| 研究生: |
張毓軒 Chang, Yu-Hsuan |
|---|---|
| 論文名稱: |
考慮端銑刀模態振型之加工穩定性分析 Milling Stability Analysis Considering the Mode Shape of an End Mill |
| 指導教授: |
王俊志
Wang, Jiunn-Jyh Junz |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 93 |
| 中文關鍵詞: | 刀具模態振型 、製程阻尼 、銑削穩定性 |
| 外文關鍵詞: | mode shape, process damping, milling stability |
| 相關次數: | 點閱:91 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討銑刀模態振型對加工穩定性造成的影響。由於刀具模態振型使刀具振動位移與切屑負載隨軸向位置不同而有所改變,因此本文將不同軸深下振動位移量的變化整合為模態力修正係數,並將模態力修正係數加入單一模態的含製程阻尼之臨界切深解析式中。本文使用平均力模式且假設銑削系統為對稱結構並針對槽銑之切削條件下,在考慮刀具模態振型與製程阻尼後,由於刀具模態振型使其振動位移隨軸深增加而減少,又因製程阻尼產生的等效結構阻尼與等效結構剛性,使系統阻尼與系統剛性隨軸深增加而上升,臨界切深曲線在相同轉速下存在兩個臨界切深點。由考慮刀具模態振型與製程阻尼之臨界切深曲線中發現,當軸向切深超過第一臨界點時,切削發生顫振。若軸向切深增加至第二臨界點以上,則為穩定切削狀態。且當主軸轉速越低,第一與第二臨界點距離越近,穩定切削範圍越大。由銑削實驗証實固定主軸轉速下,切削顫振振幅於較大軸向切深條件下有變小趨勢。在固定徑深、改變主軸轉速與軸向切深之銑削實驗中,實驗結果與考慮刀具模態振型之臨界切深曲線預測相符。
The effect of mode shape of cutting tool on milling stability is discussed in this thesis. Due to the mode shape of cutting tool, the vibration displacement and chip load vary with the different axial positions of tool. Therefore, variations of the vibration displacement in different axial positions of the tool are integrated into the force modified coefficient, and the coefficient is added to the single modal analytic expression of critical depth of cut with process damping. The tool vibration displacement decreases as the axial depth increases because of the mode shape of tool. And the equivalent structural damping and stiffness generated by process damping lead to the increased damping and stiffness for milling system. Effects of mode shape and process damping make the curve of critical depth of cut exist two critical points for a single spindle speed. The chatter happens when axial depth of cut is greater than the first critical point. However, milling will be stable if axial depth of cut is above the second critical point. Moreover, the lower spindle speed is, the closer two critical points are and the greater stable cutting area is. The phenomenon that chatter amplitude declines as the increasing axial depth of cut is verified by experiments and the results of experiments agree with the predictions for critical depth of cut with mode shape of tool and process damping.
Altintas, Y., & Budak, E., Analytical Prediction of Stability Lobes in Milling. CIRP Annals - Manufacturing Technology, 44(1), 357-362. doi: http://dx.doi.org/10.1016/S0007-8506(07)62342-7, 1995
ASM Aerospace Specification Metals, I., . Material Data Sheet, 2017
Budak, E., Altintas, Y., & Armarego, E. J. A., Prediction of Milling Force Coefficients From Orthogonal Cutting Data. Journal of Manufacturing Science and Engineering, 118(2), 216-224. doi: 10.1115/1.2831014, 1996
Comak, A., Ozsahin, O., & Altintas, Y., Stability of Milling Operations With Asymmetric Cutter Dynamics in Rotating Coordinates. Journal of Manufacturing Science and Engineering, 138(8), 081004. doi: 10.1115/1.4032585, 2016
Endres, W. J., DeVor, R. E., & Kapoor, S. G., A Dual-Mechanism Approach to the Prediction of Machining Forces, Part 1: Model Development. Journal of Engineering for Industry, 117(4), 526-533. doi: 10.1115/1.2803530, 1995
Hohn, R. E., Sridhar, R., & Long, G. W., A Stability Algorithm for a Special Case of the Milling Process: Contribution to Machine Tool Chatter Research—6. Journal of Engineering for Industry, 90(2), 325-329. doi: 10.1115/1.3604636, 1968
Huang, C. Y., & Junz Wang, J. J., Effects of cutting conditions on dynamic cutting factor and process damping in milling. International Journal of Machine Tools and Manufacture, 51(4), 320-330. doi: 10.1016/j.ijmachtools.2010.12.004, 2011
Huang, C. Y., & Wang, J. J. J., Mechanistic Modeling of Process Damping in Peripheral Milling. Journal of Manufacturing Science and Engineering, 129(1), 12. doi: 10.1115/1.2335857, 2007
Jin, X., & Altintas, Y., Chatter Stability Model of Micro-Milling With Process Damping. Journal of Manufacturing Science and Engineering, 135(3), 031011. doi: 10.1115/1.4024038, 2013
Junz Wang, J. J., & Zheng, C. M., An analytical force model with shearing and ploughing mechanisms for end milling. International Journal of Machine Tools and Manufacture, 42(7), 761-771. doi: https://doi.org/10.1016/S0890-6955(02)00019-6, 2002
Koenigsberger, F., & Sabberwal, A. J. P., An investigation into the cutting force pulsations during milling operations. International Journal of Machine Tool Design and Research, 1(1), 15-33. doi: http://dx.doi.org/10.1016/0020-7357(61)90041-5, 1961
Merritt, H. E., Theory of Self-Excited Machine-Tool Chatter: Contribution to Machine-Tool Chatter Research—. Journal of Engineering for Industry, 87(4), 447-454. doi: 10.1115/1.3670861, 1965
Minis, I., & Yanushevsky, R., A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling. Journal of Engineering for Industry, 115(1), 1-8. doi: 10.1115/1.2901633, 1993
Munoa, J., Beudaert, X., Dombovari, Z., Altintas, Y., Budak, E., Brecher, C., & Stepan, G., Chatter suppression techniques in metal cutting. CIRP Annals - Manufacturing Technology, 65(2), 785-808. doi: https://doi.org/10.1016/j.cirp.2016.06.004, 2016
Rahnama, R., Sajjadi, M., & Park, S. S., Chatter suppression in micro end milling with process damping. Journal of Materials Processing Technology, 209(17), 5766-5776. doi: http://dx.doi.org/10.1016/j.jmatprotec.2009.06.009, 2009
Schmitz, T. L., & Smith, K. S. Machining Dynamics: Springer, 2009
Tajalli, S. A., Movahhedy, M. R., & Akbari, J., Chatter instability analysis of spinning micro-end mill with process damping effect via semi-discretization approach. Acta Mechanica, 225(3), 715-734. doi: 10.1007/s00707-013-0981-4, 2013
Tlusty, J., & Ismail, F., Special Aspects of Chatter in Milling. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 105(1), 24-32. doi: 10.1115/1.3269061, 1983
Tlusty, J., & MacNeil, P., Dynamics of cutting forces in end milling. CIRP Annals - Manufacturing Technology, 24, 21-25, 1975
Tobias, S., & Fishwick, W., Theory of Regenerative Machine Tool Chatter. The Engineer, 205, 1958
Tunc, L. T., & Budak, E., Identification and Modeling of Process Damping in Milling. Journal of Manufacturing Science and Engineering, 135(2), 021001-021001-021012. doi: 10.1115/1.4023708, 2013
Wang, J. J., Uhlmann, E., Oberschmidt, D., Sung, C. F., & Perfilov, I., Critical depth of cut and asymptotic spindle speed for chatter in micro milling with process damping. CIRP Annals - Manufacturing Technology, 65(1), 113-116. doi: 10.1016/j.cirp.2016.04.088, 2016
Wang, J. J. J., & Liang, S. Y., Milling force convolution modeling for identification of cutter axis offset. International Journal of Machine Tools and Manufacture, 34(8), 1177-1190. doi: http://dx.doi.org/10.1016/0890-6955(94)90021-3, 1994
Wang, W., Kweon, S. H., & Yang, S. H., A study on roughness of the micro-end-milled surface produced by a miniatured machine tool. Journal of Materials Processing Technology, 162, 702-708. doi: http://dx.doi.org/10.1016/j.jmatprotec.2005.02.141, 2005
Wu, D. W., A New Approach of Formulating the Transfer Function for Dynamic Cutting Processes. Journal of Engineering for Industry, 111(1), 37-47. doi: 10.1115/1.3188730, 1989
Yellowley, I., Observations on the mean values of forces, torque and specific power in the peripheral milling process. International Journal of Machine Tool Design and Research, 25(4), 337-346. doi: http://dx.doi.org/10.1016/0020-7357(85)90034-4, 1985
Zheng, C. M., Junz Wang, J. J., & Sung, C. F., Analytical Prediction of the Critical Depth of Cut and Worst Spindle Speeds for Chatter in End Milling. Journal of Manufacturing Science and Engineering, 136(1), 011003. doi: 10.1115/1.4025452, 2013
Zheng, C. M., & Wang, J. J. J., Stability prediction in radial immersion for milling with symmetric structure. International Journal of Machine Tools and Manufacture, 75, 72-81. doi: 10.1016/j.ijmachtools.2013.08.007, 2013
吳復強. 產品穩建設計----田口方法之原理與應用: 全威圖書有限公司. 2005
葉怡成. 高等實驗計畫法: 五南圖書出版股份有限公司. 2009
劉勝峰. 微銑削加工軸向切深對系統穩定性之影響. (碩士論文), 國立成功大學機械系. 2012
黎正中, & 陳源樹. 實驗設計與分析: 高立圖書有限公司. 2003
校內:2022-09-01公開