簡易檢索 / 詳目顯示

研究生: 陳儀璘
Chen, Yi-Ling
論文名稱: 化學品分級管理與健康危害控制措施之方法選用-以乾蝕刻製程為例
Selection of Methods for Chemical Control Banding and Health Hazard Control Approach - A Case Study of Dry Etching Process
指導教授: 施勵行
Shih, Li-Hsing
學位類別: 碩士
Master
系所名稱: 工學院 - 工程管理碩士在職專班
Engineering Management Graduate Program(on-the-job class)
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 94
中文關鍵詞: 化學品分級管理健康危害乾蝕刻製程
外文關鍵詞: Chemical Control Banding, Health Hazard, Dry Etching Process
相關次數: 點閱:81下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體產業的發展,製程使用的化學品種類眾多,且因應新產品及新製程開發,持續導入新化學品於製程。化學品可能造成勞工的風險多樣,為了在有限的資源下,找出工作場所中化學品的危害程度,各專家團體分別開發了化學品分級管理方法。然而不同的分級方法將相同的化學品判定為不同的風險等級,進而提供不同的風險控制措施。選擇適當的化學品分級管理方法有助於新化學品導入時正確的評估風險。
    本研究選擇以半導體產業IC製程中的乾蝕刻製程進行不同分級管理方法的討論,選用台灣、英國、德國及新加波職業安全衛生主管機關建議之分級管理方法進行化學品分級比較,並檢視不同分級管理方法對應工作場所實際採用的健康危害控制措施之間的差異。結果顯示台灣、英國與德國建議的分級方法結果相近,但德國的方法偏向低估風險。新加坡的方法將容許暴露濃度的資訊列入暴露分級項目,使得部分物質暴露分級結果降低,可能使勞工增加風險。同時,現有分級管理依作業型態提供的控制表多數不適用半導體製程,建議持續針對不同作業型態持續發展對應的控制措施表單。
    透過比較四種分級管理方法的差異,本研究建議採用英國-COSHH做為半導體IC製程化學品健康危害風險評估的工具。因為英國-COSHH的危害分級將化學品判定的風險等級較為安全且對應的控制措施與現況相符,雖然有較多的化學品需要額外的專家介入,但英國-COSHH同時提供適用於半導體IC製程的直接控制表,有助於半導體IC製程導入合適的化學品控制措施。

    As the semiconductor industry grows, there are many types of chemicals used in production. In order to find out the degree of chemical hazards in the workplace, experts have developed different management approach of chemical control bandings. However, a same chemical is being categorized into different risk levels by different approaches. With an appropriate chemical control banding, it is beneficial to make correct risk assessment when new chemicals are introduced.
    In this study, the dry etching process of the IC manufacturing process was chosen for discussion among different management approaches of chemical control bandings. We compared the approaches recommended by the Occupational Safety and Health Administration of Taiwan, the United Kingdom, Germany, and Singapore, and we also compared them to the health-risk control policies in workplaces.

    The result showed that the management approaches of chemical control banding by Taiwan, UK and Germany were similar, but the German methodology tended to underestimate the risk. The Singapore methodology included the information about permissible exposure limit of the exposure classification, which reduced the exposure classification of some chemical substances.
    This study was proposed to use UK-COSHH as a tool to assess the health hazard risks of semiconductor IC process chemicals. The risk level of chemicals in the hazard classification of UK-COSHH was safer than other countries, and its corresponding control approach was also in line with the current situation. UK-COSHH also provided direct advice sheets of tasks and processes for IC manufacturing process in the semiconductor industry.

    論文目錄 論文目錄 I 圖表目錄 III 表目錄 III 圖目錄 IV 第一章 緒論 1 1.1. 研究背景與動機 1 1.2. 研究目的 2 1.3. 研究架構 3 第二章 文獻探討 4 2.1. 半導體製程簡介 4 2.2. 化學品分級管理的演變與成效 6 2.3. 我國化學品分級管理制度現況與限制 9 2.4. 各種化學品分級管理方法的選擇 12 第三章 研究方法 19 3.1. 研究步驟 19 3.2. 選用化學品分級管理方法說明 21 3.3. 建立化學品分級管理清單 41 3.4. 差異比較辦法 41 第四章 研究結果 44 4.1. 化學品分級管理清單 44 4.2. 不同分級管理方法之結果說明 50 4.3. 不同分級管理建議對策差異說明 54 4.4. 選擇適用乾蝕刻製程之分級管理方法 60 4.5. 四種分級管理方法設計架構的差異 61 第五章 結論與建議 68 參考文獻 71 附錄一、台灣-CCB參考之控制表單 76 附錄二、英國-COSHH參考之控制表單 83 附錄三、德國-EMKG參考之控制表單 89 附錄四、英國-COSHH直接控制表單 93

    英文文獻
    1. Balsat, A., De Graeve, J. and Mairiaux, P. A structured strategy for assessing chemical risks, suitable for small and medium-sized enterprises. Ann. Occup. Hyg. 47, 549-56, 2003.
    2. Bourke, J.A., Nichols-Dunsmuir, A., Begg, A., Dong, H. and Schluter, P.J. Measuring disability: An agreement study between two disability measures. Disability and Health Journal 14, 100995, 2021.
    3. Brooke, I.M. A UK scheme to help small firms control health risks from chemicals: Toxicological considerations. Ann. Occup. Hyg. 42, 377-90, 1998.
    4. Evans, P. Presented at the National Control Banding Workshop. COSHH Essentials, Washington, D.C., 2005.
    5. Garrod, A.N.I., Evans, P.G. and Davy, C.W. Risk management measures for chemicals: the "COSHH essentials'' approach. J. Expo. Sci. Environ. Epidemiol. 17, S48-S54, 2007.
    6. Rappaport, S.M., Lyles, R.H. and Kupper, L.L. An exposure-assessment strategy accounting for within- and between-worker sources of variability. The Annals of Occupational Hygiene 39, 469-95, 1995.
    7. Hashimoto, H., Goto, T., Nakachi, N., Suzuki, H., Takebayashi, T., Kajiki, S. and Mori, K. Evaluation of the control banding method - Comparison with measurement-based comprehensive risk assessment. J. Occup. Health 49, 482-92, 2007.
    8. Jones, R.M. and Nicas, M. Margins of safety provided by COSHH essentials and the ILO chemical control toolkit. Ann. Occup. Hyg. 50, 149-56, 2006.
    9. Kromhout, H. Design of measurement strategies for workplace exposures. Occup. Environ. Med. 59, 349-54, 2002.
    10. Landis, J.R. and Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 33, 159-74, 1977.
    11. Mendoza-Munoz, M., Adsuar, J.C., Mendoza-Munoz, D.M., Polero, P. and Carlos-Vivas, J. Concurrent Validity and Reliability of a Novel Visual Analogue Fitness Perception Scale for Adolescents (FP VAS A). International Journal of Environmental Research and Public Health 18, 2021.
    12. Money, C.D. European experiences in the development of approaches for the successful control of workplace health risks. Ann. Occup. Hyg. 47, 533-40, 2003.
    13. Hawkins, Neil C., Norwood, Samuel Kent and Rock, James C., A Strategy for Occupational Exposure Assessment. American Industrial Hygiene Associationn, 1991.
    14. Rappaport, S.M., Lyles, R.H. and Kupper, L.L. An exposure-assessment strategy accounting for within- and between-worker sources of variability. The Annals of Occupational Hygiene 39, 469-95, 1995.
    15. Scheffers, T., Doornaert, B., Berne, N., van Breukelen, G., Leplay, A. and van Miert, E. On the Strength and Validity of Hazard Banding. Ann. Occup. Hyg. 60, 1049-61, 2016.
    16. Stassen, G., Rudolf, K., Gernert, M., Thiel, A. and Schaller, A. Questionnaire choice affects the prevalence of recommended physical activity: an online survey comparing four measuring instruments within the same sample. BMC Public Health 21, 12, 2021.
    17. Steven D. Jahn, William H. Bullock, and Joselito S. Ignacio. A Strategy for Assessing and Managing Occupational Exposures, American Industrial Hygiene Associationn, 1998.
    18. Vaughan, N.P. and Rajan-Sithamparanadarajah, R. An Assessment of the Robustness of the COSHH-Essentials (C-E) Target Airborne Concentration Ranges 15 Years on, and Their Usefulness for Determining Control Measures. Ann. Work Expos. Health 61, 270-83, 2017.
    19. Watson, P.F. and Petrie, A. Method agreement analysis: A review of correct methodology. Theriogenology 73, 1167-79, 2010.
    20. Zalk, D.M. and Heussen, G.H. Banding the World Together; The Global Growth of Control Banding and Qualitative Occupational Risk Management. Safety and Health at Work 2, 375-9, 2011.
    21. Zalk, D.M. and Nelson, D.I. History and evolution of control banding: A review. J. Occup. Environ. Hyg. 5, 330-46, 2008.
    22. Zare, M., Norval, M., Bodin, J. and Roquelaure, Y. Differences between risk situations identified using a self-reported questionnaire and an observational method. Work 68, 759-69, 2021.


    中文文獻
    1. 楊子明、鍾昌貴、沈志彥、李美儀、吳鴻佑。半導體製程設備技術。五南圖書,台灣,2017。
    2. 職業安全衛生署。危害性化學品評估及分級管理技術指引。行政院勞動部,2015。
    3. 職業安全衛生署。2019勞動部職業安全衛生署年報。行政院勞動部, 2020。
    4. 蔡朋枝。危害性化學品暴露評估及分級管理制度之原理、法制、與面臨之挑戰。工業安全衛生,28-45,2018。
    5. 蕭宏。半導體製程技術導論(第三版)。全華圖書,台灣,2014。
    6. 財團法人安全衛生技術中心。化學品分級管理運用手冊。勞動部職業安全衛生署,2017。
    7. 野尻一男。半導體乾蝕刻技術。白象文化,台灣,2015。

    法規
    1. 危害性化學品評估及分級管理辦法 (民國 103 年 12 月 31 日 )
    2. 職業安全衛生法(民國 108 年 05 月 15 日)

    網路資料
    1. 化學品評估及分級管理(CCB). 勞動部職業安全衛生署; 2014 [cited 2021 4/20]; Available from: https://ccb.osha.gov.tw/content/masterpage/Index.aspx.
    2. 風險評估實施支援系統(リスクアセスメント実施支援システム). 日本厚生勞動省; 2016 [cited 2021 4/25]; Available from: https://anzeninfo.mhlw.go.jp/ras/user/anzen/kag/Default.aspx.
    3. A Semi-Quantitative Method to Assess Occupational Exposure to Harmful Chemicals (SQRA). Occupational Safety and Health Division, Ministry of Manpower; 2014.
    4. Control of Substances Hazardous to Health (COSHH). UK: Health and Safety Executive; 2002 [cited 2021 4/25]; Available from: https://www.hse.gov.uk/coshh/.
    5. Easy-to-use Workplace Control Scheme for Hazardous Substances (EMKG). The Federal Institute for Occupational Safety and Health (BAuA); 2014 [cited 2021 4/25]; Available from: https://www.baua.de/EN/Topics/Work-design/Hazardous-substances/EMKG/Easy-to-use-workplace-control-scheme-EMKG_node.html.
    6. Exposure Modeling Toolbox. American Industrial Hygiene Association.; 1991 [cited 2021 5/8]; Available from: https://www.aiha.org/public-resources/consumer-resources/topics-of-interest/ih-apps-tools.
    7. International Chemical Control Toolkit (ICCT). WTO: International Labor Organization; 2006 [cited 2021 4/25]; Available from: https://www.ilo.org/legacy/english/protection/safework/ctrl_banding/toolkit/icct/index.htm.
    8. Stoffenmanager®. Dutch Ministry of Social Affairs and Employment; 2003 [cited 2021 4/25]; Available from: https://stoffenmanager.com/.
    9. Targeted Risk Assessment (TRA). European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC); 2004 [cited 2021 4/25]; Available from: https://www.ecetoc.org/tools/targeted-risk-assessment-tra/.

    無法下載圖示 校內:2026-06-10公開
    校外:2026-06-10公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE