物量的兩倍。由基因轉錄分析得知PY9菌株的RuBisCo和pdxY的表達水平上升,但碳酸酐酶(CA)下調。於此,利用混營培養時,pdxY基因成功提高了CC400藻株的二氧化碳利用率,達到-1.183 g-CO2/g-DCW,是野生株的2.68倍。
    為了提升衣藻整體生物量的局限性,採用基因工程整合來自Mesorhizobium loti(MlCA)和Sulfurihydrogenibium yellowstonense(SyCA)的異源碳酸酐酶(CA),獲得pCHM及pCHS藻株。CA在微藻的碳濃縮機制(CCM)中非常重要,它將大氣中的二氧化碳轉化為碳酸氫鹽,對於生長和細胞密度至關重要。由不同的培養裝置中,得知以Tris acetate phosphate(TAP)混營培養到利用BG11m的自養條件,CA基因都能提高生物量、葉黃素和脂質的產量。在5%二氧化碳的PBR培養時,pCHS藻株的生物量達到了3.65 g/L、21.32 mg/L的葉黃素和672 mg/L的脂質。在混養和自養條件下,二氧化碳同化率在混營培養為2.748 g/g-DCW和自養的2.792 g/g-DCW;當中生物量的累積與CA活性呈正相關,參與葉黃素和脂質生物合成代謝途徑的關鍵基因的表達水平明顯上調。這些發現強調了基因工程和利用異源CA酶來提高CCU,更大幅地提高微藻的生產潛力。
    最後以CRISPRi技術抑制CC400代謝中的磷酸烯醇丙酮酸羧化酶(PEPC1)基因,改變碳流量至油脂及蛋白質累積。進一步將GroELS基因整合在CC400取得PGi藻株,在35oC時7天時,PGi的生物量可達到2.56 g/L的最高產量。經由所有優化條件,最高的脂質為871 mg/L和葉黃素產量達22.3 mg/L。此外,PGi在35oC的混營培養下具有出色的二氧化碳同化能力,達到1.087 g/g-DCW。
    微藻能夠有效地捕獲二氧化碳並將其轉化為生物質,重點在於選擇合適藻株、設計最佳化培養、善用其優勢成份;另一方面可由基因改造提昇其能力,使其突破生長速度及化學品產量。透過對微藻深入的研究和應用層面,在二氧化碳減排、生物燃料、動物飼料、營養品和其他有價值的產品將一定可以提供實現淨零碳排的新契機。

    Net-zero emissions is now a global challenge that aims to reduce greenhouse gas emissions by reducing atmospheric CO2 levels while integrating carbon capture technologies to achieve net-zero carbon emissions. Meanwhile, microalgae offer a promising solution through their unique ability to capture and utilize CO2 for photosynthesis. By harnessing the power of sunlight, microalgae can efficiently convert CO2 into biomass, providing a sustainable and renewable source of energy and valuable products. In this thesis, we explored the potential of two microalgae species, blue-green microalgae and Chlamydomonas reinhardtii, as the main targets for CO2 mitigation, to develop sustainable biomass production and environmental remediation. Another approach is to apply genetic engineering techniques to break through the CO2 fixation capacity and heat tolerance. The final analysis is performed to produce high-value compounds such as oils, proteins and lutein.
    Based on the CO2 capture and utilization strategies of microalgae, there are still issues that need to be addressed, including the selection of microalgal species with high CO2 uptake and biomass yield, optimization of the culture system to achieve maximum efficiency, fast-growing culture strategy, and development of cost-effective harvesting and processing methods. Therefore, we started with culture strategies to optimize nutrient composition, light conditions, CO2 concentration, temperature and salinity to increase the biomass and chemical production of microalgae. Among them, the highest biomass of 1.17 g/L could be attained from the blue-green algae PCC10605 using N1A2 medium, incubated at 2% CO2, 100 μmol/m2/s light intensity and 16:8 light-dark period. Synechococcus sp. PCC7002 can be directly used to extract C-phycocyanin (C-PC) with Tris-HCl buffer, while Cyanobacterium aponinum PCC10605 need to be extracted by phosphate buffer and homogenization. The highest yield of C-PC for PCC10605 was 0.652 g-CPC/g-DCW. In addition, PCC10605 have potential for wastewater treatment with a biomass of 1.23 g/L. The extracted C-PC can adsorb 84.1 mg/g-CPC of lead metal ions and the antioxidant and antibacterial activities of C-PC are demonstrated, indicating the convincing applicability of PCC10605.
    Another approach, Chlamydomonas reinhardtii was selected for genetic engineering host, whose genome sequence has been fully decoded. In our study, we investigated the overexpression of three genes, namely pyridoxal kinase (pdxY), carbonic anhydrase (CA) and chaperone protein (GroELS) genes. Among them, pdxY gene is used to enhance biomass production, CA gene was utilized to enhance CO2 assimilation capability, and GroELS gene is for increasing heat tolerance of microalgae. We first focused on integrating the pdxY gene, resulting in the creation of the PY9 strain of microalgae. The biomass production of PY9 strain is evaluated in altered cultivation systems, i.e., flasks, Two-layer Photo-Reactor (TLR) and Photo-Bioreactor (PBR). Remarkably, when the PY9 strain was cultured in the PBR with 1% CO2, we observed a significant enhancement in biomass accumulation, reaching up to 1.442 g/L, which was approximately twice the biomass yield of the wild-type strain. Furthermore, our investigation revealed an interesting observation regarding the gene expression profiles in the PY9 strain. We observed a downregulation of carbonic anhydrase (CA) at transcriptional levels and higher expression levels of RuBisCo and pdxY. Thus, the pdxY gene successfully improved CO2 assimilation capacity of CC400 genetic strain, which was -1.183 g-CO2/g-DCW, which is 2.68 times higher than that of the wild-type strain. To understand the limitations of the overall biomass production of microalgae, we investigated the potential of enhancing carbon dioxide capture and utilization (CCU) in CC400 by introducing heterologous carbonic anhydrase (CA) enzymes from Mesorhizobium loti (MlCA) and Sulfurihydrogenibium yellowstonense (SyCA) through genetic engineering approaches, namely pCHM and pCHS. CA is important in carbon-concentrating mechanism (CCM) of microalgae by converting atmospheric CO2 into bicarbonate, which is essential for optimal growth and cell density. In our study, we employed different culture devices to explore the impact of these genetically modified CC400 strains on CCU. Notably, the engineered microalgae demonstrated the ability to transition from mixotrophic (TAP) to autotrophic (BG11m) conditions, resulting in improved biomass, lutein, and lipid production. Specifically, when cultured in a PBR supplemented with 5% CO2, pCHS strain reached a biomass of 3.65 g/L, with lutein and lipid concentrations reaching 21.32 mg/L and 672 mg/L, respectively. Moreover, the CO2 assimilation rate was measured at 2.748 g-CO2/g-DCW and 2.792 g-CO2/g-DCW under mixotrophic and autotrophic conditions, respectively. Importantly, the biomass accumulation positively correlated with CA activity. Additionally, the expression levels of key genes involved in the metabolic pathways of lutein and lipid biosynthesis were significantly upregulated. These findings highlight the potential of genetic engineering and the utilization of heterologous CA enzymes to enhance CCU and maximize the productivity of microalgae.
    Finally, CRISPRi system is also applied to suppress phosphoenolpyruvate carboxylase (PEPC1) gene in CC400 metabolism, altering carbon flux to lipid and lutein accumulations. Further integration of the GroELS gene in CC400 resulted in a PGi strain with a maximum biomass production of 2.56 g/L at 35oC for 7 days. Moreover, PGi has excellent CO2 assimilation capacity of 1.087 g-CO2/g-DCW under mixotrophic condition.
    In conclusion, microalgae are effective in capturing CO2 and converting it into biomass. The focus is on selecting the suitable strain of microalgae, designing the optimal cultivation, and making the best use of its advantageous features. While genetic engineering can enhance its ability to break through the growth rate and chemical yield. Through in-depth research and application of microalgae, new opportunities for CO2 emission reduction, biofuels, animal feeds, nutritional products and other valuable products will surely be offered to achieve net-zero carbon emission in the future.

    Contents MEMORANDUM ON COPYRIGHT CLAIM OR DISCLAIMERI 摘要II ABSTRACTIV 致謝VII CONTENTSVIII LIST OF TABLESXIII LIST OF FIGURESXV LIST OF ABBREVIATIONSXVII CHAPTER 1 INTRODUCTION1 1.1 Motivation and purpose1 1.2 Research scope in the dissertation2 CHAPTER 2LITERATURE REVIEW6 2.1From environmental concerns to carbon neutralization with microalgae6 2.1.1World energy crisis and increasing greenhouse gas emissions6 2.1.2Sustainable development as the solutions7 2.1.3Microalgae offer a promising avenue for achieving carbon neutrality8 2.1.4Limitations in microalgal biomass and chemical production9 2.2Cultivated strategy and genetic engineering approaches10 2.2.1.Chemical cultivated approaches10 2.2.2.Physical cultivated approaches11 2.2.3.Genetic engineering approaches13 2.3Metabolic pathway in microalgae15 2.3.1Photosynthesis in microalgae15 2.3.2Carbon metabolism in microalgae17 2.3.3Nitrogen metabolism20 2.4Value-added bioproducts production by microalgae21 2.4.1Carbohydrates in microalgae21 2.4.2Photosynthetic pigments in microalgae23 2.4.3Biofuels production: fatty compounds25 2.4.4Aquaculture and animal feed: carotenoids27 2.5Microalgae as a renewable and sustainable development29 2.5.1Pharmaceutical field application29 2.5.2Heavy metal bioremediation31 2.5.3Wastewater treatment32 2.5.4Atmospheric CO2 mitigation34 CHAPTER 3MATERIALS AND METHODS36 3.1Chemicals and Materials36 3.2Instruments39 3.3The plasmids, primers and strains41 3.4Molecular cloning and genetic strain development43 3.4.1Plasmid DNA extraction43 3.4.2Polymerase Chain Reaction (PCR)44 3.4.3Restriction enzyme digestion45 3.4.4PCR/Gel purification and extraction45 3.4.5Ligation46 3.4.6Heat-shock transformation46 3.4.7Gene cluster integration method46 3.5Cell medium and cultivation47 3.5.1Medium for Escherichia coli (E. coli) and cultivation47 3.5.2Medium and cultivation for Cyanobacterium aponinum PCC1060547 3.5.3Medium and cultivation for Chlamydomonas reinhardtii CC-40048 3.6Carbonic anhydrase (CA) activity analysis48 3.6.1Buffer and samples preparation48 3.6.2Determination of carbonic anhydrase activity48 3.7Chlorophyll and starch/glycogen storage analysis49 3.7.1Buffer and samples preparation49 3.7.2Measurement of chlorophyll concentration49 3.7.3Measurement of starch/glycogen concentration49 3.8Genome, total RNA and cDNA isolation50 3.8.1Buffer preparation50 3.8.2Genome isolation procedure50 3.8.3Total RNA isolation procedure50 3.8.4cDNA isolation procedure51 3.9Characterization methods51 3.9.1Determination of dry cell weight51 3.9.2Determination of lipid production51 3.9.3Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)51 3.9.4Scanning Electron Microscopy (SEM) analysis52 3.9.5Determination of transcriptional levels by quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR)53 3.10High-performance liquid chromatography (HPLC) analysis53 3.10.1Determination of metabolites53 3.10.2Determination of lutein production54 CHAPTER 4HIGH-LEVEL PRODUCTION AND EXTRACTION OF C-PHYCOCYANIN FROM CYANOBACTERIA SYNECHOCOCCUS SP. PCC7002 FOR ANTIOXIDATION, ANTIBACTERIAL AND LEAD ADSORPTION55 4.1Introduction55 4.2Material and Methods57 4.2.1Culture conditions57 4.2.2Capability of CO2 ability57 4.2.3Extraction of C-PC57 4.2.4Quantification of C-PC57 4.2.5Antioxidant and free radical scavenging activity58 4.2.6Antibacterial activity58 4.2.7Lead adsorption and quantification by ICP-OES58 4.2.8Zeta potential measurement59 4.3Results and discussion59 4.3.1Optimal conditions of C-PC extraction59 4.3.2Optimal carbon dioxide for cultural PCC700260 4.3.3Effect of light intensity and temperature for C-PC production61 4.3.4Enhancing C-PC using mix nitrogen source64 4.3.5Antioxidant and antibacterial activity of C-PC65 4.3.6Lead adsorption using C-PC66 4.4 Conclusion67 CHAPTER 5BIOFABRICATION, EXTRACTION AND APPLICATION OF C-PHYCOCYANIN FROM A NEW HALO-TOLERANT CYANOBACTERIUM APONINUM USING SEAWATER68 5.1Introduction68 5.2Materials and methods69 5.2.1Culture condition in PSI system69 5.2.2Culture condition in PBR device70 5.2.3Extraction of C-PC70 5.2.4Quantification of C-PC70 5.2.5Free radicals scavenging activity70 5.2.6Statistical analysis71 5.3Results and discussion71 5.3.1Optimal extraction of C-PC from PCC1060571 5.3.2Nitrogen effect on production of C-PC72 5.3.3Tolerance of PCC10605 to sodium chloride, phosphate and seawater for C-PC production73 5.3.4Optimal CO2 concentration for cell growth and C-PC production in PBR75 5.3.5Light intensity effect and regulation of PCC1060576 5.3.6Antioxidant and antibacterial of C-PC from PCC1060578 5.4 Conclusion79 Chapter 6Thermal cultivation of halophilic Cyanobacterium aponinum for C-phycocyanin production and simultaneously reducing carbon emission using wastewater80 6.1 Background80 6.2Materials and methods81 6.2.1Culture conditions in PSI system81 6.2.2Kinetic model and parameters for microalgal growth81 6.2.3Culture PCC10605 in high salinity, nitrogen, or phosphorus82 6.2.4Culture PCC10605 using wastewater82 6.2.5Extraction and quantification of C-PC82 6.2.6COD measurement83 6.2.7Zeta potential analysis83 6.2.8CO2 capture calculation83 6.3Results and discussion84 6.3.1Temperature effect on cell growth of different algae84 6.3.2Mixotrophic and autotrophic culture of different algae85 6.3.3Microalga growth kinetics modelling87 6.3.4Salinity effect on cell growth and C-PC production at meso-thermo-culture89 6.3.5Nitrogen and phosphorus ratio effect on cell growth and C-PC production90 6.3.6Light effect on cell growth, C-PC and glycogen production91 6.3.7Simultaneous wastewater treatment and CCUS using PCC1060593 6.4Conclusion97 CHAPTER 7PYRIDOXAL KINASE MEDIATED CARBON DIOXIDE ASSIMILATION TO ENHANCE THE BIOMASS IN CHLAMYDOMONAS REINHARDTII CC-40098 7.1Introduction98 7.2Materials and methods100 7.2.1Construction of plasmids with pdxY gene100 7.2.2Mixotrophic culture in different conditions100 7.2.3Capability of CO2 assimilation100 7.3Results and discussion101 7.3.1Cloning pdxY and transformed to CC-400101 7.3.2Effect of biomass in flask and TPR cultures102 7.3.3Effect of biomass in PBR culture104 7.3.4CO2 assimilation of CC-400, PdxY4 and PY9106 7.3.5Transcriptional level and CA activity analysis107 7.4Conclusion109 CHAPTER 8ENHANCED CARBON CAPTURE AND UTILIZATION (CCU) USING HETEROLOGOUS CARBONIC ANHYDRASE IN CHLAMYDOMONAS REINHARDTII FOR LUTEIN AND LIPID PRODUCTION110 8.1Background110 8.2Experimental Section111 8.2.1Construction of plasmids with CA gene111 8.2.2Mixotrophic and autotrophic cultivation in different conditions112 8.2.3Capability of CO2 assimilation112 8.3Results and Discussion113 8.3.1Mixotrophic cultivation of CC-400, pCHM and pCHS113 8.3.2Autotrophic cultivation of CC-400, pCHM and pCHS114 8.3.3The association of carbonic anhydrase activity and bicarbonate concentration116 8.3.4 CO2 assimilation of CC-400, pCHM and pCHS118 8.3.5High level of lutein and lipid production119 8.3.6Transcriptional levels of specific genes in CC-400, pCHM and pCHS120 8.4Conclusion122 CHAPTER 9ENHANCED CARBON CAPTURE, LIPID AND LUTEIN PRODUCTION IN CHLAMYDOMONAS REINHARDTII UNDER THERMOPHILIC CONDITIONS USING CHAPERONE AND CRISPRI SYSTEM123 9.1Background123 9.2Materials and methods124 9.2.1Construction of plasmids with CRISPRi124 9.2.2Mixotrophic cultivation in different devices124 9.2.3Capability of CO2 assimilation125 9.3Results and discussion125 9.3.1Effect of Chaperon towards thermo-tolerant on CC400, pCHG and PG125 9.3.2Characteristics of microalgal strains using CRISPRi and chaperone126 9.3.3Identification of carbonic anhydrase activity and bicarbonate concentration128 9.3.4Quantification of chlorophyll a and b concentration and starch content130 9.3.5Lipids and lutein production in the genetic microalgae132 9.3.6CO2 assimilation and transcriptional levels of genetic strains134 9.4Conclusion137 CHAPTER 10 SUMMARY WORK AND FUTURE PROSPECTS138 10.1 Summary work in this thesis138 10.2 Genetic engineering of microalgae to tolerance of high light intensity144 10.3 Enhancing CO2 fixation rate144 10.4 Bioplastice production using microalgae145 REFERENCES147 APPENDIX195

    1. Abargues, M. R., Giménez, J. B., Ferrer, J., Bouzas, A., Seco, A., 2018. Endocrine disrupter compounds removal in wastewater using microalgae: degradation kinetics assessment. Chem. Eng. J., 334, 313-321. https://doi.org/10.1016/j.cej.2017.09.187
    2. Aghaalipour, E., Akbulut, A., Güllü, G., 2020. Carbon dioxide capture with microalgae species in continuous gas-supplied closed cultivation systems. Biochem. Eng. J., 163, 107741. https://doi.org/10.1016/j.bej.2020.107741
    3. Aguilera-Sáez, L. M., Abreu, A. C., Camacho-Rodríguez, J., González-López, C. V., del Carmen Cerón-García, M., Fernández, I., 2019. NMR metabolomics as an effective tool to unravel the effect of light intensity and temperature on the composition of the marine microalgae Isochrysis galbana. J. Agric. Food Chem., 67(14), 3879-3889. https://doi.org/10.1021/acs.jafc.8b06840
    4. Ahmad, S., Pandey, A., Pathak, V. V., Tyagi, V. V., Kothari, R., 2020. Phycoremediation: algae as eco-friendly tools for the removal of heavy metals from wastewaters. Bioremediation of Industrial Waste for Environmental Safety: Volume II: Biological Agents and Methods for Industrial Waste Management, 53-76. http://doi.org/10.1007/978-981-13-3426-9_3
    5. Akaberi, S., Krust, D., Müller, G., Frey, W., Gusbeth, C., 2020. Impact of incubation conditions on protein and C-Phycocyanin recovery from Arthrospira platensis post-pulsed electric field treatment. Bioresour. Technol., 306, 123099. https://doi.org/10.1016/j.biortech.2020.123099
    6. Aires-Fernandes, M., Botelho Costa, R., Rochetti do Amaral, S., Mussagy, C. U., Santos-Ebinuma, V. C., Primo, F. L., 2022. Development of Biotechnological Photosensitizers for Photodynamic Therapy: Cancer Research and Treatment—From Benchtop to Clinical Practice. Molecules, 27(20), 6848. https://doi.org/10.3390/molecules27206848
    7. Altimari, P., Brasiello, A., Di Caprio, F., Pagnanelli, F., 2022. Production of microalgae biomass in a continuous stirred bioreactor: Analysis of microalgae-bacteria competition mediated by nitrogen and organic carbon. Chem. Eng. Sci., 260, 117826. https://doi.org/10.1016/j.ces.2022.117826
    8. Amaral, M. S., Loures, C. C., Pedro, G. A., Reis, C. E., De Castro, H. F., Naves, F. L., Prata, A. M., 2020. An unconventional two-stage cultivation strategy to increase the lipid content and enhance the fatty acid profile on Chlorella minutissima biomass cultivated in a novel internal light integrated photobioreactor aiming at biodiesel production. Renewable Energy, 156, 591-601. https://doi.org/10.1016/j.renene.2020.04.084
    9. Amaro, H. M., Salgado, E. M., Nunes, O. C., Pires, J. C., Esteves, A. F., 2023. Microalgae systems-environmental agents for wastewater treatment and further potential biomass valorisation. J. Environ. Manag., 337, 117678. https://doi.org/10.1016/j.jenvman.2023.117678
    10. Amin, S., 2009. Review on biofuel oil and gas production processes from microalgae. Energy Convers. Manag. 50(7), 1834-1840. https://doi.org/10.1016/j.enconman.2009.03.001
    11. Anwar, M., Lou, S., Chen, L., Li, H., Hu, Z., 2019. Recent advancement and strategy on bio-hydrogen production from photosynthetic microalgae. Bioresour. Technol., 292, 121972. https://doi.org/10.1016/j.biortech.2019.121972
    12. Arashiro, L. T., Boto-Ordóñez, M., Van Hulle, S. W., Ferrer, I., Garfí, M., Rousseau, D. P., 2020. Natural pigments from microalgae grown in industrial wastewater. Bioresour. Technol., 303, 122894. https://doi.org/10.1016/j.biortech.2020.122894
    13. Aron, N. S. M., Khoo, K. S., Chew, K. W., Veeramuthu, A., Chang, J. S., Show, P. L., 2021. Microalgae cultivation in wastewater and potential processing strategies using solvent and membrane separation technologies. J. Water Process Eng., 39, 101701. https://doi.org/10.1016/j.jwpe.2020.101701
    14. Arutselvan, C., Narchonai, G., Pugazhendhi, A., LewisOscar, F., Thajuddin, N., 2021. Evaluation of microalgal strains and microalgal consortium for higher lipid productivity and rich fatty acid profile towards sustainable biodiesel production. Bioresour. Technol., 339, 125524. https://doi.org/10.1016/j.biortech.2021.125524
    15. Ashkenazi, D. Y., Figueroa, F. L., Korbee, N., García-Sánchez, M., Vega, J., Ben-Valid, S., Abelson, A., 2022. Enhancing Bioproducts in Seaweeds via Sustainable Aquaculture: Antioxidant and Sun-Protection Compounds. Mar. Drugs, 20(12), 767. http://doi.org/10.1007/978-3-030-71262-4_4
    16. Back, S. K., Mojammal, A. H. M., Jo, H. H., Kim, J. H., Jeong, M. J., Seo, Y. C., Joung, H. T., Kim, S. H., 2019. Increasing seawater alkalinity using fly ash to restore the pH and the effect of temperature on seawater flue gas desulfurization. J. Mater. Cycles Waste Manag., 21(4), 962-973. http://doi.org/10.1007/s10163-019-00852-2
    17. Baier, T., Wichmann, J., Kruse, O., Lauersen, K. J., 2018. Intron-containing algal transgenes mediate efficient recombinant gene expression in the green microalga Chlamydomonas reinhardtii. Nucleic Acids Res. 46(13), 6909-6919. https://doi.org/10.1093/nar/gky532
    18. Balasubramaniam, V., Gunasegavan, R. D. N., Mustar, S., Lee, J. C., Mohd Noh, M. F., 2021. Isolation of industrial important bioactive compounds from microalgae. Mol., 26(4), 943. https://doi.org/10.3390/molecules26040943
    19. Balzano, S., Villanueva, L., de Bar, M., Sahonero Canavesi, D. X., Yildiz, C., Engelmann, J. C., Schouten, S., 2019. Biosynthesis of long chain alkyl diols and long chain alkenols in Nannochloropsis spp.(Eustigmatophyceae). Plant Cell Physiol., 60(8), 1666-1682. https://doi.org/10.1093/pcp/pcz078
    20. Ban, S., Lin, W., Luo, Z., Luo, J., 2019. Improving hydrogen production of Chlamydomonas reinhardtii by reducing chlorophyll content via atmospheric and room temperature plasma. Bioresour. Technol., 275, 425-429. https://doi.org/10.1016/j.biortech.2018.12.062
    21. Brar, A., Kumar, M., Soni, T., Vivekanand, V., Pareek, N., 2021. Insights into the genetic and metabolic engineering approaches to enhance the competence of microalgae as biofuel resource: A review. Bioresour. Technol., 339, 125597. https://doi.org/10.1016/j.biortech.2021.125597
    22. Barkia, I., Saari, N., Manning, S. R., 2019. Microalgae for high-value products towards human health and nutrition. Mar. Drugs. 17(5), 304. https://doi.org/10.3390/md17050304
    23. Basu, S., Roy, A. S., Mohanty, K., Ghoshal, A. K., 2014. CO2 biofixation and carbonic anhydrase activity in Scenedesmus obliquus SA1 cultivated in large scale open system. Bioresour. Technol. 164, 323-330. https://doi.org/10.1016/j.biortech.2014.05.017
    24. Bature, A., Melville, L., Rahman, K. M., Aulak, P., 2022. Microalgae as feed ingredients and a potential source of competitive advantage in livestock production: A review. Livest. Sci., 104907. https://doi.org/10.1016/j.livsci.2022.104907
    25. Bauenova, M. O., Sadvakasova, A. K., Mustapayeva, Z. O., Kokociński, M., Zayadan, B. K., Wojciechowicz, M. K., Allakhverdiev, S. I., 2021. Potential of microalgae Parachlorella kessleri Bh-2 as bioremediation agent of heavy metals cadmium and chromium. Algal Res., 59, 102463. https://doi.org/10.1016/j.algal.2021.102463
    26. Bazarnova, J., Smyatskaya, Y., Shlykova, A., Balabaev, A., Đurović, S., 2022. Obtaining Fat-Soluble Pigments—Carotenoids from the Biomass of Chlorella Microalgae. Appl. Sci., 12(7), 3246. https://doi.org/10.3390/app12073246
    27. Bazdar, E., Roshandel, R., Yaghmaei, S., Mardanpour, M. M., 2018. The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell. Bioresour. Technol., 261, 350-360. https://doi.org/10.1016/j.biortech.2018.04.026
    28. Begum, H., Yusoff, F. M., Banerjee, S., Khatoon, H., Shariff, M., 2016. Availability and utilization of pigments from microalgae. Crit. Rev. Food Sci. Nutr., 56(13), 2209-2222. https://doi.org/10.1080/10408398.2013.764841
    29. Beuckels, A., Smolders, E., Muylaert, K., 2015. Nitrogen availability influences phosphorus removal in microalgae-based wastewater treatment. Water Res., 77, 98-106. https://doi.org/10.1016/j.watres.2015.03.018
    30. Bezerra, P. Q. M., Moraes, L., Silva, T. N. M., Cardoso, L. G., Druzian, J. I., Morais, M. G., Costa, J. A. V., 2022. Innovative application of brackish groundwater without the addition of nutrients in the cultivation of Spirulina and Chlorella for carbohydrate and lipid production. Bioresour. Technol., 345, 126543. https://doi.org/10.1016/j.biortech.2021.126543
    31. Bhayani, K., Mitra, M., Ghosh, T., Mishra, S., 2016. C-Phycocyanin as a potential biosensor for heavy metals like Hg2+ in aquatic systems. RSC Advances, 6(112), 111599-111605. http://doi.org/10.1039/C6RA22753H
    32. Biris-Dorhoi, E. S., Michiu, D., Pop, C. R., Rotar, A. M., Tofana, M., Pop, O. L., Farcas, A. C., 2020. Macroalgae—A sustainable source of chemical compounds with biological activities. Nutrients, 12(10), 3085. https://doi.org/10.3390/nu12103085
    33. Borella, L., Sforza, E., Bertucco, A., 2022. An internally LED illuminated photobioreactor to increase energy conversion efficiency: Design and operation. Energy Convers. Manag., 270, 116224. https://doi.org/10.1016/j.enconman.2022.116224
    34. Borowitzka, M. A., 2013. High-value products from microalgae—their development and commercialisation. J. Appl. Phycol., 25(3), 743-756. http://doi.org/10.1007/s10811-013-9983-9
    35. Brindhadevi, K., Mathimani, T., Rene, E. R., Shanmugam, S., Chi, N. T. L., Pugazhendhi, A., 2021. Impact of cultivation conditions on the biomass and lipid in microalgae with an emphasis on biodiesel. Fuel, 284, 119058. https://doi.org/10.1016/j.fuel.2020.119058
    36. Brown, L. E., Sprecher, S. L., Keller, L. R., 1991. Introduction of exogenous DNA into Chlamydomonas reinhardtii by electroporation. Mol. Cell. Biol. 11(4), 2328-2332. https://doi.org/10.1128/mcb.11.4.2328-2332.1991
    37. Calhoun, S., Bell, T. A. S., Dahlin, L. R., Kunde, Y., LaButti, K., Louie, K. B., Grigoriev, I. V., 2021. A multi-omic characterization of temperature stress in a halotolerant Scenedesmus strain for algal biotechnology. Commun. Biol., 4(1), 333. http:doi.org/10.1038/s42003-021-01859-y
    38. Carpine, R., Olivieri, G., Hellingwerf, K. J., Pollio, A., Marzocchella, A., 2020. Industrial production of poly-β-hydroxybutyrate from CO2: can cyanobacteria meet this challenge?. Processes, 8(3), 323. https://doi.org/10.3390/pr8030323
    39. Cano, M., Holland, S. C., Artier, J., Burnap, R. L., Ghirardi, M., Morgan, J. A., Yu, J., 2018. Glycogen synthesis and metabolite overflow contribute to energy balancing in cyanobacteria. Cell Rep., 23(3), 667-672. https://doi.org/10.1016/j.celrep.2018.03.083
    40. Cao, X., Xi, Y., Liu, J., Chu, Y., Wu, P., Yang, M., Xue, S., 2019. New insights into the CO2-steady and pH-steady cultivations of two microalgae based on continuous online parameter monitoring. Algal Res., 38, 101370. https://doi.org/10.1016/j.algal.2018.11.021
    41. Cassia, R., Nocioni, M., Correa-Aragunde, N., Lamattina, L., 2018. Climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress. Front. Plant Sci, 9, 273. https://doi.org/10.3389/fpls.2018.00273
    42. Castillo, A., Pereira, S., Otero, A., Fiol, S., Garcia-Jares, C., Lores, M., 2020. Matrix solid-phase dispersion as a greener alternative to obtain bioactive extracts from Haematococcus pluvialis. Characterization by UHPLC-QToF. RSC Adv., 10(47), 27995-28006. http://doi.org/10.1039/D0RA04378H
    43. Cecchin, M., Benfatto, S., Griggio, F., Mori, A., Cazzaniga, S., Vitulo, N., Delledonne, M., Ballottari, M., 2018. Molecular basis of autotrophic vs mixotrophic growth in Chlorella sorokiniana. Sci. Rep., 8(1), 1-13. http://doi.org/10.1038/s41598-018-24979-8
    44. Chai, W. S., Cheun, J. Y., Kumar, P. S., Mubashir, M., Majeed, Z., Banat, F., Show, P. L., 2021. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Cleaner Prod., 296, 126589. https://doi.org/10.1016/j.jclepro.2021.126589
    45. Chalima, A., Oliver, L., Fernández de Castro, L., Karnaouri, A., Dietrich, T., Topakas, E., 2017. Utilization of volatile fatty acids from microalgae for the production of high added value compounds. Fermentation, 3(4), 54. https://doi.org/10.3390/fermentation3040054
    46. Chaudhary, R., Dikshit, A. K., Tong, Y. W., 2018. Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Environ. Sci. Pollut. Res. 25(21), 20399-20406. http://doi.prg/10.1007/s11356-017-9575-3
    47. Chauhan, D. S., Sahoo, L., Mohanty, K., 2022. Maximize microalgal carbon dioxide utilization and lipid productivity by using toxic flue gas compounds as nutrient source. Bioresour. Technol., 348, 126784. https://doi.org/10.1016/j.biortech.2022.126784
    48. Chen, C. Y., Kao, A. L., Tsai, Z. C., Shen, Y. M., Kao, P. H., Ng, I. S., Chang, J. S., 2017. Expression of synthetic phytoene synthase gene to enhance β‐carotene production in Scenedesmus sp. CPC2. Biotechnol. J., 12(11), 1700204. http://doi.org/10.1002/biot.201700204
    49. Chen, H., Wang, Q., 2020. Microalgae-based nitrogen bioremediation. Algal Res., 46, 101775. https://doi.org/10.1016/j.algal.2019.101775
    50. Chen, J. J., Li, Y. R., Lai, W. L., 2014. Application of experimental design methodology for optimization of biofuel production from microalgae. Biomass Bioenergy, 64, 11-19. https://doi.org/10.1016/j.biombioe.2014.03.056
    51. Chen, J. M., 2021a. Carbon neutrality: Toward a sustainable future. The Innov., 2(3). https://doi.org/10.1016/j.xinn.2021.100127
    52. Chen, M. Y., Teng, W. K., Zhao, L., Hu, C. X., Zhou, Y. K., Han, B. P., Shu, W. S., 2021b. Comparative genomics reveals insights into cyanobacterial evolution and habitat adaptation. ISME J., 15(1), 211-227. http://doi.org/10.1038/s41396-020-00775-z
    53. Chen, Q., Chen, Y., Hu, Q., Han, D., 2023. Metabolomic analysis reveals astaxanthin biosynthesis in heterotrophic microalga Chromochloris zofingiensis. Bioresour. Technol., 374, 128811. https://doi.org/10.1016/j.biortech.2023.128811
    54. Cheng, J., Zhu, Y., Zhang, Z., Yang, W., 2019. Modification and improvement of microalgae strains for strengthening CO2 fixation from coal-fired flue gas in power plants. Bioresour. Technol., 291, 121850. https://doi.org/10.1016/j.biortech.2019.121850
    55. Cheng, Y. S., Labavitch, J. M., VanderGheynst, J. S., 2015. Elevated CO2 concentration impacts cell wall polysaccharide composition of green microalgae of the genus Chlorella. Lett. Appl. Microbiol., 60(1), 1-7. https://doi.org/10.1111/lam.12320
    56. Chentir, I., Hamdi, M., Li, S., Doumandji, A., Markou, G., Nasri, M., 2018. Stability, bio-functionality and bio-activity of crude phycocyanin from a two-phase cultured Saharian Arthrospira sp. strain. Algal Res., 35, 395-406. https://doi.org/10.1016/j.algal.2018.09.013
    57. Chew, K. W., Chia, S. R., Krishnamoorthy, R., Tao, Y., Chu, D. T., Show, P. L., 2019. Liquid biphasic flotation for the purification of C-phycocyanin from Spirulina platensis microalga. Bioresour. Technol., 288, 121519. https://doi.org/10.1016/j.biortech.2019.121519
    58. Chew, K. W., Yap, J. Y., Show, P. L., Suan, N. H., Juan, J. C., Ling, T. C., Chang, J. S., 2017. Microalgae biorefinery: high value products perspectives. Bioresour. Technol. 229, 53-62. https://doi.org/10.1016/j.biortech.2017.01.006
    59. Chhandama, M. V. L., Satyan, K. B., Changmai, B., Vanlalveni, C., Rokhum, S. L., 2021. Microalgae as a feedstock for the production of biodiesel: A review. Bioresour. Technol. Reports, 15, 100771. https://doi.org/10.1016/j.biteb.2021.100771
    60. Chini Zittelli, G., Lauceri, R., Faraloni, C., Silva Benavides, A. M., Torzillo, G., 2023. Valuable pigments from microalgae: phycobiliproteins, primary carotenoids, and fucoxanthin. Photochem. Photobiol. Sci., 1-57. http://doi.org/10.1007/s43630-023-00407-3
    61. Chittapun, S., Jonjaroen, V., Khumrangsee, K., Charoenrat, T., 2020. C-phycocyanin extraction from two freshwater cyanobacteria by freeze thaw and pulsed electric field techniques to improve extraction efficiency and purity. Algal Res., 46, 101789. https://doi.org/10.1016/j.algal.2020.101789
    62. Chowdury, K. H., Nahar, N., Deb, U. K., 2020. The growth factors involved in microalgae cultivation for biofuel production: a Review. Comput. Water, Energy Environ. Eng., 9(4), 185-215. https://doi.org/10.4236/cweee.2020.94012
    63. Chua, E. T., Dal'Molin, C., Thomas-Hall, S., Netzel, M. E., Netzel, G., Schenk, P. M., 2020. Cold and dark treatments induce omega-3 fatty acid and carotenoid production in Nannochloropsis oceanica. Algal Res., 51, 102059. https://doi.org/10.1016/j.algal.2020.102059
    64. Coelho-Bortolo, T. D. S., Marchiosi, R., Ferro, A. P., Siqueira-Soares, R. D. C., Constantin, R. P., dos Santos, W. D., Ferrarese-Filho, O., 2022. l-DOPA Impacts Nitrate and Ammonium Uptake and Their Assimilation into Amino Acids by Soybean (Glycine max L.) Plants. J. Plant Growth Regul., 1-15. http://doi.org/10.1007/s00344-022-10810-2
    65. Concas, A., Lutzu, G. A., Dunford, N. T., 2021. Experiments and modeling of Komvophoron sp. Growth in hydraulic fracturing wastewater. Che. Eng. J., 426, 131299. https://doi.org/10.1016/j.cej.2021.131299
    66. Crini, G., Lichtfouse, E., 2019. Advantages and disadvantages of techniques used for wastewater treatment. Environ. Chem. Lett., 17(1), 145-155. https://doi.org/10.1007/s10311-018-0785-9
    67. da Fontoura P. D., Radmann, E. M., Duarte, J. H., de Morais, M. G., Costa, J. A. V., 2018. Spirulina cultivated under different light emitting diodes: Enhanced cell growth and phycocyanin production. Bioresour. Technol., 256, 38-43. https://doi.org/10.1016/j.biortech.2018.01.122
    68. Dall’Osto, L., Cazzaniga, S., Guardini, Z., Barera, S., Benedetti, M., Mannino, G., Bassi, R., 2019. Combined resistance to oxidative stress and reduced antenna size enhance light-to-biomass conversion efficiency in Chlorella vulgaris cultures. Biotechnol. biofuels, 12(1), 1-17. https://doi.org/10.1186/s13068-019-1566-9
    69. Daneshvar, E., Wicker, R. J., Show, P. L., Bhatnagar, A., 2022. Biologically-mediated carbon capture and utilization by microalgae towards sustainable CO2 biofixation and biomass valorization–A review. Chem. Eng. J., 427, 130884. https://doi.org/10.1016/j.cej.2021.130884
    70. de Carvalho Silvello, M. A., Gonçalves, I. S., Azambuja, S. P. H., Costa, S. S., Silva, P. G. P., Santos, L. O., Goldbeck, R., 2022. Microalgae-based carbohydrates: A green innovative source of bioenergy. Bioresour. Technol., 344, 126304. https://doi.org/10.1016/j.biortech.2021.126304
    71. De Francisci, D., Su, Y., Iital, A., Angelidaki, I., 2018. Evaluation of microalgae production coupled with wastewater treatment. Environ. Technol., 39(5), 581-592. https://doi.org/10.1080/09593330.2017.1308441
    72. De Godos, I., Mendoza, J. L., Acién, F. G., Molina, E., Banks, C. J., Heaven, S., Rogalla, F., 2014. Evaluation of carbon dioxide mass transfer in raceway reactors for microalgae culture using flue gases. Bioresour. Technol. 153, 307-314. https://doi.org/10.1016/j.biortech.2013.11.087
    73. De Morais, M. G., da Fontoura Prates, D., Moreira, J. B., Duarte, J. H., Costa, J. A. V., 2018. Phycocyanin from microalgae: properties, extraction and purification, with some recent applications. Ind. Biotechnol., 14(1), 30-37. https://doi.org/10.1089/ind.2017.0009
    74. De Porcellinis, A. J., Nørgaard, H., Brey, L. M. F., Erstad, S. M., Jones, P. R., Heazlewood, J. L., Sakuragi, Y., 2018. Overexpression of bifunctional fructose-1, 6-bisphosphatase/sedoheptulose-1, 7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002. Metab. Eng., 47, 170-183. https://doi.org/10.1016/j.ymben.2018.03.001
    75. Debuchy, R., Purton, S., Rochaix, J. D., 1989. The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. The EMBO J., 8(10), 2803-2809. https://doi.org/10.1002/j.1460-2075.1989.tb08426.x
    76. Dejsungkranont, M., Chisti, Y., Sirisansaneeyakul, S., 2017. Optimization of production of C-phycocyanin and extracellular polymeric substances by Arthrospira sp. Bioprocess Biosyst. Eng., 40(8), 1173-1188. http://doi.org/10.1007/s00449-017-1778-y
    77. Deng, X., Chen, B., Xue, C., Li, D., Hu, X., Gao, K., 2019. Biomass production and biochemical profiles of a freshwater microalga Chlorella kessleri in mixotrophic culture: Effects of light intensity and photoperiodicity. Bioresour. Technol. 273, 358-367. https://doi.org/10.1016/j.biortech.2018.11.032
    78. Devi, N. D., Sun, X., Hu, B., Goud, V. V., 2022. Bioremediation of domestic wastewater with microalgae-cyanobacteria co-culture by nutritional balance approach and its feasibility for biodiesel and animal feed production. Chem. Eng. J., 140197. https://doi.org/10.1016/j.cej.2022.140197
    79. Di Lena, G., Casini, I., Lucarini, M., Lombardi-Boccia, G., 2019. Carotenoid profiling of five microalgae species from large-scale production. Food Res. Int., 120, 810-818. https://doi.org/10.1016/j.foodres.2018.11.043
    80. Dirbaz, M., Roosta, A., 2018. Adsorption, kinetic and thermodynamic studies for the biosorption of cadmium onto microalgae Parachlorella sp. J. Environm. Chem. Eng., 6(2), 2302-2309. https://doi.org/10.1016/j.jece.2018.03.039
    81. Ding, G. T., Yasin, N. H. M., Takriff, M. S., Kamarudin, K. F., Salihon, J., Yaakob, Z., Hakimi, N. I. N. M., 2020. Phycoremediation of palm oil mill effluent (POME) and CO2 fixation by locally isolated microalgae: Chlorella sorokiniana UKM2, Coelastrella sp. UKM4 and Chlorella pyrenoidosa UKM7. J. Water Process Eng., 35, 101202. https://doi.org/10.1016/j.jwpe.2020.101202
    82. Ding, S., Jiang, R., Lu, Q., Wen, X., Lu, C., 2016. Glutathione reductase 2 maintains the function of photosystem II in Arabidopsis under excess light. Biochim. Biophys. Acta-Bioenerg., 1857(6), 665-677. https://doi.org/10.1016/j.bbabio.2016.02.011
    83. Dolan, F., Lamontagne, J., Link, R., Hejazi, M., Reed, P., Edmonds, J., 2021. Evaluating the economic impact of water scarcity in a changing world. Nat. Commun., 12(1), 1-10. http://doi.org/10.1038/s41467-021-22194-0
    84. Doron, L., Segal, N., Shapira, M., 2016. Transgene expression in microalgae -from tools to applications. Front. Plant Sci. 7, 505. https://doi.org/10.3389/fpls.2016.00505
    85. Du, Y. L., Ryan, K. S., 2019. Pyridoxal phosphate-dependent reactions in the biosynthesis of natural products. Nat. Prod. Rep. 36(3), 430-457. http://doi.org/10.1039/C8NP00049B
    86. Dunahay, T. G., Adler, S. A., Jarvik, J. W., 1997. Transformation of microalgae using silicon carbide whiskers. Recombinant Gene Expression Protocols, 503-509. http://doi.org/10.1385/0-89603-480-1:503
    87. Effendi, S. S. W., Chiu, C. Y., Chang, Y. K., Ng, I. S., 2020a. Crosslinked on novel nanofibers with thermophilic carbonic anhydrase for carbon dioxide sequestration. Int. J. Biol. Macromol. 152, 930-938. https://doi.org/10.1016/j.ijbiomac.2019.11.234
    88. Effendi, S. S. W., Tan, S. I., Chang, C. H., Chen, C. Y., Chang, J. S., Ng, I. S., 2020b. Development and fabrication of disease resistance protein in recombinant Escherichia coli. Bioresour. Bioprocess., 7(1), 1-10. http://doi.org/10.1186/s40643-020-00343-5
    89. Effendi, S. S. W., Tan, S. I., Ting, W. W., Ng, I. S., 2021a. Genetic design of co-expressed Mesorhizobium loti carbonic anhydrase and chaperone GroELS to enhancing carbon dioxide sequestration. Int. J. Biol. Macromol. 167, 326-334. https://doi.org/10.1016/j.ijbiomac.2020.11.189
    90. Effendi, S. S. W., Tan, S. I., Ting, W. W., Ng, I. S., 2021b. Enhanced recombinant Sulfurihydrogenibium yellowstonense carbonic anhydrase activity and thermostability by chaperone GroELS for carbon dioxide biomineralization. Chemosphere, 271, 128461. https://doi.org/10.1016/j.chemosphere.2020.128461
    91. Eichler-Stahlberg, A., Weisheit, W., Ruecker, O., Heitzer, M., 2009. Strategies to facilitate transgene expression in Chlamydomonas reinhardtii. Planta. 229(4), 873-883. http://doi.org/10.1007/s00425-008-0879-x
    92. El-Dalatony, M. M., Salama, E. S., Kurade, M. B., Kim, K. Y., Govindwar, S. P., Kim, J. R., Jeon, B. H., 2019. Whole conversion of microalgal biomass into biofuels through successive high-throughput fermentation. Chem. Eng. J., 360, 797-805. https://doi.org/10.1016/j.cej.2018.12.042
    93. Elloumi, W., Jebali, A., Maalej, A., Chamkha, M., Sayadi, S., 2020. Effect of Mild Salinity Stress on the Growth, Fatty Acid and Carotenoid Compositions, and Biological Activities of the Thermal Freshwater Microalgae Scenedesmus sp. Biomol., 10(11), 1515. https://doi.org/10.3390/biom10111515
    94. Eloka-Eboka, A. C., Inambao, F. L., 2017. Effects of CO2 sequestration on lipid and biomass productivity in microalgal biomass production. Appl. Energy, 195, 1100-1111. https://doi.org/10.1016/j.apenergy.2017.03.071
    95. Eungrasamee, K., Incharoensakdi, A., Lindblad, P., Jantaro, S., 2020. Synechocystis sp. PCC 6803 overexpressing genes involved in CBB cycle and free fatty acid cycling enhances the significant levels of intracellular lipids and secreted free fatty acids. Sci. Rep., 10(1), 1-13. http://doi.org/10.1038/s41598-020-61100-4
    96. Eren, B., Tuncay Tanrıverdi, S., Aydın Köse, F., Özer, Ö., 2019. Antioxidant properties evaluation of topical astaxanthin formulations as anti‐aging products. J. Cosmet. Dermatol., 18(1), 242-250. https://doi.org/10.1111/jocd.12665
    97. Eriksen, N. T., 2016. Research trends in the dominating microalgal pigments, β-carotene, astaxanthin, and phycocyanin used in feed, in foods, and in health applications. J. Nutr. Food Sci., 6(3), 507. http://doi.org/10.4172/2155-9600.1000507
    98. Esteves-Ferreira, A. A., Inaba, M., Fort, A., Araújo, W. L., Sulpice, R., 2018. Nitrogen metabolism in cyanobacteria: metabolic and molecular control, growth consequences and biotechnological applications. Crit. Rev. Microbiol., 44(5), 541-560. http://doi.org/10.1080/1040841X.2018.1446902
    99. Fal, S., Aasfar, A., Rabie, R., Smouni, A., Arroussi, H. E., 2022. Salt induced oxidative stress alters physiological, biochemical and metabolomic responses of green microalga Chlamydomonas reinhardtii. Heliyon, 8(1), e08811. https://doi.org/10.1016/j.heliyon.2022.e08811
    100. Fan, Y., Yuan, C., Jin, Y., Hu, G. R., Li, F. L., 2018. Characterization of 3-ketoacyl-coA synthase in a nervonic acid producing oleaginous microalgae Mychonastes afer. Algal Res., 31, 225-231. https://doi.org/10.1016/j.algal.2018.02.017
    101. Fayyaz, M., Chew, K. W., Show, P. L., Ling, T. C., Ng, I. S., Chang, J. S., 2020. Genetic engineering of microalgae for enhanced biorefinery capabilities. Biotechnol. Adv., 43, 107554. https://doi.org/10.1016/j.biotechadv.2020.107554
    102. Figueira, F. D. S., Moraes, C. C., Kalil, S. J., 2018. C-phycocyanin purification: multiple processes for different applications. Brazilian J. Chem. Eng., 35(3), 1117-1128. https://doi.org/10.1590/0104-6632.20180353s20170160
    103. Fitzpatrick, T. B., Amrhein, N., Kappes, B., Macheroux, P., Tews, I., Raschle, T., 2007. Two independent routes of de novo vitamin B6 biosynthesis: not that different after all. Biochem. J. 407(1), 1-13. https://doi.org/10.1042/BJ20070765
    104. Freudenberg, R. A., Baier, T., Einhaus, A., Wobbe, L., Kruse, O., 2021. High cell density cultivation enables efficient and sustainable recombinant polyamine production in the microalga Chlamydomonas reinhardtii. Bioresour. Technol., 323, 124542. https://doi.org/10.1016/j.biortech.2020.124542
    105. Fu, J., Huang, Y., Liao, Q., Xia, A., Fu, Q., Zhu, X., 2019. Photo-bioreactor design for microalgae: a review from the aspect of CO2 transfer and conversion. Bioresour. Technol., 292, 121947. https://doi.org/10.1016/j.biortech.2019.121947
    106. Fu, J., Huang, Y., Liao, Q., Zhu, X., Xia, A., Zhu, X., Chang, J. S., 2021. Boosting photo-biochemical conversion and carbon dioxide bio-fixation of Chlorella vulgaris in an optimized photobioreactor with airfoil-shaped deflectors. Bioresour. Technol., 337, 125355. https://doi.org/10.1016/j.biortech.2021.125355
    107. Fu, W., Paglia, G., Magnúsdóttir, M., Steinarsdóttir, E. A., Gudmundsson, S., Palsson, B. Ø., Brynjólfsson, S., 2014. Effects of abiotic stressors on lutein production in the green microalga Dunaliella salina. Microb. Cell Factories, 13(1), 1-9. http://doi.org/10.1186/1475-2859-13-3
    108. Fu, Y., Wang, Y., Yi, L., Liu, J., Yang, S., Liu, B., Sun, H., 2023. Lutein production from microalgae: A review. Bioresour. Technol., 128875. http://doi.org/10.1016/j.biortech.2023.128875
    109. Fukuda, S., Hirasawa, E., Takemura, T., Takahashi, S., Chokshi, K., Pancha, I., Imamura, S., 2018. Accelerated triacylglycerol production without growth inhibition by overexpression of a glycerol-3-phosphate acyltransferase in the unicellular red alga Cyanidioschyzon merolae. Sci. Rep., 8(1), 12410. http://doi.org/10.1038/s41598-018-30809-8
    110. Furuki, T., Maeda, S., Imajo, S., Hiroi, T., Amaya, T., Hirokawa, T., Nozawa, H., 2003. Rapid and selective extraction of phycocyanin from Spirulina platensis with ultrasonic cell disruption. Ind. Biotechnol., 15(4), 319-324. http://doi.org/10.1023/A:1025118516888
    111. Gambhir, A., Tavoni, M., 2019. Direct air carbon capture and sequestration: how it works and how it could contribute to climate-change mitigation. One Earth, 1(4), 405-409. https://doi.org/10.1016/j.oneear.2019.11.006
    112. Gao, F., Zhang, X. L., Zhu, C. J., Huang, K. H., Liu, Q., 2022a. High-efficiency biofuel production by mixing seawater and domestic sewage to culture freshwater microalgae. Chem. Eng. J., 443, 136361. https://doi.org/10.1016/j.cej.2022.136361
    113. Gao, P., Gao, Y., Guo, L., Gao, M., Zhao, Y., Jin, C., Wang, G., 2022b. iTRAQ-based proteome profiling revealed the carbon metabolism regulation for mariculture wastewater treatment with Bacterial-Algal Coupling Technology. Chem. Eng. J., 439, 135579. https://doi.org/10.1016/j.cej.2022.135579
    114. García-Galán, M. J., Matamoros, V., Uggetti, E., Díez-Montero, R., García, J., 2021. Removal and environmental risk assessment of contaminants of emerging concern from irrigation waters in a semi-closed microalgae photobioreactor. Environ. Res., 194, 110278. https://doi.org/10.1016/j.envres.2020.110278
    115. Ge, Y., Liu, J., Tian, G., 2011. Growth characteristics of Botryococcus braunii 765 under high CO2 concentration in photobioreactor. Bioresour. Technol., 102(1), 130-134. https://doi.org/10.1016/j.biortech.2010.06.051
    116. Gelagutashvili, E., 2013. Binding of heavy metals with C-phycocyanin: a comparison between equilibrium dialysis, fluorescence and absorption titration. American J. Biomed. Life Sci., 1, 12-16. http://doi.org/10.11648/j.ajbls.20130101.13
    117. Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N., Gorini, R., 2019. The role of renewable energy in the global energy transformation. Energy Strategy Rev., 24, 38-50. https://doi.org/10.1016/j.esr.2019.01.006
    118. Gomes da Silva, F. J., Gouveia, R. M., Gomes da Silva, F. J., Gouveia, R. M., 2020. Global population growth and industrial impact on the environment. Cleaner Production: Toward Better Future, 33-75. http://doi.org/10.1007/978-3-030-23165-1_3
    119. Gomes, M. A. D. C., Pestana, I. A., Santa-Catarina, C., Hauser-Davis, R. A., Suzuki, M. S., 2017. Salinity effects on photosynthetic pigments, proline, biomass and nitric oxide in Salvinia auriculata Aubl. Acta Limnol. Bras., 29. https://doi.org/10.1590/S2179-975X4716
    120. Gong, G., Wu, B., Liu, L., Li, J., Zhu, Q., He, M., Hu, G., 2022. Metabolic engineering using acetate as a promising building block for the production of bio-based chemicals. Eng. Microbiol., 100036. https://doi.org/10.1016/j.engmic.2022.100036
    121. Gonzalez-Camejo, J., Aparicio, S., Ruano, M. V., Borrás, L., Barat, R., Ferrer, J., 2019. Effect of ambient temperature variations on an indigenous microalgae-nitrifying bacteria culture dominated by Chlorella. Bioresour. Technol., 290, 121788. https://doi.org/10.1016/j.biortech.2019.121788
    122. González-Morales, S. I., Pacheco-Gutiérrez, N. B., Ramírez-Rodríguez, C. A., Brito-Bello, A. A., Estrella-Hernández, P., Herrera-Estrella, L., López-Arredondo, D. L., 2020. Metabolic engineering of phosphite metabolism in Synechococcus elongatus PCC 7942 as an effective measure to control biological contaminants in outdoor raceway ponds. Biotechnol. Biofuels, 13(1), 1-19. http://doi.org/10.21203/rs.3.rs-27509/v2
    123. Gorgich, M., Passos, M. L., Mata, T. M., Martins, A. A., Saraiva, M. L. M., Caetano, N. S., 2020. Enhancing extraction and purification of phycocyanin from Arthrospira sp. with lower energy consumption. Energy Rep., 6, 312-318. https://doi.org/10.1016/j.egyr.2020.11.151
    124. Grama, S. B., Liu, Z., Li, J., 2022. Emerging trends in genetic engineering of microalgae for commercial applications. Marine Drugs, 20(5), 285. https://doi.org/10.3390/md20050285
    125. Gu, S., Lan, C. Q., 2023. Effects of culture pH on cell surface properties and biosorption of Pb (II), Cd (II), Zn (II) of green alga Neochloris oleoabundans. Chem. Eng. J., 143579. https://doi.org/10.1016/j.cej.2023.143579
    126. Gupta, A., Singh, S., 2017. Characterization of NaCl-tolerant mutant strain of the cyanobacterium Spirulina platensis overproducing phycocyanin. Nat.Prod. J., 7(2), 153-164. http://doi.org/10.2174/2210315506666161116122434
    127. Gür, T. M., 2022. Carbon dioxide emissions, capture, storage and utilization: Review of materials, processes and technologies. Prog. Energy Combust. Sci., 89, 100965. https://doi.org/10.1016/j.pecs.2021.100965
    128. Hadiyanto, H., Harjanto, G. D., Huzain, M. L., Aji, R. W., 2019. Production of antioxidant C-phycocyanin using extraction process of Spirulina platensis in large scale industry. IOP Conf.: Mater. Sci. Eng., 633, 1, 012025. http://doi.org/10.1088/1757-899X/633/1/012025
    129. Hammel, A., Sommer, F., Zimmer, D., Stitt, M., Mühlhaus, T., Schroda, M., 2020. Overexpression of sedoheptulose-1, 7-bisphosphatase enhances photosynthesis in Chlamydomonas reinhardtii and has no effect on the abundance of other Calvin-Benson cycle enzymes. Front. Plant Sci., 11, 868. https://doi.org/10.3389/fpls.2020.00868
    130. Han, X., Hu, X., Yin, Q., Li, S., Song, C., 2021. Intensification of brewery wastewater purification integrated with CO2 fixation via microalgae co-cultivation. J. Environ. Chem. Eng., 9(4), 105710. https://doi.org/10.1016/j.jece.2021.105710
    131. Hang, L. T., Mori, K., Tanaka, Y., Morikawa, M., Toyama, T., 2020. Enhanced lipid productivity of Chlamydomonas reinhardtii with combination of NaCl and CaCl2 stresses. Bioprocess Biosyst. Eng., 43(6), 971-980. https://doi.org/10.1007/s00449-020-02293-w
    132. Hannan, M. A., Lipu, M. H., Ker, P. J., Begum, R. A., Agelidis, V. G., Blaabjerg, F., 2019. Power electronics contribution to renewable energy conversion addressing emission reduction: Applications, issues, and recommendations. Applied energy, 251, 113404. https://doi.org/10.1016/j.apenergy.2019.113404
    133. Harris, E., 1989. The Chlamydomonas source book a comprehensive guide to biology and laboratory use. Academic Press. San Diego, 575-641. http://doi.org/10.1126/science.246.4936.1503-a
    134. Hassan, M. U., Chattha, M. U., Khan, I., Chattha, M. B., Aamer, M., Nawaz, M., Khan, T. A., 2019. Nickel toxicity in plants: reasons, toxic effects, tolerance mechanisms, and remediation possibilities—a review. Environ. Sci. Pollut. Res., 26, 12673-12688. http://doi.org/10.1007/s11356-019-04892-x
    135. Hasunuma, T., Matsuda, M., Kato, Y., Vavricka, C. J., Kondo, A., 2018. Temperature enhanced succinate production concurrent with increased central metabolism turnover in the cyanobacterium Synechocystis sp. PCC 6803. Metab. Eng., 48, 109-120. https://doi.org/10.1016/j.ymben.2018.05.013
    136. He, Q., Yang, H., Wu, L., Hu, C., 2015. Effect of light intensity on physiological changes, carbon allocation and neutral lipid accumulation in oleaginous microalgae. Bioresour. Technol., 191, 219-228. https://doi.org/10.1016/j.biortech.2015.05.021
    137. Heifetz, P. B., Förster, B., Osmond, C. B., Giles, L. J., Boynton, J. E., 2000. Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiol. 122(4), 1439-1446. https://doi.org/10.1104/pp.122.4.1439
    138. Ho, S. H., Chen, C. Y., Chang, J. S., 2012. Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresour. Technol. 113, 244-252. https://doi.org/10.1016/j.biortech.2011.11.133
    139. Ho, S. H., Nakanishi, A., Kato, Y., Yamasaki, H., Chang, J. S., Misawa, N., Kondo, A., 2017. Dynamic metabolic profiling together with transcription analysis reveals salinity-induced starch-to-lipid biosynthesis in alga Chlamydomonas sp. JSC4. Sci. Rep. 7(1), 1-11. http://doi.org/10.1038/srep45471
    140. Hou, L., Jia, L., Morrison, H. M., Majumder, E. L. W., Kumar, D., 2021. Enhanced polyhydroxybutyrate production from acid whey through determination of process and metabolic limiting factors. Bioresour. Technol., 342, 125973. https://doi.org/10.1016/j.ijbiomac.2019.03.044
    141. Hosseini, S., Kheawhom, S., Soltani, S. M., Aroua, M. K., 2018. Electrochemical reduction of bicarbonate on carbon nanotube-supported silver oxide: An electrochemical impedance spectroscopy study. J. Environ. Chem. Eng., 6(1), 1033-1043. https://doi.org/10.1016/j.jece.2017.12.036
    142. Hsiang, C. C., Diankristanti, P. A., Tan, S. I., Ke, Y. C., Chen, Y. C., Effendi, S. S. W., Ng, I. S., 2022. Tailoring key enzymes for renewable and high-level itaconic acid production using genetic Escherichia coli via whole-cell bioconversion. Enzyme Microb. Technol., 160, 110087.
    https://doi.org/10.3390/md13031497
    143. Hsiang, C. C., Tan, S. I., Chen, Y. C., Ng, I. S., 2023. Genetic design of co-expressing a novel aconitase with cis-aconitate decarboxylase and chaperone GroELS for high-level itaconic acid production. Process Biochem., 129, 133-139. https://doi.org/10.1016/j.procbio.2023.03.021
    144. Hu, R., Cao, Y., Chen, X., Zhan, J., Luo, G., Ngo, H. H., Zhang, S., 2022. Progress on microalgae biomass production from wastewater phycoremediation: metabolic mechanism, response behavior, improvement strategy and principle. Chem. Eng. J., 137187. https://doi.org/10.1016/j.cej.2022.137187
    145. Hu, G., Li, Y., Ye, C., Liu, L., Chen, X., 2019a. Engineering microorganisms for enhanced CO2 sequestration. Trends Biotechnol., 37(5), 532-547. https://doi.org/10.1016/j.tibtech.2018.10.008
    146. Hu, J., Li, T., Xu, W., Zhan, J., Chen, H., He, C., Wang, Q., 2017. Small antisense RNA RblR positively regulates RuBisCo in Synechocystis sp. PCC 6803. Front. Microbiol., 8, 231. https://doi.org/10.3389/fmicb.2017.00231
    147. Hu, X., Meneses, Y. E., Stratton, J., Wang, B., 2019b. Acclimation of consortium of micro-algae help removal of organic pollutants from meat processing wastewater. J. Clean. Prod., 214, 95-102. https://doi.org/10.1016/j.jclepro.2018.12.255
    148. Hu, X., Tang, X., Bi, Z., Zhao, Q., Ren, L., 2021. Adaptive evolution of microalgae Schizochytrium sp. under high temperature for efficient production of docosahexaeonic acid. Algal Res., 54, 102212. https://doi.org/10.1016/j.algal.2021.102212
    149. Huang, H., Zhong, S., Wen, S., Luo, C., Long, T., 2022. Improving the efficiency of wastewater treatment and microalgae production for biofuels. Resour. Conserv. Recycl., 178, 106094. https://doi.org/10.1016/j.resconrec.2021.106094
    150. Huang, Y., Zeng, X., Guo, L., Lan, J., Zhang, L., Cao, D., 2018. Heavy metal ion removal of wastewater by zeolite-imidazolate frameworks. Sep. Purif. Technol., 194, 462-469. https://doi.org/10.1016/j.seppur.2017.11.068
    151. Hussain, G., Wang, J., Rasul, A., Anwar, H., Imran, A., Qasim, M., Sun, T., 2019. Role of cholesterol and sphingolipids in brain development and neurological diseases. Lipids Health Dis., 18(1), 1-12. http://doi.org/10.1186/s12944-019-0965-z
    152. Ibrahim, T. N. B. T., Feisal, N. A. S., Kamaludin, N. H., Cheah, W. Y., How, V., Bhatnagar, A., Show, P. L., 2023. Biological active metabolites from microalgae for healthcare and pharmaceutical industries: A comprehensive review. Bioresour. Technol., 128661. http://doi.org/10.1016/j.biortech.2023.128661
    153. Igamberdiev, A. U., 2015. Control of Rubisco function via homeostatic equilibration of CO2 supply. Front. Plant Sci. 6, 106. https://doi.org/10.3389/fpls.2015.00106
    154. Iijima, H., Watanabe, A., Sukigara, H., Shirai, T., Kondo, A., Osanai, T., 2020. Simultaneous increases in the levels of compatible solutes by cost‐effective cultivation of Synechocystis sp. PCC 6803. Biotechnol. Bioeng., 117(6), 1649-1660. https://doi.org/10.1002/bit.27324
    155. Jakubowska, N., Szeląg-Wasielewska, E., 2015. Toxic picoplanktonic cyanobacteria. Mar. Drugs, 13(3), 1497-1518.
    156. Janasch, M., Asplund-Samuelsson, J., Steuer, R., Hudson, E. P., 2019. Kinetic modeling of the Calvin cycle identifies flux control and stable metabolomes in Synechocystis carbon fixation. J. Exp. Bot., 70(3), 973-983. https://doi.org/10.1093/jxb/ery382
    157. Jaroo, S. S., Jumaah, G. F., Abbas, T. R., 2019. Photosynthetic microbial desalination cell to treat oily wastewater using microalgae chlorella vulgaris. Civil Eng. J., 5(12), 2686-2699. http://dx.doi.org/10.28991/cej-2019-03091441
    158. Jogdand, O. K., 2020. Study on the effect of global warming and greenhouse gases on environmental system. In Green chem. Sustain. Technol. (pp. 275-306). Apple Academic Press. http://doi.org/10.1201/9780367808310-12
    159. Johra, F. T., Bepari, A. K., Bristy, A. T., Reza, H. M., 2020. A mechanistic review of β-carotene, lutein, and zeaxanthin in eye health and disease. Antioxidants, 9(11), 1046. ttps://doi.org/10.3390/antiox9111046
    160. Jonckheere, A. I., Smeitink, J. A., Rodenburg, R. J., 2012. Mitochondrial ATP synthase: architecture, function and pathology. J. Inherit. Metab. Dis., 35(2), 211-225. http://doi.org/10.1007/s10545-011-9382
    161. Julianti, E., Singgih, M., Mulyani, L. N., 2019. Optimization of extraction method and characterization of phycocyanin pigment from Spirulina platensis. J. Math. Fundam. Sci., 51, 168-176. http://doi.org/10.5614/j.math.fund.sci.2019.51.2.6
    162. Kaewchana, A., Techaparin, A., Boonchot, N., Thanonkeo, P., Klanrit, P., 2021. Improved high-temperature ethanol production from sweet sorghum juice using Zymomonas mobilis overexpressing groESL genes. Appl. Microbiol. Biotechnol., 105, 9419-9431. http://doi.org/10.1007/s00253-021-11686-0
    163. Kamennaya, N. A., Ajo-Franklin, C. M., Northen, T., Jansson, C., 2012. Cyanobacteria as biocatalysts for carbonate mineralization. Minerals, 2(4), 338-364. https://doi.org/10.3390/min2040338
    164. Kandasamy, L. C., Neves, M. A., Demura, M., Nakajima, M., 2021. The Effects of Total Dissolved Carbon Dioxide on the Growth Rate, Biochemical Composition, and Biomass Productivity of Nonaxenic Microalgal Polyculture. Sustainability, 13(4), 2267. https://doi.org/10.3390/su13042267
    165. Kao, P. H., Ng, I. S., 2017. CRISPRi mediated phosphoenolpyruvate carboxylase regulation to enhance the production of lipid in Chlamydomonas reinhardtii. Bioresour. Technol. 245, 1527-1537. https://doi.org/10.1016/j.biortech.2017.04.111
    166. Kasai, Y., Tsukahara, T., Ikeda, F., Ide, Y., Harayama, S., 2018. Metabolic engineering using iterative self-cloning to improve lipid productivity in Coccomyxa. Sci. Rep., 8(1), 1-11. http://doi.org/10.1038/s41598-018-30254-7
    167. Kato, S., Shinomura, T., 2020. Carotenoid synthesis and accumulation in microalgae under environmental stress. Pigments from microalgae handbook, 69-80. http://doi.org/10.1007/978-3-030-50971-2_4
    168. Kavitha, G., Kurinjimalar, C., Sivakumar, K., Palani, P., Rengasamy, R., 2016. Biosynthesis, purification and characterization of polyhydroxybutyrate from Botryococcus braunii kütz. Int. J. Biol. Macromol., 89, 700-706.
    169. Khan, M. K., Teng, J. Z., Khan, M. I., 2019. Effect of energy consumption and economic growth on carbon dioxide emissions in Pakistan with dynamic ARDL simulations approach. Environ. Sci. Pollut. Res., 26(23), 23480-23490. http://doi.org/10.1007/s11356-019-05640-x
    170. Khan, M. I., Shin, J. H., Kim, J. D., 2018. The promising future of microalgae: current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Factories, 17(1), 1-21. http://doi.org/10.1186/s12934-018-0879-x
    171. Khakimova, N., Maravić, N., Davidović, P., Blagojević, D., Bečelić-Tomin, M., Simeunović, J., Mišan, A., 2022. Sugar Beet Processing Wastewater Treatment by Microalgae through Biosorption. Water, 14(6), 860. https://doi.org/10.3390/w14060860
    172. Khatoon, H., Leong, L. K., Rahman, N. A., Mian, S., Begum, H., Banerjee, S., Endut, A., 2018. Effects of different light source and media on growth and production of phycobiliprotein from freshwater cyanobacteria. Bioresour. Technol., 249, 652-658. https://doi.org/10.1016/j.biortech.2017.10.052
    173. Khazi, M. I., Li, C., Liaqat, F., Malec, P., Li, J., Fu, P., 2021. Acclimation and characterization of marine cyanobacterial strains Euryhalinema and Desertifilum for C-phycocyanin production. Front. Bioeng. Biotechnol., 9, 752024. https://doi.org/10.3389/fbioe.2021.752024
    174. Kholssi, R., Lougraimzi, H., Moreno-Garrido, I., 2023. Influence of salinity and temperature on the growth, productivity, photosynthetic activity and intracellular ROS of two marine microalgae and cyanobacteria. Marine Environ. Res., 186, 105932. https://doi.org/10.1016/j.marenvres.2023.105932
    175. Khraishah, H., Alahmad, B., Ostergard Jr, R. L., AlAshqar, A., Albaghdadi, M., Vellanki, N., Rajagopalan, S., 2022. Climate change and cardiovascular disease: implications for global health. Nat. Rev. Cardiol., 1-15. http://doi.org/10.1038/s41569-022-00720-x
    176. Kim, J. H., Kim, J., Kim, H. J., Sathiyanarayanan, G., Bhatia, S. K., Song, H. S., Yang, Y. H., 2017. Biotransformation of pyridoxal 5’-phosphate from pyridoxal by pyridoxal kinase (pdxY) to support cadaverine production in Escherichia coli. Enzyme Microb.Technol. 104, 9-15. https://doi.org/10.1016/j.enzmictec.2017.05.002
    177. Kim, J., Kwak, H. S., Sim, S. J., Jin, E., 2019a. Overexpression of malic enzyme isoform 2 in Chlamydomonas reinhardtii PTS42 increases lipid production. Bioresour. Technol. Rep., 7, 100239. https://doi.org/10.1016/j.biteb.2019.100239
    178. Kim, Y. R., Do, J. M., Kim, K. H., Stoica, A. R., Jo, S. W., Kim, U. K., Yoon, H. S., 2019b. C-phycocyanin from Limnothrix species KNUA002 alleviates cisplatin-induced ototoxicity by blocking the mitochondrial apoptotic pathway in auditory cells. Mar. Drugs, 17(4), 235. https://doi.org/10.3390/md17040235
    179. Kim, Z. H., Kim, K., Park, H., Lee, C. S., Nam, S. W., Yim, K. J., Lee, C. G., 2021. Enhanced fatty acid productivity by Parachlorella sp., a freshwater microalga, via adaptive laboratory evolution under salt stress. Biotechnol. Bioprocess Eng., 26(2), 223-231. http://doi.org/10.1007/s12257-020-0001-1
    180. Kindle, K. L., 1990. High-frequency nuclear transformation of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. U.S.A. 87(3), 1228-1232. https://doi.org/10.1073/pnas.87.3.1228
    181. Kiran, B. R., Venkata Mohan, S., 2021. Microalgal cell biofactory—therapeutic, nutraceutical and functional food applications. Plants, 10(5), 836. https://doi.org/10.3390/plants10050836
    182. Kirst, H., Formighieri, C., Melis, A., 2014. Maximizing photosynthetic efficiency and culture productivity in cyanobacteria upon minimizing the phycobilisome light-harvesting antenna size. Biochim. Biophys. Acta Bioenerg., 1837(10), 1653-1664.
    https://doi.org/10.1016/j.bbabio.2014.07.009
    183. Koroidov, S., Shevela, D., Shutova, T., Samuelsson, G., Messinger, J., 2014. Mobile hydrogen carbonate acts as proton acceptor in photosynthetic water oxidation. Proc. Natl. Acad. Sci. U.S.A. 111(17), 6299-6304. https://doi.org/10.1073/pnas.1323277111
    184. Korzeniewska, E., Harnisz, M., 2018. Relationship between modification of activated sludge wastewater treatment and changes in antibiotic resistance of bacteria. Sci. Total Environ., 639, 304-315. https://doi.org/10.1016/j.scitotenv.2018.05.165
    185. Krieger-Liszkay, A., Shimakawa, G., 2022. Regulation of the generation of reactive oxygen species during photosynthetic electron transport. Biochem. Soc. Trans., 50(2), 1025-1034. https://doi.org/10.1042/BST20211246
    186. Krzemińska, I., Pawlik-Skowrońska, B., Trzcińska, M., Tys, J., 2014. Influence of photoperiods on the growth rate and biomass productivity of green microalgae. Bioprocess Biosyst. Eng., 37(4), 735-741. http://doi.org/10.1007/s00449-013-1044-x
    187. Kuddus, M., Singh, P., Thomas, G., Al-Hazimi, A., 2013. Recent developments in production and biotechnological applications of C-phycocyanin. BioMed Res. Int., 2013. https://doi.org/10.1155/2013/742859
    188. Kumar, A. N., Chatterjee, S., Hemalatha, M., Althuri, A., Min, B., Kim, S. H., Mohan, S. V., 2020. Deoiled algal biomass derived renewable sugars for bioethanol and biopolymer production in biorefinery framework. Bioresour. Technol., 296, 122315. https://doi.org/10.1016/j.biortech.2019.122315
    189. Kumar, K., Dasgupta, C. N., Nayak, B., Lindblad, P., Das, D., 2011. Development of suitable photobioreactors for CO2 sequestration addressing global warming using green algae and cyanobacteria. Bioresour. Technol. 102(8), 4945-4953. https://doi.org/10.1016/j.biortech.2011.01.054
    190. Kumar, P., Maharjan, A., Jun, H. B., Kim, B. S., 2019. Bioconversion of lignin and its derivatives into polyhydroxyalkanoates: challenges and opportunities. Biotechnol. Appl. Biochem., 66(2), 153-162. https://doi.org/10.1002/bab.1720
    191. Kumar, V., Sharma, M., Rakesh, B. R., Malik, C. K., Neelagiri, S., Neerupudi, K. B., Singh, S., 2018. Pyridoxal kinase: A vitamin B6 salvage pathway enzyme from Leishmania donovani. Int. J. Biol. Macromol. 119, 320-334. https://doi.org/10.1016/j.ijbiomac.2018.07.095
    192. Kumar, V., Sharma, N., Jaiswal, K. K., Vlaskin, M. S., Nanda, M., Tripathi, M. K., Kumar, S., 2021. Microalgae with a truncated light-harvesting antenna to maximize photosynthetic efficiency and biomass productivity: Recent advances and current challenges. Process Bioch. https://doi.org/10.1016/j.procbio.2021.03.006
    193. Kumari, J., Rathore, M. S., 2020. Na+/K+-ATPase a primary membrane transporter: An overview and recent advances with special reference to algae. J. Membr. Biol., 253(3), 191-204. https://doi.org/10.1007/s00232-020-00119-0
    194. Kumari, S., Satapathy, S., Datta, M., Kumar, S., 2022. Adaptation of Microalgae to Temperature and Light Stress. In Plant Stress: Challenges and Management in the New Decade (pp. 123-134). http://doi.org/10.1007/978-3-030-95365-2_8
    195. Kupriyanova, E. V., Pronina, N. A., Los, D. A., 2023. Adapting from Low to High: An Update to CO2-Concentrating Mechanisms of Cyanobacteria and Microalgae. Plants, 12(7), 1569. https://doi.org/10.3390/plants12071569
    196. L’Haridon, S., Markx, G. H., Ingham, C. J., Paterson, L., Duthoit, F., Le Blay, G., 2016. The Marine Microbiome: An Untapped Source of Biodiversity and Biotechnological Potential. http://doi.org/10.1007/978-3-319-33000-6_15
    197. Lai, Y. C., Chang, C. H., Chen, C. Y., Chang, J. S., Ng, I. S., 2019. Towards protein production and application by using Chlorella species as circular economy. Bioresour. Technol. 289, 121625. https://doi.org/10.1016/j.biortech.2019.121625
    198. Law, X. N., Cheah, W. Y., Chew, K. W., Ibrahim, M. F., Park, Y. K., Ho, S. H., Show, P. L., 2022. Microalgal-based biochar in wastewater remediation: Its synthesis, characterization and applications. Environ. Res., 204, 111966. https://doi.org/10.1016/j.envres.2021.111966
    199. Lee, T. M., Lin, J. Y., Tsai, T. H., Yang, R. Y., Ng, I. S., 2022a. Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology and genetic engineering strategies for microalgae towards carbon neutrality: A critical review. Bioresour. Technol., 128350. https://doi.org/10.1016/j.biortech.2022.128350
    200. Lee, J. S., Sung, Y. J., Kim, D. H., Lee, J. Y., Sim, S. J., 2022b. Development of a limitless scale-up photobioreactor for highly efficient photosynthesis-based polyhydroxybutyrate (PHB)-producing cyanobacteria. Bioresour. Technol., 364, 128121. https://doi.org/10.1016/j.biortech.2022.128121
    201. Lee, Y. Y., Park, R., Miller, S. M., Li, Y., 2022c. Genetic compensation of triacylglycerol biosynthesis in the green microalga Chlamydomonas reinhardtii. The Plant J., 111(4), 1069-1080. http://doi.org/10.1111/tpj.15874
    202. Legrand, J., Artu, A., Pruvost, J., 2021. A review on photobioreactor design and modelling for microalgae production. React. Chem. Eng., 6(7), 1134-1151. http://doi.org/10.1039/D0RE00450B
    203. Leong, Y. K., Chang, J. S., 2020. Bioremediation of heavy metals using microalgae: Recent advances and mechanisms. Bioresour. Technol., 303, 122886. https://doi.org/10.1016/j.biortech.2020.122886
    204. Levin, G., Kulikovsky, S., Liveanu, V., Eichenbaum, B., Meir, A., Isaacson, T., Schuster, G., 2021. The desert green algae Chlorella ohadii thrives at excessively high light intensities by exceptionally enhancing the mechanisms that protect photosynthesis from photoinhibition. Plant J., 106(5), 1260-1277. https://doi.org/10.1111/tpj.15232
    205. Li, T., Yang, F., Xu, J., Wu, H., Mo, J., Dai, L., Xiang, W., 2020. Evaluating differences in growth, photosynthetic efficiency, and transcriptome of Asterarcys sp. SCS-1881 under autotrophic, mixotrophic, and heterotrophic culturing conditions. Algal Res., 45, 101753. https://doi.org/10.1016/j.algal.2019.101753
    206. Li, J., Han, D., Wang, D., Ning, K., Jia, J., Wei, L., Xu, J., 2014. Choreography of transcriptomes and lipidomes of Nannochloropsis reveals the mechanisms of oil synthesis in microalgae. The Plant Cell, 26(4), 1645-1665. https://doi.org/10.1105/tpc.113.121418
    207. Li, R., Shen, W., Yang, Y., Du, J., Li, M., Yang, S., 2021a. Investigation of the impact of a broad range of temperatures on the physiological and transcriptional profiles of Zymomonas mobilis ZM4 for high-temperature-tolerant recombinant strain development. Biotechnol. Biofuels, 14(1), 1-17. http://doi.org/10.1186/s13068-021-02000-1
    208. Li, X., Li, W., Zhai, J., Wei, H., Wang, Q., 2019. Effect of ammonium nitrogen on microalgal growth, biochemical composition and photosynthetic performance in mixotrophic cultivation. Bioresour. Technol., 273, 368-376. https://doi.org/10.1016/j.biortech.2018.11.042
    209. Li, X., Liu, B., Lao, Y., Wan, P., Mao, X., Chen, F., 2021b. Efficient magnetic harvesting of microalgae enabled by surface-initiated formation of iron nanoparticles. Chem. Eng. J., 408, 127252. https://doi.org/10.1016/j.cej.2020.127252
    210. Li, Z., Meng, T., Ling, X., Li, J., Zheng, C., Shi, Y., He, N., 2018. Overexpression of malonyl-CoA: ACP transacylase in Schizochytrium sp. to improve polyunsaturated fatty acid production. J. Agric. Food Chem., 66(21), 5382-5391. https://doi.org/10.1021/acs.jafc.8b01026
    211. Liang, C., Wang, L., Zhang, Y., Zhang, J., Zhang, X., Ye, N., 2020. The effects of elevated CO2 concentrations on changes in fatty acids and amino acids of three species of microalgae. Phycologia, 59(3), 208-217. https://doi.org/10.1080/00318884.2020.1732714
    212. Liang, F., Englund, E., Lindberg, P., Lindblad, P., 2018. Engineered cyanobacteria with enhanced growth show increased ethanol production and higher biofuel to biomass ratio. Metab. Eng., 46, 51-59. https://doi.org/10.1016/j.ymben.2018.02.006
    213. Lim, K. C., Yusoff, F. M., Karim, M., Natrah, F. M., 2023. Carotenoids modulate stress tolerance and immune responses in aquatic animals. Rev. Aquac., 15(2), 872-894. https://doi.org/10.1111/raq.12767
    214. Lim, J. H. K., Gan, Y. Y., Ong, H. C., Lau, B. F., Chen, W. H., Chong, C. T., Klemeš, J. J., 2021. Utilization of microalgae for bio-jet fuel production in the aviation sector: Challenges and perspective. Renewable Sustainable Energy Rev., 149, 111396. https://doi.org/10.1016/j.rser.2021.111396
    215. Lin, H., Shen, H., Lee, Y. K., 2018. Cellular and molecular responses of Dunaliella tertiolecta by expression of a plant medium chain length fatty acid specific acyl-ACP thioesterase. Front. Microbiol., 9, 619. https://doi.org/10.3389/fmicb.2018.00619
    216. Lin, J. H., Lee, D. J., Chang, J. S., 2015. Lutein production from biomass: Marigold flowers versus microalgae. Bioresour. Technol., 184, 421-428. https://doi.org/10.1016/j.biortech.2014.09.099
    217. Lin, J. Y., Effendi, S. S. W., Ng, I. S., 2022a. Enhanced carbon capture and utilization (CCU) using heterologous carbonic anhydrase in Chlamydomonas reinhardtii for lutein and lipid production. Bioresour. Technol., 351, 127009. https://doi.org/10.1016/j.biortech.2022.127009
    218. Lin, J. Y., Lin, W. R., Ng, I. S., 2022b. CRISPRa/i with Adaptive Single Guide Assisted Regulation DNA (ASGARD) mediated control of Chlorella sorokiniana to enhance lipid and protein production. Biotechnol. J., 17(10), 2100514. http://doi.org/10.1002/biot.202100514
    219. Lin, J. Y., Ng, I. S., 2021a. Production, isolation and characterization of C-phycocyanin from a new halo-tolerant Cyanobacterium aponinum using seawater. Bioresour. Technol., 342, 125946. https://doi.org/10.1016/j.biortech.2021.125946
    220. Lin, J. Y., Ng, I. S., 2023. Thermal cultivation of halophilic Cyanobacterium aponinum for C-phycocyanin production and simultaneously reducing carbon emission using wastewater. Chem. Eng. J., 461, 141968. https://doi.org/10.1016/j.cej.2023.141968
    221. Lin, J. Y., Tan, S. I., Yi, Y. C., Hsiang, C. C., Chang, C. H., Chen, C. Y., Ng, I. S. 2022c. High-level production and extraction of C-phycocyanin from cyanobacteria Synechococcus sp. PCC7002 for antioxidation, antibacterial and lead adsorption. Environ. Res, 206, 112283. https://doi.org/10.1016/j.envres.2021.112283
    222. Lin, J. Y., Xue, C., Tan, S. I., Ng, I. S., 2021b. Pyridoxal kinase PdxY mediated carbon dioxide assimilation to enhance the biomass in Chlamydomonas reinhardtii CC-400. Bioresour. Technol., 322, 124530. https://doi.org/10.1016/j.biortech.2020.124530
    223. Lin, W. R., Lai, Y. C., Sung, P. K., Tan, S. I., Chang, C. H., Chen, C. Y., Ng, I. S., 2018b. Enhancing carbon capture and lipid accumulation by genetic carbonic anhydrase in microalgae. J. Taiwan Inst. Chem. E. 93, 131-141. https://doi.org/10.1016/j.jtice.2018.10.010
    224. Liu, L. N., Chen, X. L., Zhang, Y. Z., Zhou, B. C., 2005. Characterization, structure and function of linker polypeptides in phycobilisomes of cyanobacteria and red algae: an overview. Biochim. Biophys. Acta Biomembr., 1708(2), 133-142. https://doi.org/10.1016/j.bbabio.2005.04.001
    225. Liu, Q., Huang, Y., Zhang, R., Cai, T., Cai, Y., 2016. Medical application of Spirulina platensis derived C-phycocyanin. Evid. Based Complementary and Altern. Med., 2016, 7803846. https://doi.org/10.1155/2016/7803846
    226. Long, B. M., Förster, B., Pulsford, S. B., Price, G. D., Badger, M. R., 2021. Rubisco proton production can drive the elevation of CO2 within condensates and carboxysomes. PNAS., 118(18). https://doi.org/10.1073/pnas.2014406118
    Lumbreras, V., Stevens, D. R., Purton, S., 1998. Efficient foreign gene expression in Chlamydomonas reinhardtii mediated by an endogenous intron. Plant J. 14(4), 441-447. https://doi.org/10.1046/j.1365-313X.1998.00145.x
    227. Lürling, M., Eshetu, F., Faassen, E. J., Kosten, S., Huszar, V. L., 2013. Comparison of cyanobacterial and green algal growth rates at different temperatures. Freshw. Biol., 58(3), 552-559. https://doi.org/10.1111/j.1365-2427.2012.02866.x
    228. Ma, R., Zhao, X., Ho, S. H., Shi, X., Liu, L., Xie, Y., Lu, Y., 2020. Co-production of lutein and fatty acid in microalga Chlamydomonas sp. JSC4 in response to different temperatures with gene expression profiles. Algal Res., 47, 101821. https://doi.org/10.1016/j.algal.2020.101821
    229. Ma, R., Zhao, X., Xie, Y., Ho, S. H., Chen, J., 2019. Enhancing lutein productivity of Chlamydomonas sp. via high-intensity light exposure with corresponding carotenogenic genes expression profiles. Bioresour. Technol., 275, 416-420. https://doi.org/10.1016/j.biortech.2018.12.109
    230. Ma, R., Zhang, Z., Tang, Z., Ho, S. H., Shi, X., Liu, L., Chen, J., 2021. Enhancement of co-production of lutein and protein in Chlorella sorokiniana FZU60 using different bioprocess operation strategies. Bioresour. Bioprocess., 8(1), 1-12. http://doi.org/10.1186/s40643-021-00436-9
    231. Maberly, S. C., Courcelle, C., Groben, R., Gontero, B., 2010. Phylogenetically-based variation in the regulation of the Calvin cycle enzymes, phosphoribulokinase and glyceraldehyde-3-phosphate dehydrogenase, in algae. J. Exp. Bot., 61(3), 735-745. https://doi.org/10.1093/jxb/erp337
    232. Mahfooz, S., Bano, S., Shamim, A., Husain, A., Farooqui, A., 2017. Partial purification, characterization and bioactive potential of c-phycocyanin from Cyanobacterium plectonema boryanum. Biochem. Cell Biol., (1), 57-64. http://doi.org/10.1093/oxfordjournals.pcp.a076561
    233. Maity, S., Mallick, N., 2023. Unraveling C-phycocyanin extraction by dark incubation from marine cyanobacterium Leptolyngbya valderiana. Sustain. Chem. Pharm., 31, 100929. https://doi.org/10.1016/j.scp.2022.100929
    234. Makowka, A., Nichelmann, L., Schulze, D., Spengler, K., Wittmann, C., Forchhammer, K., Gutekunst, K., 2020. Glycolytic shunts replenish the Calvin–Benson–Bassham cycle as anaplerotic reactions in Cyanobacteria. Mol. Plant, 13(3), 471-482. https://doi.org/10.1016/j.molp.2020.02.002
    235. Maltsev, Y., Maltseva, K., Kulikovskiy, M., Maltseva, S., 2021. Influence of light conditions on microalgae growth and content of lipids, carotenoids, and fatty acid composition. Biology, 10(10), 1060. https://doi.org/10.3390/biology10101060
    236. Manhaeghe, D., Michels, S., Rousseau, D. P., Van Hulle, S. W., 2019. A semi-mechanistic model describing the influence of light and temperature on the respiration and photosynthetic growth of Chlorella vulgaris. Bioresour. Technol., 274, 361-370. https://doi.org/10.1016/j.biortech.2018.11.097
    237. Manirafasha, E., Ndikubwimana, T., Zeng, X., Lu, Y., Jing, K., 2016. Phycobiliprotein: Potential microalgae derived pharmaceutical and biological reagent. Biochem. Eng. J., 109, 282-296. https://doi.org/10.1016/j.bej.2016.01.025
    238. Markou, G., Vandamme, D., Muylaert, K., 2014. Ammonia inhibition on Arthrospira platensis in relation to the initial biomass density and pH. Bioresour. Technol., 166, 259-265. https://doi.org/10.1016/j.biortech.2014.05.040
    239. Maroneze, M. M., Jacob-Lopes, E., Zepka, L. Q., Roca, M., Pérez-Gálvez, A. 2019. Esterified carotenoids as new food components in cyanobacteria. Food Chem., 287, 295-302. https://doi.org/10.1016/j.foodchem.2019.02.102
    240. Martin-Vicente, M., González-Riaño, C., Barbas, C., Jimenez-Sousa, M. A., Brochado-Kith, O., Resino, S., Martinez, I., 2020. Metabolic changes during respiratory syncytial virus infection of epithelial cells. PloS one, 15(3), e0230844. http://doi.org/10.1371/journal.pone.0230844
    241. Mehariya, S., Goswami, R. K., Karthikeysan, O. P., Verma, P., 2021. Microalgae for high-value products: A way towards green nutraceutical and pharmaceutical compounds. Chemosphere, 280, 130553. https://doi.org/10.1016/j.chemosphere.2021.130553
    242. Mekuto, L., Olowolafe, A. V., Huberts, R., Dyantyi, N., Pandit, S., Nomngongo, P., 2020. Microalgae as a biocathode and feedstock in anode chamber for a selfsustainable microbial fuel cell technology: a review. South African Journal of Chemical Engineering, 31(1), 7-16. https://doi.org/10.1016/j.sajce.2019.10.002
    243. Meloni, M., Gurrieri, L., Fermani, S., Velie, L., Sparla, F., Crozet, P., Zaffagnini, M., 2023. Ribulose-1, 5-bisphosphate regeneration in the Calvin-Benson-Bassham cycle: Focus on the last three enzymatic steps that allow the formation of Rubisco substrate. Front. Plant Sci., 14. http://doi.org/10.3389/fpls.2023.1130430
    244. Min, J., Yan, G., Abed, A. M., Elattar, S., Khadimallah, M. A., Jan, A., Ali, H. E., 2022. The effect of carbon dioxide emissions on the building energy efficiency. Fuel, 326, 124842. https://doi.org/10.1016/j.fuel.2022.124842
    245. Mishra, A., Medhi, K., Malaviya, P., Thakur, I. S., 2019. Omics approaches for microalgal applications: Prospects and challenges. Bioresour. Technol., 291, 121890. http://doi.org/10.1016/j.biortech.2019.121890
    246. Mishra, S., Joshi, B., Dey, P., Pathak, H., Pandey, N., Kohra, A., 2018. CCM in photosynthetic bacteria and marine alga. J. Pharmacogn. Phytochem., 7(6), 928-937. http://doi.org/10.22271/phyto/2018.7692
    247. Miyashita, K., Beppu, F., Hosokawa, M., Liu, X., Wang, S., 2020. Nutraceutical characteristics of the brown seaweed carotenoid fucoxanthin. Arch Biochem Biophy., 686, 108364. https://doi.org/10.1016/j.abb.2020.108364
    248. Moellering, E. R., Miller, R., Benning, C., 2009. Molecular genetics of lipid metabolism in the model green alga Chlamydomonas reinhardtii. J. Lipid Res., Springer, Dordrecht, 139-155. http://doi.org/10.1007/978-90-481-2863-1_7
    249. Mohsenpour, S. F., Willoughby, N., 2016. Effect of CO2 aeration on cultivation of microalgae in luminescent photobioreactors. Biomass Bioenergy, 85, 168-177. https://doi.org/10.1016/j.biombioe.2015.12.002
    250. Mondal, M., Khanra, S., Tiwari, O. N., Gayen, K., Halder, G. N., 2016. Role of carbonic anhydrase on the way to biological carbon capture through microalgae—a mini review. Environ. Prog. Sustain. Energy, 35(6), 1605-1615. https://doi.org/10.1002/ep.12394
    251. Monshupanee, T., Nimdach, P., Incharoensakdi, A., 2016. Two-stage (photoautotrophy and heterotrophy) cultivation enables efficient production of bioplastic poly-3-hydroxybutyrate in auto-sedimenting cyanobacterium. Sci. Rep., 6(1), 37121. http://doi.org/10.1038/srep37121
    252. Moon, M., Park, W. K., Lee, S. Y., Hwang, K. R., Lee, S., Kim, M. S., Lee, J. S., 2022. Utilization of whole microalgal biomass for advanced biofuel and biorefinery applications. Renewable Sustainable Energy Rev., 160, 112269. https://doi.org/10.1016/j.rser.2022.112269
    253. Moraes, C. C., De Medeiros Burkert, J. F., Kalil, S. J., 2010. C‐phycocyanin extraction process for large‐scale use. J. food biochem., 34, 133-148. https://doi.org/10.1111/j.1745-4514.2009.00317.x
    254. Morales-Jiménez, M., Gouveia, L., Yáñez-Fernández, J., Castro-Muñoz, R., Barragán-Huerta, B. E., 2020. Production, preparation and characterization of microalgae-based biopolymer as a potential bioactive film. Coatings, 10(2), 120. https://doi.org/10.3390/coatings10020120
    255. Morales, M., Sánchez, L., Revah, S., 2018. The impact of environmental factors on carbon dioxide fixation by microalgae. FEMS Microbial. Let., 365(3), fnx262. https://doi.org/10.1093/femsle/fnx262
    256. Morita, M., Watanabe, Y., Saiki, H., 2000. Investigation of photobioreactor design for enhancing the photosynthetic productivity of microalgae. Biotechnol. Bioeng. 69(6), 693-698. https://doi.org/10.1002/1097-0290(20000920)69:6<693::AID-BIT14>3.0.CO;2-0
    257. Mu, R., Jia, Y., Ma, G., Liu, L., Hao, K., Qi, F., Shao, Y., 2021. Advances in the use of microalgal–bacterial consortia for wastewater treatment: Community structures, interactions, economic resource reclamation, and study techniques. Water Environ. Res., 93(8), 1217-1230. https://doi.org/10.1002/wer.1496
    258. Muñoz, C. F., Südfeld, C., Naduthodi, M. I., Weusthuis, R. A., Barbosa, M. J., Wijffels, R. H., D’Adamo, S., 2021. Genetic engineering of microalgae for enhanced lipid production. Biotechnol. Adv., 52, 107836. https://doi.org/10.1016/j.biotechadv.2021.107836
    259. Muñoz, C. F., Weusthuis, R. A., D’Adamo, S., Wijffels, R. H., 2019. Effect of single and combined expression of lysophosphatidic acid acyltransferase, glycerol-3-phosphate acyltransferase, and diacylglycerol acyltransferase on lipid accumulation and composition in Neochloris oleoabundans. Front. Plant Sci., 10, 1573. https://doi.org/10.3389/fpls.2019.01573
    260. Musa, M., Ayoko, G. A., Ward, A., Rösch, C., Brown, R. J., Rainey, T. J., 2019. Factors affecting microalgae production for biofuels and the potentials of chemometric methods in assessing and optimizing productivity. Cells, 8(8), 851. https://doi.org/10.3390/cells8080851
    261. Mutanda, T., Naidoo, D., Bwapwa, J. K., Anandraj, A., 2020. Biotechnological applications of microalgal oleaginous compounds: current trends on microalgal bioprocessing of products. Front. Energy Res., 8, 598803. http://doi.org/10.3389/fenrg.2020.598803
    262. Nabi, B. G., Mukhtar, K., Ahmed, W., Manzoor, M. F., Ranjha, M. M. A. N., Kieliszek, M., Aadil, R. M., 2023. Natural pigments: Anthocyanins, carotenoids, chlorophylls, and betalains as food colorants in food products. Food Biosci., 102403. https://doi.org/10.1016/j.fbio.2023.102403
    263. Nagarajan, D., Chang, J. S., Lee, D. J., 2020. Pretreatment of microalgal biomass for efficient biohydrogen production–Recent insights and future perspectives. Bioresour. Technol., 302, 122871. https://doi.org/10.1016/j.biortech.2020.122871
    264. Nagarajan, D., Varjani, S., Lee, D. J., Chang, J. S., 2021. Sustainable aquaculture and animal feed from microalgae–nutritive value and techno-functional components. Renewable Sustainable Energy Rev., 150, 111549. https://doi.org/10.1016/j.rser.2021.111549
    265. Nagappan, S., Das, P., AbdulQuadir, M., Thaher, M., Khan, S., Mahata, C., Kumar, G., 2021. Potential of microalgae as a sustainable feed ingredient for aquaculture. J. Biotechnol., 341, 1-20. https://doi.org/10.1016/j.jbiotec.2021.09.003
    266. Nateghpour, B., Kavoosi, G., Mirakhorli, N., 2021. Amino acid profile of the peel of three citrus species and its effect on the combination of amino acids and fatty acids Chlorella vulgaris. J. Food Compos. Anal., 98, 103808. https://doi.org/10.1016/j.jfca.2021.103808
    267. Nateras-Ramírez, O., López-Cervantes, J., Sánchez-Machado, D. I., Aguilar-Ruiz, R. J., Martínez-Macias, M. R., 2022. Kinetic Modeling of Cd (II) and Pb (II) Biosorption from Aqueous Solution by Inactive Biomass of Nannochloropsis oculata Microalgae. Water, Air Soil Poll., 233(6), 184. http://doi.org/10.1007/s11270-022-05636-3
    268. Negi, S., Perrine, Z., Friedland, N., Kumar, A., Tokutsu, R., Minagawa, J., Sayre, R., 2020. Light regulation of light‐harvesting antenna size substantially enhances photosynthetic efficiency and biomass yield in green algae. Plant J., 103(2), 584-603. http://doi.org/10.1111/tpj.14751
    269. Ng, I. S., Keskin, B. B., Tan, S. I., 2020. A critical review of genome editing and synthetic biology applications in metabolic engineering of microalgae and cyanobacteria. Biotechnol. J. e1900228. https://doi.org/10.1002/biot.201900228
    270. Nie, X., Mubashar, M., Zhang, S., Qin, Y., Zhang, X., 2020. Current progress, challenges and perspectives in microalgae-based nutrient removal for aquaculture waste: A comprehensive review. J. Clean. Prod., 277, 124209. https://doi.org/10.1016/j.jclepro.2020.124209
    271. Nithya, K., Sathish, A., Pradeep, K., Baalaji, S. K., 2019. Algal biomass waste residues of Spirulina platensis for chromium adsorption and modeling studies. J. Environ. Chem. Eng., 7(5), 103273. https://doi.org/10.1016/j.jece.2019.103273
    272. Nurachman, Z., Hartini, H., Rahmaniyah, W. R., Kurnia, D., Hidayat, R., Prijamboedi, B., Suendo, V., Ratnaningsih, E., Panggabean, L. M. G., Nurbaiti, S., 2015. Tropical marine Chlorella sp. PP1 as a source of photosynthetic pigments for dye-sensitized solar cells. Algal Res. 10, 25-32. https://doi.org/10.1016/j.algal.2015.04.009
    273. Nwoba, E. G., Parlevliet, D. A., Laird, D. W., Alameh, K., Moheimani, N. R., 2019. Light management technologies for increasing algal photobioreactor efficiency. Algal Res., 39, 101433. https://doi.org/10.1016/j.algal.2019.101433
    274. Nzayisenga, J. C., Farge, X., Groll, S. L., Sellstedt, A., 2020. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnol. Biofuels, 13, 1-8.
    275. Obotey Ezugbe, E., Rathilal, S., 2020. Membrane technologies in wastewater treatment: a review. Membranes, 10(5), 89. https://doi.org/10.3390/membranes10050089
    276. Olabi, A. G., Obaideen, K., Elsaid, K., Wilberforce, T., Sayed, E. T., Maghrabie, H. M., Abdelkareem, M. A., 2022. Assessment of the pre-combustion carbon capture contribution into sustainable development goals SDGs using novel indicators. Renew. Sust. Energ. Rev., 153, 111710. https://doi.org/10.1016/j.rser.2021.111710
    277. Onyeaka, H., Miri, T., Obileke, K., Hart, A., Anumudu, C., Al-Sharify, Z. T., 2021. Minimizing carbon footprint via microalgae as a biological capture. Carbon Capture Sci. Technol., 1, 100007. https://doi.org/10.1016/j.ccst.2021.100007
    278. Oslan, S. N. H., Tan, J. S., Oslan, S. N., Matanjun, P., Mokhtar, R. A. M., Shapawi, R., Huda, N., 2021. Haematococcus pluvialis as a potential source of astaxanthin with diverse applications in industrial sectors: Current research and future directions. Mol., 26(21), 6470. https://doi.org/10.3390/molecules26216470
    279. Otondo, A., Kokabian, B., Stuart-Dahl, S., Gude, V. G., 2018. Energetic evaluation of wastewater treatment using microalgae, Chlorella vulgaris. J. Environ. Chem. Eng., 6(2), 3213-3222. https://doi.org/10.1016/j.jece.2018.04.064
    280. Pagels, F., Lopes, G., Vasconcelos, V., Guedes, A. C., 2020. White and red LEDs as two-phase batch for cyanobacterial pigments production. Bioresour. Technol. 307, 123105. https://doi.org/10.1016/j.biortech.2020.123105
    281. Pal, P., Anand, U., Saha, S. C., Sundaramurthy, S., Okeke, E. S., Kumar, M., Di Maria, F., 2023. Novel CRISPR/Cas technology in the realm of algal bloom biomonitoring: Recent trends and future perspectives. Environ. Res., 115989. https://doi.org/10.1016/j.envres.2023.115989
    282. Pandey, S., Narayanan, I., Vinayagam, R., Selvaraj, R., Varadavenkatesan, T., Pugazhendhi, A., 2023. A Review on the Effect of Blue Green 11 Medium and its Constituents on Microalgal Growth and Lipid Production. J. Environ. Chem. Eng., 109984. https://doi.org/10.1016/j.jece.2023.109984
    283. Pan-utai, W., Iamtham, S., 2019. Physical extraction and extrusion entrapment of C-phycocyanin from Arthrospira platensis. J. King Saud Univ. Sci., 31(4), 1535-1542. https://doi.org/10.1016/j.jksus.2018.05.026
    284. Park, S., Nguyen, T. H. T., Jin, E., 2019. Improving lipid production by strain development in microalgae: strategies, challenges and perspectives. Bioresour. Technol., 292, 121953. https://doi.org/10.1016/j.biortech.2019.121953
    285. Park, W. S., Kim, H. J., Li, M., Lim, D. H., Kim, J., Kwak, S. S., Ahn, M. J., 2018. Two classes of pigments, carotenoids and c-phycocyanin, in spirulina powder and their antioxidant activities. Molecules, 23(8), 2065. https://doi.org/10.3390/molecules23082065
    286. Parmar, A., Singh, N. K., Pandey, A., Gnansounou, E., Madamwar, D., 2011. Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour. Technol., 102(22), 10163-10172. https://doi.org/10.1016/j.biortech.2011.08.030
    287. Patel, A. K., Tseng, Y. S., Singhania, R. R., Chen, C. W., Chang, J. S., Di Dong, C., 2021. Novel application of microalgae platform for biodesalination process: a review. Bioresour. Technol., 337, 125343. https://doi.org/10.1016/j.biortech.2021.125343
    288. Patil, P. P., Vass, I., Kodru, S., Szabó, M., 2020. A multi-parametric screening platform for photosynthetic trait characterization of microalgae and cyanobacteria under inorganic carbon limitation. PloS one, 15(7), e0236188. https://doi.org/10.1371/journal.pone.0236188
    289. Paul, S., Bera, S., Dasgupta, R., Mondal, S., Roy, S., 2021. Review on the recent structural advances in open and closed systems for carbon capture through algae. Energy Nexus, 4, 100032. https://doi.org/10.1016/j.nexus.2021.100032
    290. Pavani, P., Kumar, K., Rani, A., Venkatesu, P., Lee, M. J., 2021. The influence of sodium phosphate buffer on the stability of various proteins: Insights into protein-buffer interactions. J.Mol. Liq., 331, 115753. https://doi.org/10.1016/j.molliq.2021.115753
    291. Pavlik, D., Zhong, Y., Daiek, C., Liao, W., Morgan, R., Clary, W., Liu, Y., 2017. Microalgae cultivation for carbon dioxide sequestration and protein production using a high-efficiency photobioreactor system. Algal Res. 25, 413-420. https://doi.org/10.1016/j.algal.2017.06.003
    292. Pazda, M., Kumirska, J., Stepnowski, P., Mulkiewicz, E., 2019. Antibiotic resistance genes identified in wastewater treatment plant systems–a review. Sci. Total Environ., 697, 134023. https://doi.org/10.1016/j.scitotenv.2019.134023
    293. Pedersen, J. T. S., van Vuuren, D., Gupta, J., Santos, F. D., Edmonds, J., Swart, R., 2022. IPCC emission scenarios: How did critiques affect their quality and relevance 1990–2022?. Glob. Environ. Change, 75, 102538. https://doi.org/10.1016/j.gloenvcha.2022.102538
    294. Pikal‐Cleland, K. A., Cleland, J. L., Anchordoquy, T. J., Carpenter, J. F., 2002. Effect of glycine on pH changes and protein stability during freeze–thawing in phosphate buffer systems. J. Pharm. Sci., 91(9), 1969-1979. https://doi.org/10.1002/jps.10184
    295. Pikula, K., Mintcheva, N., Kulinich, S. A., Zakharenko, A., Markina, Z., Chaika, V., Golokhvast, K., 2020. Aquatic toxicity and mode of action of CdS and ZnS nanoparticles in four microalgae species. Environ. Res., 186, 109513. https://doi.org/10.1016/j.envres.2020.109513
    296. Priyadharsini, P., Nirmala, N., Dawn, S. S., Baskaran, A., SundarRajan, P., Gopinath, K. P., Arun, J., 2022. Genetic improvement of microalgae for enhanced carbon dioxide sequestration and enriched biomass productivity: Review on CO2 bio-fixation pathways modifications. Algal Res., 66, 102810. https://doi.org/10.1016/j.algal.2022.102810
    297. Qiao, T., Zhao, Y., Zhong, D. B., Yu, X., 2021. Hydrogen peroxide and salinity stress act synergistically to enhance lipids production in microalga by regulating reactive oxygen species and calcium. Algal Res., 53, 102017. https://doi.org/10.1016/j.algal.2020.102017
    298. Raines, C. A., 2022. Improving plant productivity by re‐tuning the regeneration of RuBP in the Calvin–Benson–Bassham cycle. New Phytol., 236(2), 350-356. https://doi.org/10.1111/nph.18394
    299. Raj, S., Sajith, A., Sreenikethanam, A., Vadlamani, S., Satheesh, A., Ganguly, A., Bajhaiya, A. K., 2023. Renewable biofuels from microalgae: technical advances, limitations and economics. Environ. Technol. Rev., 12(1), 18-36.
    300. Ranadheer, P., Kona, R., Sreeharsha, R. V., Mohan, S. V., 2019. Non-lethal nitrate supplementation enhances photosystem II efficiency in mixotrophic microalgae towards the synthesis of proteins and lipids. Bioresour. Technol., 283, 373-377. https://doi.org/10.1016/j.biortech.2019.03.089
    301. Ranga, R., Sarada, R., Ravishankar, G. A., 2007. Influence of CO2 on growth and hydrocarbon production in Botryococcus braunii. J. Microbiol. Biotechnol., 17(3), 414-419. http://doi.org/10.1007/BF00249938
    302. Rathod, J. P., Vira, C., Lali, A. M., Prakash, G., 2020. Metabolic engineering of Chlamydomonas reinhardtii for enhanced β-carotene and lutein production. Appl. Biochem. Biotechnol., 190, 1457-1469. http://doi.org/10.1007/s12010-019-03194-9
    303. Rengel, R., Giraldez, I., Díaz, M. J., García, T., Vigara, J., León, R., 2022. Simultaneous production of carotenoids and chemical building blocks precursors from chlorophyta microalgae. Bioresour. Technol., 351, 127035. https://doi.org/10.1016/j.biortech.2022.12703
    304. Rengel, R., Smith, R. T., Haslam, R. P., Sayanova, O., Vila, M., Leon, R., 2018. Overexpression of acetyl-CoA synthetase (ACS) enhances the biosynthesis of neutral lipids and starch in the green microalga Chlamydomonas reinhardtii. Algal Res., 31, 183-193. https://doi.org/10.1016/j.algal.2018.02.009
    305. Roh, H., Lee, J. S., Choi, H. I., Sung, Y. J., Choi, S. Y., Woo, H. M., Sim, S. J., 2021. Improved CO2-derived polyhydroxybutyrate (PHB) production by engineering fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 for potential utilization of flue gas. Bioresour. Technol., 327, 124789. https://doi.org/10.1016/j.biortech.2021.124789
    306. Romero, N., Visentini, F. F., Marquez, V. E., Santiago, L. G., Castro, G. R., Gagneten, A. M., 2020. Physiological and morphological responses of green microalgae Chlorella vulgaris to silver nanoparticles. Environ. Res., 189, 109857. http://doi.org/10.1016/j.envres.2020.109857
    307. Roussou, S., Albergati, A., Liang, F., Lindblad, P., 2021. Engineered cyanobacteria with additional overexpression of selected Calvin-Benson-Bassham enzymes show further increased ethanol production. Metab. Eng.Commun., 12, e00161. https://doi.org/10.1016/j.mec.2021.e00161
    308. Ross, I. L., Shah, S., Hankamer, B., Amiralian, N., 2021. Microalgal nanocellulose–opportunities for a circular bioeconomy. Trends Plant Sci., 26(9), 924-939. https://doi.org/10.1016/j.tplants.2021.05.004
    309. Roy, M., Mohanty, K., 2019. A comprehensive review on microalgal harvesting strategies: Current status and future prospects. Algal Res., 44, 101683. https://doi.org/10.1016/j.algal.2019.101683
    310. Ruangsomboon, S., Prachom, N., Sornchai, P., 2017. Enhanced growth and hydrocarbon production of Botryococcus braunii KMITL 2 by optimum carbon dioxide concentration and concentration-dependent effects on its biochemical composition and biodiesel properties. Bioresour. Technol., 244, 1358-1366. https://doi.org/10.1016/j.biortech.2017.06.042
    311. Rueda, E., García, J., 2021. Optimization of the phototrophic Cyanobacteria polyhydroxybutyrate (PHB) production by kinetic model simulation. Sci. Total Environ., 800, 149561. https://doi.org/10.1016/j.scitotenv.2021.149561
    312. Sá, M., Ramos, A., Monte, J., Brazinha, C., Galinha, C. F., Crespo, J. G., 2020. Development of a monitoring tool based on fluorescence and climatic data for pigments profile estimation in Dunaliella salina. J. Appl. Phycol., 32, 363-373. http://doi.org/10.1007/s10811-019-01999-z
    313. Saavedra, R., Muñoz, R., Taboada, M. E., Vega, M., Bolado, S., 2018. Comparative uptake study of arsenic, boron, copper, manganese and zinc from water by different green microalgae. Bioresour. Technol., 263, 49-57. https://doi.org/10.1016/j.biortech.2018.04.101
    314. Safaei, M., Maleki, H., Soleimanpour, H., Norouzy, A., Zahiri, H. S., Vali, H., Noghabi, K. A., 2019. Development of a novel method for the purification of C-phycocyanin pigment from a local cyanobacterial strain Limnothrix sp. NS01 and evaluation of its anticancer properties. Sci. Rep., 9(1), 1-16. http://doi.org/10.1038/s41598-019-45905-6
    315. Sahoo, S., Mahapatra, S. R., Das, N., Parida, B. K., Rath, S., Misra, N., Suar, M., 2020. Functional elucidation of hypothetical proteins associated with lipid accumulation: Prioritizing genetic engineering targets for improved algal biofuel production. Algal Res., 47, 101887. https://doi.org/10.1016/j.algal.2020.101887
    316. Saide, A., Martínez, K. A., Ianora, A., Lauritano, C., 2021. Unlocking the health potential of microalgae as sustainable sources of bioactive compounds. Int. J. Mol. Sci., 22(9), 4383. https://doi.org/10.3390/ijms22094383
    317. Sanchez-Tarre, V., Kiparissides, A., 2021. The effects of illumination and trophic strategy on gene expression in Chlamydomonas reinhardtii. Algal Res., 54, 102186. https://doi.org/10.1016/j.algal.2021.102186
    318. Santin, A., Russo, M. T., Ferrante, M. I., Balzano, S., Orefice, I., Sardo, A., 2021. Highly valuable polyunsaturated fatty acids from microalgae: Strategies to improve their yields and their potential exploitation in aquaculture. Molecules, 26(24), 7697. https://doi.org/10.3390/molecules26247697
    319. Sarayloo, E., Simsek, S., Unlu, Y. S., Cevahir, G., Erkey, C., Kavakli, I. H., 2018. Enhancement of the lipid productivity and fatty acid methyl ester profile of Chlorella vulgaris by two rounds of mutagenesis. Bioresour. Technol., 250, 764-769. https://doi.org/10.1016/j.biortech.2017.11.105
    320. Sarwer, A., Hamed, S. M., Osman, A. I., Jamil, F., Al-Muhtaseb, A. A. H., Alhajeri, N. S., Rooney, D. W., 2022. Algal biomass valorization for biofuel production and carbon sequestration: a review. Environ. Chem. Lett., 20(5), 2797-2851. http://doi.org/10.1007/s10311-022-01458-1
    321. Sathinathan, P., Parab, H. M., Yusoff, R., Ibrahim, S., Vello, V., Ngoh, G. C. 2023. Photobioreactor design and parameters essential for algal cultivation using industrial wastewater: A review. Renewable Sustainable Energy Rev., 173, 113096. https://doi.org/10.1016/j.rser.2022.113096
    322. Scherholz, M. L., Curtis, W. R., 2013. Achieving pH control in microalgal cultures through fed-batch addition of stoichiometrically-balanced growth media. BMC biotechnol., 13(1), 1-17. http://doi.org/10.1186/1472-6750-13-39
    323. Schipper, K., Das, P., Al Muraikhi, M., AbdulQuadir, M., Thaher, M. I., Al Jabri, H. M. S., Barbosa, M. J., 2021. Outdoor scale‐up of Leptolyngbya sp.: Effect of light intensity and inoculum volume on photoinhibition and‐oxidation. Biotechnol. Bioeng., 118(6), 2368-2379. https://doi.org/10.1002/bit.27750
    324. Schüler, L. M., Santos, T., Pereira, H., Duarte, P., Katkam, N. G., Florindo, C. Varela, J. C., 2020. Improved production of lutein and β-carotene by thermal and light intensity upshifts in the marine microalga Tetraselmis sp. CTP4. Algal Res., 45, 101732. https://doi.org/10.1016/j.algal.2019.101732
    325. Schroda, M., Blöcker, D., Beck, C. F., 2000. The HSP70A promoter as a tool for the improved expression of transgenes in Chlamydomonas. Plant J. 21(2), 121-131. https://doi.org/10.1046/j.1365-313x.2000.00652.x
    326. Selig, M. J., Malchione, N. M., Gamaleldin, S., Padilla-Zakour, O. I., Abbaspourrad, A., 2018. Protection of blue color in a spirulina derived phycocyanin extract from proteolytic and thermal degradation via complexation with beet-pectin. Food Hydrocolloids, 74, 46-52. https://doi.org/10.1016/j.foodhyd.2017.07.027
    327. Serive, B., Kaas, R., Bérard, J. B., Pasquet, V., Picot, L., Cadoret, J. P., 2012. Selection and optimisation of a method for efficient metabolites extraction from microalgae. Bioresour. Technol., 124, 311-320. https://doi.org/10.1016/j.biortech.2012.07.105
    328. Serra-Maia, R., Bernard, O., Gonçalves, A., Bensalem, S., Lopes, F., 2016. Influence of temperature on Chlorella vulgaris growth and mortality rates in a photobioreactor. Algal Res., 18, 352-359. https://doi.org/10.1016/j.algal.2016.06.016
    329. Sforza, E., Simionato, D., Giacometti, G. M., Bertucco, A., Morosinotto, T., 2012. Adjusted light and dark cycles can optimize photosynthetic efficiency in algae growing in photobioreactors. PloS One, 7(6), e38975. https://doi.org/10.1371/journal.pone.0038975
    330. Shariati, S., Zare, D., Mirdamadi, S., 2019. Screening of carbon and nitrogen sources using mixture analysis designs for carotenoid production by Blakeslea trispora. Food Sci. Biotechnol., 28(2), 469-479. http://doi.org/10.1007/s10068-018-0484-0
    331. Sharifi, A., 2021. Co-benefits and synergies between urban climate change mitigation and adaptation measures: A literature review. Sci. Total Environ, 750, 141642. https://doi.org/10.1016/j.scitotenv.2020.141642
    332. Shin, Y. S., Jeong, J., Nguyen, T. H. T., Kim, J. Y. H., Jin, E., Sim, S. J., 2019. Targeted knockout of phospholipase A2 to increase lipid productivity in Chlamydomonas reinhardtii for biodiesel production. Bioresour. Technol., 271, 368-374. https://doi.org/10.1016/j.biortech.2018.09.121
    333. Shinde, S., Zhang, X., Singapuri, S. P., Kalra, I., Liu, X., Morgan-Kiss, R. M., Wang, X., 2020. Glycogen metabolism supports photosynthesis start through the oxidative pentose phosphate pathway in cyanobacteria. Plant Physiol., 182(1), 507-517. https://doi.org/10.1104/pp.19.01184
    334. Shomali, A., Aliniaeifard, S., Mohammadian, M., Rastogi, A., Lastochkina, O. V., Li, T., Bosacchi, M., 2023. Photoinhibition in Horticultural Crops: An Overview of the Effect of Light Quality and Signaling in the Underlying Photoprotection Mechanisms. Int. J. Hortic. Sci. Technol., 10, 39-50. http://doi.org/10.22059/ijhst.2023.351726.598
    335. Siddik, A. B., Khan, S., Khan, U., Yong, L., Murshed, M., 2023. The role of renewable energy finance in achieving low-carbon growth: contextual evidence from leading renewable energy-investing countries. Energy, 270, 126864. https://doi.org/10.1016/j.energy.2023.126864
    336. Simkin, A. J., Kapoor, L., Doss, C. G. P., Hofmann, T. A., Lawson, T., Ramamoorthy, S., 2022. The role of photosynthesis related pigments in light harvesting, photoprotection and enhancement of photosynthetic yield in planta. Photosynthesis Research, 152(1), 23-42. http://doi.org/10.1007/s11120-021-00892-6
    337. Singh, S. P., Singh, P., 2015. Effect of temperature and light on the growth of algae species: a review. Renew. Sust. Energ. Rev., 50, 431-444. https://doi.org/10.1016/j.rser.2015.05.024
    338. Sivaramakrishnan, R., Suresh, S., Kanwal, S., Ramadoss, G., Ramprakash, B., Incharoensakdi, A., 2022. Microalgal biorefinery concepts’ developments for biofuel and bioproducts: Current perspective and bottlenecks. Int. J. Mol. Sci., 23(5), 2623. https://doi.org/10.3390/ijms23052623
    339. Sanchez-Tarre, V., Kiparissides, A., 2021. The effects of illumination and trophic strategy on gene expression in Chlamydomonas reinhardtii. Algal Res., 54, 102186. http://doi.org/10.1016/j.algal.2021.102186
    340. Schüler, L. M., Bombo, G., Duarte, P., Santos, T. F., Maia, I. B., Pinheiro, F., Varela, J. C., 2021. Carotenoid biosynthetic gene expression, pigment and n-3 fatty acid contents in carotenoid-rich Tetraselmis striata CTP4 strains under heat stress combined with high light. Biores. Technol., 337, 125385. http://doi.org/10.1016/j.biortech.2021.125385
    341. Shih, P. M., Zarzycki, J., Niyogi, K. K., Kerfeld, C. A., 2014. Introduction of a synthetic CO2-fixing photorespiratory bypass into a cyanobacterium. J. Biol. Chem., 289(14), 9493-9500. https://doi.org/10.1074/jbc.C113.543132
    342. Sintra, T. E., Bagagem, S. S., Ahsaie, F. G., Fernandes, A., Martins, M., Macário, I. P., Ventura, S. P., 2021. Sequential recovery of C-phycocyanin and chlorophylls from Anabaena cylindrica. Sep. Purif. Technol., 255, 117538. https://doi.org/10.1016/j.seppur.2020.117538
    343. Solovchenko, A., Khozin-Goldberg, I., 2013. High-CO2 tolerance in microalgae: possible mechanisms and implications for biotechnology and bioremediation. Biotechnol. Let., 35(11), 1745-1752. http://doi.org/10.1007/s10529-013-1274-7
    344. Sonani, R. R., Patel, S., Bhastana, B., Jakharia, K., Chaubey, M. G., Singh, N. K., Madamwar, D., 2017. Purification and antioxidant activity of phycocyanin from Synechococcus sp. R42DM isolated from industrially polluted site., 245, 325-331. https://doi.org/10.1016/j.biortech.2017.08.129
    345. Song, X., Zhao, Y., Han, B., Li, T., Zhao, P., Xu, J. W., Yu, X., 2020. Strigolactone mediates jasmonic acid-induced lipid production in microalga Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. Bioresour Technol., 306, 123107. https://doi.org/10.1016/j.biortech.2020.123107
    346. Sousa, C. A., Sousa, H., Vale, F., Simoes, M., 2021. Microalgae-based bioremediation of wastewaters-Influencing parameters and mathematical growth modelling. Chem. Eng. J., 425, 131412. https://doi.org/10.1016/j.cej.2021.131412
    347. Spalding, M. H., Spreitzer, R. J., Ogren, W. L., 1983. Carbonic anhydrase-deficient mutant of Chlamydomonas reinhardii requires elevated carbon dioxide concentration for photoautotrophic growth. Plant Physiol. Biochem. 73(2), 268-272. https://doi.org/10.1104/pp.73.2.268
    348. Sproles, A. E., Fields, F. J., Smalley, T. N., Le, C. H., Badary, A., Mayfield, S. P., 2021. Recent advancements in the genetic engineering of microalgae. Algal Res., 53, 102158. https://doi.org/10.1016/j.algal.2020.102158
    349. Srivastava, R. K., Shetti, N. P., Reddy, K. R., Kwon, E. E., Nadagouda, M. N., Aminabhavi, T. M., 2021. Biomass utilization and production of biofuels from carbon neutral materials. Environ. Pollut., 276, 116731. https://doi.org/10.1016/j.envpol.2021.116731
    350. Strunecký, O., Kopejtka, K., Goecke, F., Tomasch, J., Lukavský, J., Neori, A., Koblížek, M., 2019. High diversity of thermophilic cyanobacteria in Rupite hot spring identified by microscopy, cultivation, single-cell PCR and amplicon sequencing. Extremophiles, 23(1), 35-48. http://doi.org/10.1007/s00792-018-1058-z
    351. Su, Y., 2021. Revisiting carbon, nitrogen, and phosphorus metabolisms in microalgae for wastewater treatment. Sci. Total Environ., 762, 144590. https://doi.org/10.1016/j.scitotenv.2020.144590
    352. Sugimoto, R., Saito, N., Shimada, T., Tanaka, K., 2017. Identification of YbhA as the pyridoxal 5’-phosphate (PLP) phosphatase in Escherichia coli: Importance of PLP homeostasis on the bacterial growth. J. Gen. Appl. Microbiol. 63, 362-368. https://doi.org/10.2323/jgam.2017.02.008
    353. Swarnalatha, G. V., Hegde, N. S., Chauhan, V. S., Sarada, R., 2015. The effect of carbon dioxide rich environment on carbonic anhydrase activity, growth and metabolite production in indigenous freshwater microalgae. Algal Res. 9, 151-159. https://doi.org/10.1016/j.algal.2015.02.014
    354. Tan, K. W. M., Lee, Y. K., 2017. Expression of the heterologous Dunaliella tertiolecta fatty acyl-ACP thioesterase leads to increased lipid production in Chlamydomonas reinhardtii. J. Biotechnol., 247, 60-67. https://doi.org/10.1016/j.jbiotec.2017.03.004
    355. Tan, S. I., Ng, I. S, 2020. Design and optimization of bioreactor to boost carbon dioxide assimilation in RuBisCo-equipped Escherichia coli. Bioresour. Technol. 314, 123785. https://doi.org/10.1016/j.biortech.2020.123785
    356. Tan, X. B., Zhao, X. C., Zhang, Y. L., Zhou, Y. Y., Yang, L. B., Zhang, W. W., 2018. Enhanced lipid and biomass production using alcohol wastewater as carbon source for Chlorella pyrenoidosa cultivation in anaerobically digested starch wastewater in outdoors. Bioresour. Technol., 247, 784-793. https://doi.org/10.1016/j.biortech.2017.09.152
    357. Tang, D. Y. Y., Khoo, K. S., Chew, K. W., Tao, Y., Ho, S. H., Show, P. L., 2020. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresour. Technol., 304, 122997. https://doi.org/10.1016/j.biortech.2020.122997
    358. Tavakoli, S., Hong, H., Wang, K., Yang, Q., Gahruie, H. H., Zhuang, S., Luo, Y., 2021. Ultrasonic-assisted food-grade solvent extraction of high-value added compounds from microalgae Spirulina platensis and evaluation of their antioxidant and antibacterial properties. Algal Res., 60, 102493. https://doi.org/10.1016/j.algal.2021.102493
    359. Tavanandi, H. A., Mittal, R., Chandrasekhar, J., Raghavarao, K. S. M. S., 2018. Simple and efficient method for extraction of C-Phycocyanin from dry biomass of Arthospira platensis. Algal Res., 31, 239-251. https://doi.org/10.1016/j.algal.2018.02.008
    360. Teng, C. S., Xue, C., Lin, J. Y., Ng, I. S., 2022. Towards high-level protein, beta-carotene, and lutein production from Chlorella sorokiniana using aminobutyric acid and pseudo seawater. Biochem. Eng. J., 184, 108473. http://doi.org/10.1016/j.bej.2022.108473
    361. Tharasirivat, V., Jantaro, S. 2023. Increased Biomass and Polyhydroxybutyrate Production by Synechocystis sp. PCC 6803 Overexpressing RuBisCO Genes. Int. J. Mol. Sci., 24(7), 6415. https://doi.org/10.3390/ijms24076415
    362. Tong, C. Y., Honda, K., Derek, C. J. C., 2023. A review on microalgal-bacterial Co-culture: The multifaceted role of beneficial bacteria towards enhancement of microalgal metabolite production. Environ. Res., 115872. https://doi.org/10.1016/j.envres.2023.115872
    363. Touliabah, H. E. S., El-Sheekh, M. M., Ismail, M. M., El-Kassas, H., 2022. A review of microalgae-and cyanobacteria-based biodegradation of organic pollutants. Mol., 27(3), 1141. https://doi.org/10.3390/molecules27031141
    364. Tran, N. T., Kaldenhoff, R, 2020. Achievements and challenges of genetic engineering of the model green alga Chlamydomonas reinhardtii. Algal Res. 50, 101986. https://doi.org/10.1016/j.algal.2020.101986
    365. Tsai, T. H., Lin, J. Y., Ng, I. S., 2021. Cooperation of phytoene synthase, pyridoxal kinase and carbonic anhydrase for enhancing carotenoids biosynthesis in genetic Chlamydomonas reinhardtii. J. Taiwan Inst. Chem. Eng., 104184. https://doi.org/10.1016/j.jtice.2021.104184
    366. Tsolcha, O. N., Tekerlekopoulou, A. G., Akratos, C. S., Aggelis, G., Genitsaris, S., Moustaka-Gouni, M., Vayenas, D. V., 2017. Biotreatment of raisin and winery wastewaters and simultaneous biodiesel production using a Leptolyngbya-based microbial consortium. J. Clean. Prod., 148, 185-193. https://doi.org/10.1016/j.jclepro.2017.02.026
    367. Urbina-Suarez, N. A., Ayala-González, D. D., Rivera-Amaya, J. D., Barajas-Solano, A. F., Machuca-Martínez, F., 2022. Evaluation of the Light/Dark Cycle and Concentration of Tannery Wastewater in the Production of Biomass and Metabolites of Industrial Interest from Microalgae and Cyanobacteria. Water, 14(3), 346. https://doi.org/10.3390/w14030346
    368. Vadrale, A. P., Dong, C. D., Haldar, D., Wu, C. H., Chen, C. W., Singhania, R. R., Patel, A. K., 2023. Bioprocess development to enhance biomass and lutein production from Chlorella sorokiniana Kh12. Bioresour. Technol., 128583. http://doi.org/10.1016/j.biortech.2023.128583
    369. Vargas-Estrada, L., Longoria, A., Arenas, E., Moreira, J., Okoye, P. U., Bustos-Terrones, Y., Sebastian, P. J., 2021. A review on current trends in biogas production from microalgae biomass and microalgae waste by anaerobic digestion and co-digestion. BioEnergy Res., 1-16. http://doi.org/10.1007/s12155-021-10276-2
    370. Veerabadhran, M., Natesan, S., MubarakAli, D., Xu, S., Yang, F., 2021. Using different cultivation strategies and methods for the production of microalgal biomass as a raw material for the generation of bioproducts. Chemosphere, 285, 131436. https://doi.org/10.1016/j.chemosphere.2021.131436
    371. Venios, X., Korkas, E., Nisiotou, A., Banilas, G., 2020. Grapevine responses to heat stress and global warming. Plants, 9(12), 1754. https://doi.org/10.3390/plants9121754
    372. Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J., Govindarajan, S., 2006. Gene Designer: a synthetic biology tool for constructing artificial DNA segments. BMC Bioinform. 7(1), 285. http://doi.org/10.1186/1471-2105-7-285
    373. Wagner, J., Bransgrove, R., Beacham, T. A., Allen, M. J., Meixner, K., Drosg, B., Chuck, C. J., 2016. Co-production of bio-oil and propylene through the hydrothermal liquefaction of polyhydroxybutyrate producing cyanobacteria. Bioresour Technol., 207, 166-174. https://doi.org/10.1016/j.biortech.2016.01.114
    374. Wahidin, S., Idris, A., Shaleh, S. R. M., 2013. The influence of light intensity and photoperiod on the growth and lipid content of microalgae Nannochloropsis sp. Bioresour. Technol., 129, 7-11. https://doi.org/10.1016/j.biortech.2012.11.032
    375. Wang, C., Li, Y., Lu, J., Deng, X., Li, H., Hu, Z., 2018a. Effect of overexpression of LPAAT and GPD1 on lipid synthesis and composition in green microalga Chlamydomonas reinhardtii. J. Appl. Phycol., 30, 1711-1719. http://doi.org/10.1007/s10811-017-1349-2
    376. Wang, R., Zhu, W., Hu, S., Feng, G., Xue, Z., Chen, H., 2019a. Hydrothermal pretreatment of salvaged cyanobacteria and use of pretreated medium for cultivating Scenedesmus obliquus. Bioresour. Technol., 294, 122120. https://doi.org/10.1016/j.biortech.2019.122120
    377. Wang, S. K., Wang, X., Miao, J., Tian, Y. T., 2018b. Tofu whey wastewater is a promising basal medium for microalgae culture. Bioresour. Technol., 253, 79-84. https://doi.org/10.1016/j.biortech.2018.01.012
    378. Wang, S., Foster, A., Lenz, E. A., Kessler, J. D., Stroeve, J. C., Anderson, L. O., Hausfather, Z., 2023. Mechanisms and impacts of Earth system tipping elements. Rev. Geophys., 61(1), e2021RG000757. https://doi.org/10.1029/2021RG000757
    379. Wang, X., Liu, S. F., Li, R. Y., Yang, W. D., Liu, J. S., Lin, C. S. K., Li, H. Y., 2020. TAG pathway engineering via GPAT2 concurrently potentiates abiotic stress tolerance and oleaginicity in Phaeodactylum tricornutum. Biotechnol. Biofuels, 13(1), 1-14. http://doi.org/10.1186/s13068-020-01799-5
    380. Wang, Y., Liu, X., Liu, Y., Wang, D., Xu, Q., Li, X., Chen, H., 2020. Enhancement of short-chain fatty acids production from microalgae by potassium ferrate addition: feasibility, mechanisms and implications. Bioresour. Technol., 318, 124266. https://doi.org/10.1016/j.biortech.2020.124266
    381. Wang, Y., Lin, Z., Su, X., Zhao, P., Zhou, J., He, Q., Ai, H., 2019b. Cost-effective domestic wastewater treatment and bioenergy recovery in an immobilized microalgal-based photoautotrophic microbial fuel cell (PMFC). Chem. Eng. J., 372, 956-965. https://doi.org/10.1016/j.cej.2019.05.004
    382. Wei, L., Shen, C., El Hajjami, M., You, W., Wang, Q., Zhang, P., Xu, J., 2019. Knockdown of carbonate anhydrase elevates Nannochloropsis productivity at high CO2 level. Metab. Eng., 54, 96-108. https://doi.org/10.1016/j.ymben.2019.03.004
    383. Wei, L., Wang, Q., Xin, Y., Lu, Y., Xu, J., 2017. Enhancing photosynthetic biomass productivity of industrial oleaginous microalgae by overexpression of RuBisCO activase. Algal Res., 27, 366-375. https://doi.org/10.1016/j.algal.2017.07.023
    384. Welkie, D. G., Rubin, B. E., Diamond, S., Hood, R. D., Savage, D. F., Golden, S. S., 2019. A hard day’s night: cyanobacteria in diel cycles. Trends Microbiol., 27(3), 231-242. https://doi.org/10.1016/j.tim.2018.11.002
    385. Wijffels, R. H., Barbosa, M. J., 2010. An outlook on microalgal biofuels. Science. 329 (5993), 796-799. http://doi.org/10.1126/science.1189003
    386. Winayu, B. N. R., Hsueh, H. T., Chu, H., 2022. CO2 fixation and cultivation of Thermosynechococcus sp. CL-1 for the production of phycocyanin. Bioresour. Technol., 364, 128105. https://doi.org/10.1016/j.biortech.2022.128105
    387. Winayu, B. N. R., Lai, K. T., Hsueh, H. T., Chu, H., 2021. Production of phycobiliprotein and carotenoid by efficient extraction from Thermosynechococcus sp. CL-1 cultivation in swine wastewater. Bioresour. Technol., 319, 124125. https://doi.org/10.1016/j.biortech.2020.124125
    388. Wu, D., Hou, Y., Cheng, J., Han, T., Hao, N., Zhang, B., Chen, S., 2022. Transcriptome analysis of lipid metabolism in response to cerium stress in the oleaginous microalga Nannochloropsis oculata. Sci. Total Environ., 838, 156420. https://doi.org/10.1016/j.scitotenv.2022.156420
    389. Xia, D., Liu, B., Xin, W., Liu, T., Sun, J., Liu, N., Du, Z., 2016. Protective effects of C-phycocyanin on alcohol-induced subacute liver injury in mice. J. Appl. Phycol., 28(2), 765-772. http://doi.org/10.1007/s10811-015-0677-3
    390. Xing, C., Li, J., Yuan, H., Yang, J., 2022. Physiological and transcription level responses of microalgae Auxenochlorella protothecoides to cold and heat induced oxidative stress. Environ. Res., 211, 113023. http://doi.org/10.1016/j.envres.2022.113023
    391. Xu, H., Lee, U., Coleman, A. M., Wigmosta, M. S., Sun, N., Hawkins, T., Wang, M., 2020. Balancing water sustainability and productivity objectives in microalgae cultivation: siting open ponds by considering seasonal water-stress impact using AWARE-US. Environ. Sci. Technol. 54(4), 2091-2102. https://doi.org/10.1021/acs.est.9b05347
    392. Xu, L., Cheng, X., Wang, Q., 2018. Enhanced lipid production in Chlamydomonas reinhardtii by co-culturing with Azotobacter chroococcum. Front. Plant Sci., 9, 741. http://doi.org/10.3389/fpls.2018.00741
    393. Xu, N., Liu, Y., Jiang, H., Liu, J., Ma, Y., 2020. Combining protein and metabolic engineering to construct efficient microbial cell factories. Curr. Opin. Biotechnol., 66, 27-35. https://doi.org/10.1016/j.copbio.2020.06.001
    394. Xu, X., Gu, X., Wang, Z., Shatner, W., Wang, Z., 2019. Progress, challenges and solutions of research on photosynthetic carbon sequestration efficiency of microalgae. Renewable Sustainable Energy Rev., 110, 65-82. https://doi.org/10.1016/j.rser.2019.04.050
    395. Xue, C., Hsu, K. M., Chiu, C. Y., Chang, Y. K., Ng, I. S., 2021. Fabrication of bio-based polyamide 56 and antibacterial nanofiber membrane from cadaverine. Chemosphere, 266, 128967. https://doi.org/10.1016/j.chemosphere.2020.128967
    396. Xue, C., Hsu, K. M., Ting, W. W., Huang, S. F., Lin, H. Y., Li, S. F., Ng, I. S., 2020. Efficient biotransformation of l-lysine into cadaverine by strengthening pyridoxal 5’-phosphate-dependent proteins in Escherichia coli with cold shock treatment. Biochem. Eng. J. 107659. https://doi.org/10.1016/j.bej.2020.107659
    397. Yaakob, M. A., Mohamed, R. M. S. R., Al-Gheethi, A., Aswathnarayana Gokare, R., Ambati, R. R., 2021. Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: an overview. Cells, 10(2), 393. https://doi.org/10.3390/cells10020393
    398. Yadav, G., Dash, S. K., Sen, R., 2019. A biorefinery for valorization of industrial wastewater and flue gas by microalgae for waste mitigation, carbon-dioxide sequestration and algal biomass production. Sci. Total Environ. 688, 129-135. https://doi.org/10.1016/j.scitotenv.2019.06.024
    399. Yahya, M. N., Gökçekuş, H., Ozsahin, D. U., Uzun, B., 2020. Evaluation of wastewater treatment technologies using TOPSIS. Desalination Water Treat., 177, 416-422. https://doi.org/10.5004/dwt.2020.25172
    400. Yang, B., Liu, J., Ma, X., Guo, B., Liu, B., Wu, T., Chen, F., 2017. Genetic engineering of the Calvin cycle toward enhanced photosynthetic CO2 fixation in microalgae. Biotechnol. Biofuels, 10(1), 1-13. http://doi.org/10.1186/s13068-017-0916-8
    401. Yang, J. H., Williams, D., Kandiah, E., Fromme, P., Chiu, P. L., 2020a. Structural basis of redox modulation on chloroplast ATP synthase. Commun. Biol., 3(1), 1-12. http://doi.org/10.1038/s42003-020-01221-8
    402. Yang, L., Ren, L., Tan, X., Chu, H., Chen, J., Zhang, Y., Zhou, X., 2020b. Removal of ofloxacin with biofuel production by oleaginous microalgae Scenedesmus obliquus. Biores. Technol., 315, 123738. http://doi.org/10.1016/j.biortech.2020.123738
    403. Yang, Y., Gao, K., 2003. Effects of CO2 concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J. Appl. Phycol. 15(5), 379-389. http://doi.org/10.1023/A:1026021021774
    404. Yang, Y., Tsui, H. C. T., Man, T. K., Winkler, M. E., 1998. Identification and function of the pdxY gene, which encodes a novel pyridoxal kinase involved in the salvage pathway of pyridoxal 5’-phosphate biosynthesis in Escherichia coli K-12. J. Bacteriol. 180(7), 1814-1821. https://doi.org/10.1128/JB.180.7.1814-1821.1998
    405. Yang, Z. Y., Gao, F., Liu, J. Z., Yang, J. S., Liu, M., Ge, Y. M., Chen, J. M., 2022. Improving sedimentation and lipid production of microalgae in the photobioreactor using saline wastewater. Bioresour. Technol., 347, 126392. http://doi.org/10.1016/j.biortech.2021.126392
    406. Yin, W., Liu, M., Zhao, T. L., Qian, F. J., Li, H., Yao, Q. Z., Zhou, G. T., 2020. Removal and recovery of silver nanoparticles by hierarchical mesoporous calcite: Performance, mechanism, and sustainable application. Environ. Res., 187, 109699. https://doi.org/10.1016/j.envres.2020.109699
    407. Yu, B. S., Sung, Y. J., Hong, M. E., Sim, S. J., 2021. Improvement of photoautotrophic algal biomass production after interrupted CO2 supply by urea and KH2PO4 injection. Energies, 14(3), 778. https://doi.org/10.3390/en14030778
    408. Zarneshan, S. N., Fakhri, S., Farzaei, M. H., Khan, H., Saso, L., 2020. Astaxanthin targets PI3K/Akt signaling pathway toward potential therapeutic applications. Food Chem. Toxicol., 145, 111714. https://doi.org/10.1016/j.fct.2020.111714
    409. Zavřel, T., Očenášová, P., Sinetova, M. A., Červený, J., 2018. Determination of storage (starch/glycogen) and total saccharides content in algae and cyanobacteria by a phenol-sulfuric acid method. Bio-protocol, 8(15), e2966-e2966. http://doi.org/10.21769/BioProtoc.2966
    410. Zeng, J., Wang, Z., Chen, G., 2021. Biological characteristics of energy conversion in carbon fixation by microalgae. Renewable Sustainable Energy Rev.s, 152, 111661. https://doi.org/10.1016/j.rser.2021.111661
    411. Zeng, Y. J., Yang, H. R., Zong, M. H., Yang, J. G., Lou, W. Y., 2019. Novel antibacterial polysaccharides produced by endophyte Fusarium solani DO7. Bioresour. Technol., 288, 121596. https://doi.org/10.1016/j.biortech.2019.121596
    412. Zha, Z., Liu, S., Liu, Y., Li, C., Wang, L., 2022. Potential Utility of Natural Products against Oxidative Stress in Animal Models of Multiple Sclerosis. Antioxidants, 11(8), 1495. https://doi.org/10.3390/antiox11081495
    413. Zhang, C., Hasunuma, T., Lam, S. S., Kondo, A., Ho, S. H., 2021a. Salinity-induced microalgal-based mariculture wastewater treatment combined with biodiesel production. Bioresour. Technol., 340, 125638. https://doi.org/10.1016/j.biortech.2021.125638
    414. Zhang, J., van den Herik, B. M., Wahl, S. A., 2020. Alpha-ketoglutarate utilization in Saccharomyces cerevisiae: transport, compartmentation and catabolism. Sci. Rep., 10(1), 1-11. http://doi.org/10.1038/s41598-020-69178-6
    415. Zhang, M. P., Wang, M., Wang, C., 2021b. Nuclear transformation of Chlamydomonas reinhardtii: A review. Biochimie, 181, 1-11. https://doi.org/10.1016/j.biochi.2020.11.016
    416. Zhang, S., Liu, Z., 2021c. Advances in the biological fixation of carbon dioxide by microalgae. J. Chem. Technol. Biotechnol., 96(6), 1475-1495. https://doi.org/10.1002/jctb.6714
    417. Zhang, Z., Sun, D., Zhang, Y., Chen, F., 2019. Glucose triggers cell structure changes and regulates astaxanthin biosynthesis in Chromochloris zofingiensis. Algal Res., 39, 101455. https://doi.org/10.1016/j.algal.2019.101455
    418. Zhao, J., Wang, D., Liu, Y., Ngo, H. H., Guo, W., Yang, Q., Li, X., 2018. Novel stepwise pH control strategy to improve short chain fatty acid production from sludge anaerobic fermentation. Bioresour. Technol., 249, 431-438. https://doi.org/10.1016/j.biortech.2017.10.050
    419. Zheng, Y., Huang, Y., Xia, A., Qian, F., Wei, C., 2019. A rapid inoculation method for microalgae biofilm cultivation based on microalgae-microalgae co-flocculation and zeta-potential adjustment. Bioresour. Technol., 278, 272-278. https://doi.org/10.1016/j.biortech.2019.01.083
    420. Zhou, Q., Yang, N., Li, Y., Ren, B., Ding, X., Bian, H., Yao, X., 2020. Total concentrations and sources of heavy metal pollution in global river and lake water bodies from 1972 to 2017. Glob. Ecol. Conserv., 22, e00925. https://doi.org/10.1016/j.gecco.2020.e00925
    421. Zhu, Z., Cao, H., Li, X., Rong, J., Cao, X., Tian, J., 2021. A carbon fixation enhanced Chlamydomonas reinhardtii strain for achieving the double-win between growth and biofuel production under non-stressed conditions. Front. Bioeng. Biotechnol., 8, 1517. https://doi.org/10.3389/fbioe.2020.603513
    422. Zimmerman, A. E., Howard-Varona, C., Needham, D. M., John, S. G., Worden, A. Z., Sullivan, M. B., Coleman, M. L., 2020. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol., 18(1), 21-34. http://doi.org/10.1038/s41579-019-0270-x

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE