簡易檢索 / 詳目顯示

研究生: 張毓軒
Chang, Yu-Hsuan
論文名稱: 考慮端銑刀模態振型之加工穩定性分析
Milling Stability Analysis Considering the Mode Shape of an End Mill
指導教授: 王俊志
Wang, Jiunn-Jyh Junz
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 93
中文關鍵詞: 刀具模態振型製程阻尼銑削穩定性
外文關鍵詞: mode shape, process damping, milling stability
相關次數: 點閱:91下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討銑刀模態振型對加工穩定性造成的影響。由於刀具模態振型使刀具振動位移與切屑負載隨軸向位置不同而有所改變,因此本文將不同軸深下振動位移量的變化整合為模態力修正係數,並將模態力修正係數加入單一模態的含製程阻尼之臨界切深解析式中。本文使用平均力模式且假設銑削系統為對稱結構並針對槽銑之切削條件下,在考慮刀具模態振型與製程阻尼後,由於刀具模態振型使其振動位移隨軸深增加而減少,又因製程阻尼產生的等效結構阻尼與等效結構剛性,使系統阻尼與系統剛性隨軸深增加而上升,臨界切深曲線在相同轉速下存在兩個臨界切深點。由考慮刀具模態振型與製程阻尼之臨界切深曲線中發現,當軸向切深超過第一臨界點時,切削發生顫振。若軸向切深增加至第二臨界點以上,則為穩定切削狀態。且當主軸轉速越低,第一與第二臨界點距離越近,穩定切削範圍越大。由銑削實驗証實固定主軸轉速下,切削顫振振幅於較大軸向切深條件下有變小趨勢。在固定徑深、改變主軸轉速與軸向切深之銑削實驗中,實驗結果與考慮刀具模態振型之臨界切深曲線預測相符。

    The effect of mode shape of cutting tool on milling stability is discussed in this thesis. Due to the mode shape of cutting tool, the vibration displacement and chip load vary with the different axial positions of tool. Therefore, variations of the vibration displacement in different axial positions of the tool are integrated into the force modified coefficient, and the coefficient is added to the single modal analytic expression of critical depth of cut with process damping. The tool vibration displacement decreases as the axial depth increases because of the mode shape of tool. And the equivalent structural damping and stiffness generated by process damping lead to the increased damping and stiffness for milling system. Effects of mode shape and process damping make the curve of critical depth of cut exist two critical points for a single spindle speed. The chatter happens when axial depth of cut is greater than the first critical point. However, milling will be stable if axial depth of cut is above the second critical point. Moreover, the lower spindle speed is, the closer two critical points are and the greater stable cutting area is. The phenomenon that chatter amplitude declines as the increasing axial depth of cut is verified by experiments and the results of experiments agree with the predictions for critical depth of cut with mode shape of tool and process damping.

    摘要 I Abstract II 致謝 XIII 表目錄 XVII 圖目錄 XVIII 符號表 XXI 第一章 緒論 1 1.1 研究動機與目的 1 1.2 文獻回顧 2 1.2.1 銑削力模式相關文獻 2 1.2.2 銑削穩定性相關文獻 3 1.2.3 含製程阻尼之銑削穩定性相關文獻 4 1.3 研究範疇與架構 5 1.3.1 研究範疇 5 1.3.2 論文架構 5 第二章 端銑削之銑削力模式 7 2.1 銑削座標系統 7 2.2 總銑削力 10 2.2.1 基本切削函數 10 2.2.2 刀具序列函數 12 2.2.3 屑寬密度函數 12 2.2.4 總銑削力 13 2.3 切削常數求法 14 第三章 銑削穩定性分析 16 3.1 動態銑削系統模型 16 3.2 銑削穩定性分析 19 3.3 含製程阻尼之銑削穩定性分析 22 3.3.1 含製程阻尼之銑削系統模型 23 3.3.2 臨界穩定軸向切深曲線 26 第四章 考慮銑刀模態振型對切削穩定性之影響 28 4.1模態座標轉換簡介 28 4.2考慮銑刀模態振型之切削穩定性分析 30 4.2.1 模態力修正係數 30 4.2.2 銑刀模態振型對臨界穩定軸向切深之影響 32 4.2.3 銑刀自然頻率對切削穩定性之影響 37 4.3 刀具幾何設計對自然頻率之影響 38 4.3.1運用田口品質設計方法分析刀具幾何對自然頻率之影響 38 4.3.2 運用反應曲面法分析刀具幾何對自然頻率之影響 43 4.3.3模擬不同刀具幾何之銑削穩定性 48 第五章 切削穩定性實驗 52 5.1 實驗設備與配置 52 5.2 實驗刀具與工件材料 54 5.2.1 刀具幾何與工件材料 54 5.2.2 刀具結構參數辨識 56 5.3 切削常數辨識實驗 60 5.4 銑削穩定性實驗 62 5.4.1 切削穩定性之判別 62 5.4.2 切削穩定性實驗 64 5.5 電路板切割實驗 82 第六章 結論與建議 88 6.1結論 88 6.2 建議 89 參考文獻 90

    Altintas, Y., & Budak, E., Analytical Prediction of Stability Lobes in Milling. CIRP Annals - Manufacturing Technology, 44(1), 357-362. doi: http://dx.doi.org/10.1016/S0007-8506(07)62342-7, 1995
    ASM Aerospace Specification Metals, I., . Material Data Sheet, 2017
    Budak, E., Altintas, Y., & Armarego, E. J. A., Prediction of Milling Force Coefficients From Orthogonal Cutting Data. Journal of Manufacturing Science and Engineering, 118(2), 216-224. doi: 10.1115/1.2831014, 1996
    Comak, A., Ozsahin, O., & Altintas, Y., Stability of Milling Operations With Asymmetric Cutter Dynamics in Rotating Coordinates. Journal of Manufacturing Science and Engineering, 138(8), 081004. doi: 10.1115/1.4032585, 2016
    Endres, W. J., DeVor, R. E., & Kapoor, S. G., A Dual-Mechanism Approach to the Prediction of Machining Forces, Part 1: Model Development. Journal of Engineering for Industry, 117(4), 526-533. doi: 10.1115/1.2803530, 1995
    Hohn, R. E., Sridhar, R., & Long, G. W., A Stability Algorithm for a Special Case of the Milling Process: Contribution to Machine Tool Chatter Research—6. Journal of Engineering for Industry, 90(2), 325-329. doi: 10.1115/1.3604636, 1968
    Huang, C. Y., & Junz Wang, J. J., Effects of cutting conditions on dynamic cutting factor and process damping in milling. International Journal of Machine Tools and Manufacture, 51(4), 320-330. doi: 10.1016/j.ijmachtools.2010.12.004, 2011
    Huang, C. Y., & Wang, J. J. J., Mechanistic Modeling of Process Damping in Peripheral Milling. Journal of Manufacturing Science and Engineering, 129(1), 12. doi: 10.1115/1.2335857, 2007
    Jin, X., & Altintas, Y., Chatter Stability Model of Micro-Milling With Process Damping. Journal of Manufacturing Science and Engineering, 135(3), 031011. doi: 10.1115/1.4024038, 2013
    Junz Wang, J. J., & Zheng, C. M., An analytical force model with shearing and ploughing mechanisms for end milling. International Journal of Machine Tools and Manufacture, 42(7), 761-771. doi: https://doi.org/10.1016/S0890-6955(02)00019-6, 2002
    Koenigsberger, F., & Sabberwal, A. J. P., An investigation into the cutting force pulsations during milling operations. International Journal of Machine Tool Design and Research, 1(1), 15-33. doi: http://dx.doi.org/10.1016/0020-7357(61)90041-5, 1961
    Merritt, H. E., Theory of Self-Excited Machine-Tool Chatter: Contribution to Machine-Tool Chatter Research—. Journal of Engineering for Industry, 87(4), 447-454. doi: 10.1115/1.3670861, 1965
    Minis, I., & Yanushevsky, R., A New Theoretical Approach for the Prediction of Machine Tool Chatter in Milling. Journal of Engineering for Industry, 115(1), 1-8. doi: 10.1115/1.2901633, 1993
    Munoa, J., Beudaert, X., Dombovari, Z., Altintas, Y., Budak, E., Brecher, C., & Stepan, G., Chatter suppression techniques in metal cutting. CIRP Annals - Manufacturing Technology, 65(2), 785-808. doi: https://doi.org/10.1016/j.cirp.2016.06.004, 2016
    Rahnama, R., Sajjadi, M., & Park, S. S., Chatter suppression in micro end milling with process damping. Journal of Materials Processing Technology, 209(17), 5766-5776. doi: http://dx.doi.org/10.1016/j.jmatprotec.2009.06.009, 2009
    Schmitz, T. L., & Smith, K. S. Machining Dynamics: Springer, 2009
    Tajalli, S. A., Movahhedy, M. R., & Akbari, J., Chatter instability analysis of spinning micro-end mill with process damping effect via semi-discretization approach. Acta Mechanica, 225(3), 715-734. doi: 10.1007/s00707-013-0981-4, 2013
    Tlusty, J., & Ismail, F., Special Aspects of Chatter in Milling. Journal of Vibration, Acoustics, Stress, and Reliability in Design, 105(1), 24-32. doi: 10.1115/1.3269061, 1983
    Tlusty, J., & MacNeil, P., Dynamics of cutting forces in end milling. CIRP Annals - Manufacturing Technology, 24, 21-25, 1975
    Tobias, S., & Fishwick, W., Theory of Regenerative Machine Tool Chatter. The Engineer, 205, 1958
    Tunc, L. T., & Budak, E., Identification and Modeling of Process Damping in Milling. Journal of Manufacturing Science and Engineering, 135(2), 021001-021001-021012. doi: 10.1115/1.4023708, 2013
    Wang, J. J., Uhlmann, E., Oberschmidt, D., Sung, C. F., & Perfilov, I., Critical depth of cut and asymptotic spindle speed for chatter in micro milling with process damping. CIRP Annals - Manufacturing Technology, 65(1), 113-116. doi: 10.1016/j.cirp.2016.04.088, 2016
    Wang, J. J. J., & Liang, S. Y., Milling force convolution modeling for identification of cutter axis offset. International Journal of Machine Tools and Manufacture, 34(8), 1177-1190. doi: http://dx.doi.org/10.1016/0890-6955(94)90021-3, 1994
    Wang, W., Kweon, S. H., & Yang, S. H., A study on roughness of the micro-end-milled surface produced by a miniatured machine tool. Journal of Materials Processing Technology, 162, 702-708. doi: http://dx.doi.org/10.1016/j.jmatprotec.2005.02.141, 2005
    Wu, D. W., A New Approach of Formulating the Transfer Function for Dynamic Cutting Processes. Journal of Engineering for Industry, 111(1), 37-47. doi: 10.1115/1.3188730, 1989
    Yellowley, I., Observations on the mean values of forces, torque and specific power in the peripheral milling process. International Journal of Machine Tool Design and Research, 25(4), 337-346. doi: http://dx.doi.org/10.1016/0020-7357(85)90034-4, 1985
    Zheng, C. M., Junz Wang, J. J., & Sung, C. F., Analytical Prediction of the Critical Depth of Cut and Worst Spindle Speeds for Chatter in End Milling. Journal of Manufacturing Science and Engineering, 136(1), 011003. doi: 10.1115/1.4025452, 2013
    Zheng, C. M., & Wang, J. J. J., Stability prediction in radial immersion for milling with symmetric structure. International Journal of Machine Tools and Manufacture, 75, 72-81. doi: 10.1016/j.ijmachtools.2013.08.007, 2013
    吳復強. 產品穩建設計----田口方法之原理與應用: 全威圖書有限公司. 2005
    葉怡成. 高等實驗計畫法: 五南圖書出版股份有限公司. 2009
    劉勝峰. 微銑削加工軸向切深對系統穩定性之影響. (碩士論文), 國立成功大學機械系. 2012
    黎正中, & 陳源樹. 實驗設計與分析: 高立圖書有限公司. 2003

    無法下載圖示 校內:2022-09-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE