| 研究生: |
張家維 Chang, Chia-Wei |
|---|---|
| 論文名稱: |
以陣列型奈米壓痕孔洞金基板誘發表面增顯拉曼散射應用於分子探針微量分析與病毒定性檢測之研究 Nano-indented Au-cavities Array Substrates Induced SERS Effect for Trace Detection of Molecular Probes and Size-comparable Viruses |
| 指導教授: |
廖峻德
Liao, Jiunn-Der |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 表面增顯拉曼散射 、奈米壓痕 、奈米壓痕金孔洞陣列 、檢測基板 、快速篩檢 、病毒標的 |
| 外文關鍵詞: | surface-enhanced Raman scattering, nanoindentation, nano-indented Au-cavities array, characterization substrate, fast-screening detection, target virus |
| 相關次數: | 點閱:104 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
微奈米蝕刻技術是一種現行且直接的方法,可以將金薄膜表面粗糙化進而應用於表面增顯拉曼散射光譜。然而,利用此技術來製作具有較深的稜角之圖形表面,其步驟繁複、難以控制且此製程並不環保。因此,本研究將採用一種簡單的物理性的奈米壓痕技術,可以在金薄膜表面製作出三角錐的奈米結構,同時且具有在製程中避免化學殘留污染物之優勢。整齊排列的奈米壓痕金孔洞陣列(nAu)具有客製化之功能性表面,可調控成高密度孔洞陣列、自訂的壓痕深度以及在一個奈米結構中產生多個稜角,以此技術製作之nAu將可應用於作為表面增顯拉曼散射之檢測基板。
在檢測單分子層2-巰基-5-硝基苯甲酸(NTB)的研究中,選擇不同的雷射波長以檢測化學吸附於nAu 表面之NTB分子(NTB/nAu),其結果顯示:633奈米波長之氦氖雷射具有最佳之增顯效果。藉由計算nAu之幾何性質並利用nAu所增加的表面積作為化學吸附NTB分子數量之函數交互比對可衡量出此系統之化學與電磁效應。然而,幾何性質中的壓痕深度因子相較於壓痕間距因子更為重要。利用標準方程式可計算出此系統中nAu基板之增顯係數為2.10 × 10E6。
在檢測極低濃度之分子探針的研究中,兩種具拉曼活性分子探針溶液分別以化學吸附鍵結與物理吸附靠近的方式於nAu基板上其性質可以被區分出來。使用最佳化之nAu基板檢測5,5’-二硫基-雙(2-硝基苯甲酸)(DTNB)分子,在檢測濃度1.0 × 10E-23 ~ 3.2 × 10E-22莫耳範圍內,拉曼強度與分子數量呈現蘭慕爾(Langmuir)吸附曲線關係。其原因主要來自第一層效應NTB/nAu的產生,使其誘發而結合電磁和化學效應所造成的結果。以同一最佳之nAu並在相同濃度範圍之下檢測羅丹明6G (R6G),其拉曼強度呈現近乎線性函數關係。此系統中以最佳nAu基板所檢測之DTNB與R6G溶液其增顯係數分別為2.06 × 10E8和5.85 × 10E7。
在檢測腦心肌炎病毒、腺病毒與A型流感病毒的研究中,nAu基板能夠使大小相符之病毒標的陷入奈米孔洞中,再藉由nAu基板中的稜角與孔洞使其產生表面增顯拉曼散射。透過nAu基板所誘發的電磁效應不同的病毒可以藉由表面胺基酸訊號而區分出來。同時,若以病毒的大小與nAu基板的壓痕深度進行配對檢測則可區分出最佳的表面增顯拉曼峰值訊號與強度。研究結果顯示:腦心肌炎病毒與腺病毒之檢測濃度可以降低至10E6 PFU/ml,而A型流感病毒之檢測濃度可以降低至10E4 PFU/ml,同時,nAu基板在病毒檢測研究中與其濃度無關,故較適合用於病毒之定性檢測。
基於基礎與應用性之研究,其結果顯示:nAu基板是非常有前景且具有很大的潛力應用於檢測工具,特別適用於快速篩檢極少量的拉曼活性分子探針以及病毒。
Micro/nano-lithographic techniques are usually employed as a straightforward process for roughening a thin-film Au surface for surface-enhanced Raman scattering (SERS). However, a topographical pattern with deepened edges is difficult to control in a rapid and environmentally-friendly way. In this study, a simple physical procedure with the advantage of preventing samples from chemical or residual contaminations is proposed for tailoring a thin-film Au surface with triangular nanostructures using nanoindentation technique. Well-ordered nano-indented Au-cavities array (nAu) is tailored as a functional surface with high density tip-to-tip cavities, adjustable indentation depths, and a number of edges within the nanostructures. The as-fabricated nAu were structured as a characterization substrate for SERS.
In the study of detecting 2-nitro-5-thiobenzoic acid (NTB) monolayer, NTB molecules chemically adsorbed upon nAu (NTB/nAu) samples were examined by the change of laser wavelength. A He-Ne laser with a wavelength of 633 nm exhibited sensitivity to Raman-active groups in NTB/Au. By calculating the geometries of nAu and the increase of the surface area as a function of the concentration of chemically adsorbed NTB, a combined chemical (CHEM) and electromagnetic (EM) effect can be estimated. The factor correlated with the indentation depth (Dv) of nAu is much more significant than that correlated with the tip-to-tip displacement. Based on the standard equation, a specific nAu sample exhibited a strong SERS effect and its enhancement factor (EF) was reached to 2.10 × 10E6.
In the study of detecting very small quantity of molecular probes, two types of Raman-active molecular probe solutions chemically adsorbed upon or physically adsorbed nearby the nAu can be well distinguished. Based on the utilization of the optimized nAu sample #6 as SERS-active substrate, Raman intensity with respect to the quantity of 5,5'-dithio-bis-(2-nitrobenzoic acid) (DTNB) molecules exhibits a Langmuir adsorption relationship within the range of 1.0 × 10E-23 to 3.2 × 10E-22 mole. The first-layer NTB/nAu is anticipated to be formed to contribute to SERS effect, mainly induced by the combined EM and CHEM effects. For Rhodamine 6G (R6G) solution within the equivalent nAu and the identical range, the relationship exhibits nearly linear. SERS EFs for sensing DTNB and R6G solutions within a specific nAu can be reached to 2.06 × 10E8 and 5.85 × 10E7, respectively.
In the study of detecting encephalomyocarditis virus (EMCV), adenovirus, and influenza A virus, the nAu substrate is competent to entrap size-comparable target virus into nano-cavities, which as one, exerts its activity to form surface-enhanced Raman scattering particularly by the edges and cavities of the substrate. Through the induction of the EM effect by the substrate, the virus can be distinguished from the amino acids on its surface. The SERS peak intensities from each of the viruses was significantly enhanced, which are distinguishable and corresponding to the size and dimensions of virus with respect to Dv of the nAu. In this work, the detection concentration for EMCV or adenovirus can be reduced to 10E6 PFU/ml, and that for influenza A virus can be reduced to 10E4 PFU/ml. As well, the nAu samples are appropriate for a qualitative determination of virus and are relatively independent of virus concentration.
Base on the fundamental and application study, the results show that the nAu samples are very promising and have high potential as a characterization tool for fast-screening detection of very small quantity of Raman-active molecular probes or target viruses.
1. S. Shanmukh, L. Jones, J. Driskell, Y. Zhao, R. Dluhy and R. A. Tripp, “Rapid and Sensitive Detection of Respiratory Virus Molecular Signatures Using a Silver Nanorod Array SERS Substrate”, Nano Letters, Vol. 6, 2630-2636, 2006.
2. P. D. Bao, T. Q. Huang, X. M. Liu and T. Q. Wu, “Surface-Enhanced Raman Spectroscopy of Insect Nuclear Polyhedrosis Virus”, Journal of Raman Spectroscopy, Vol. 32, 227-230, 2001.
3. K. N. Heck, B. G. Janesko, G. E. Scuseria, N. J. Halas and M. S. Wong, “Observing Metal-Catalyzed Chemical Reactions in Situ Using Surface-Enhanced Raman Spectroscopy on Pd-Au Nanoshells”, Journal of the American Chemical Society, Vol. 130, 16592-16600, 2008.
4. J. Barenfanger, N. Drake, N. Leon, T. Mueller and T. Troutt, “Clinical and Financial Benefits of Rapid Detection of Respiratory Viruses: an Outcomes Study”, Journal of Clinical Microbiology, Vol. 38, 2824-2828, 2000.
5. M. J. Bonholzer, J. E. Millstone, L. Qin and C. A. Mirkin, “Rationally Designed Nanostructures for Surface-Enhanced Raman Spectroscopy”, Chemical Society Reviews, Vol. 37, 885-897, 2008.
6. M. D. Li, Y. Cui, M. X. Gao, J. Luo, B. Ren and Z. Q. Tian, “Clean Substrates Prepared by Chemical Adsorption of Iodide Followed by Electrochemical Oxidation for Surface-Enhanced Raman Spectroscopic Study of Cell Membrane”, Analytical Chemistry, Vol. 80, 5118-5125, 2008.
7. A. Lyon, C. D. Keating, A. P. Fox, B. E. Baker, L. He, S. R. Nicewarner, S. P. Mulvaney and M. J. Natan, “Raman Spectroscopy”, Analytical Chemistry, Vol. 70, 341-362, 1998.
8. M. D. Porter, R. J. Lipert, L. M. Siperko, G. Wang and R. Narayanan, “SERS as a Bioassay Platform: Fundamentals, Design, and Applications”, Chemical Society Reviews, Vol. 37, 1001-1011, 2008.
9. A. Barhoumi, D. Zhang, F. Tam and N. J. Halas, “Surface-Enhanced Raman Spectroscopy of DNA”, Journal of the American Chemical Society, Vol. 130, 5523-5529, 2008.
10. K. C. Schuster, E. Urlaub and J. R. Gapes, “Single-Cell Analysis of Bacteria by Raman Microscopy: Spectral Information on the Chemical Composition of Cells and on the Heterogeneity in a Culture”, Journal of Microbiological Methods, Vol. 42, 29-38, 2000.
11. M. Harz, P. Rosch, K. D. Peschke, O. Ronneberger, H. Burkhardt and J. Popp, “Micro-Raman Spectroscopic Identification of Bacterial Cells of the Genus Staphylococcus and Dependence on Their Cultivation Conditions”, The Analyst, Vol. 130, 1543-1550, 2005.
12. K. Kneipp, H. Kneipp, I. Itzkan, R. R. Dasari and M. S. Feld, “Surface-Enhanced Raman Scattering and Biophysics”, Journal of Physics: Condensed Matter, Vol. 14, 597-624, 2002.
13. P. K. A. Campion, “Surface-Enhanced Raman Scattering”, Chemical Society Reviews, Vol. 27, 241-250, 1998.
14. S. Nie and S. R. Emory, “Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering”, Science, Vol. 275, 1102-1106, 1997.
15. N. P. W. Pieczonka and R. F. Aroca, “Single Molecule Analysis by Surface-Enhanced Raman Scattering”, Chemical Society Reviews, Vol. 37, 946-954, 2008.
16. J. Ferreira, M. J. L. Santos, M. M. Rahman, A. G. Brolo, R. Gordon, D. Sinton and E. M. Girotto, “Attomolar Protein Detection Using In-Hole Surface Plasmon Resonance”, Journal of the American Chemical Society, Vol. 131, 436-437, 2008.
17. K. Kneipp, A. S. Haka, H. Kniepp, K. Badizadengan, N. Yoshizawa, C. Boone, K. E. Shafer-peltier, J. T. Motz, R. R. Dasari, and M. S. Feld, “Surface-Enhance Raman Spectroscopy in Single Lining Cells Using Gold Nanoparticles”, Applied spectroscopy, Vol. 56, 150-154, 2002.
18. M. Lin, L. He, J. Awika, L. Yang, D. R. Ledoux, H. Li and A. Mustapha, “Detection of Melamine in Gluten, Chicken Feed, and Processed Foods Using Surface Enhanced Raman Spectroscopy and HPLC”, Journal of Food Science, Vol. 73, T129-T134, 2008.
19. R. J. Jarvis and R. Goodacre, “Characterization and Identification of Bacteria Using SERS”, Chemical Society Reviews, Vol. 37, 931-936, 2008.
20. K. A. Donaldson, M. F. Kramer and D. V. Lim, “A Rapid Detection Method for Vaccina Virus, the Surrogate for Smallpox Virus”, Biosensors and Bioelectronics, Vol. 20, 322-327, 2004.
21. A. S. Blum, C. M. Soto, C. D. Wilson, J. D. Cole, M. Kim, B. Gnade, A. Chatterji, W. F. Ochoa, T. Lin, J. E. Johnson and B. R. Ratna, “Cowpea Mosaic Virus as a Scaffold for 3-D Patterning of Gold Nanoparticles”, Nano Letters, Vol. 4, 867-870, 2004.
22. C. Radloff, R. A. Vaia, J. Brunton, G. T. Bouwer and V. K. Ward, “Metal Nanoshell Assembly on a Virus Bioscaffold”, Nano Letters, Vol. 5, 1187-1191, 2005.
23. M. K. O’Shea, M. A. K. Ryan, A. W. Hawksworth, B. J. Alsip and G. C. Gray, “Symptomatic Respiratory Syncytial Virus Infection in Previously Healthy Young Adults Living in a Crowded Military Environment”, Clinical Infectious Diseases, Vol. 41, 311-317, 2005.
24. H. P. Ji, C. L. Kwan, Y. T. Schiuan, T. L. Lin and L. T. Tsung, “Nanoaggregate-Embedded Beads as Novel Raman Labels for Biodetection”, Advanced Functional Materials, Vol. 19, 242-248, 2009.
25. R. A. Tripp, R. A. Dluhy and Y. Zhao, “Novel Nanostructures for SERS Biosensing”, Nano Today, Vol. 3, 31-37, 2008.
26. J. C. B. Richard and J. T. M. Martin, “Nanostructures and Nanostructured Substrates for Surface Enhanced Raman Scattering (SERS)”, Journal of Raman Spectroscopy, Vol. 39, 1313-1326, 2008.
27. K. Hering, D. Cialla, K. Ackermann, T. Dörfer, R. Möller, H. Schneidewind, R. Mattheis, W. Fritzsche, P. Rösch and J. Popp, “SERS: a Versatile Tool in Chemical and Biochemical Diagnostics”, Analytical and Bioanalytical Chemistry, Vol. 390, 113-124, 2008.
28. B. Sepveda, C. Angelom Paula, L. M. Lechuga and L. M. Liz-Marz, “LSPR-based Nanobiosensors”, Nano Today, Vol. 4, 244-251, 2009.
29. Y. Du, L. Shi, T. He, X. Sun and Y. Mo, “SERS Enhancement Dependence on the Diameter and Aspect Ratio of Silver-Nanowire Array Fabricated by Anodic Aluminum Oxide Template”, Applied Surface Science, Vol. 255, 1901-1905, 2008.
30. K. Li, L. Clime, B. Cui and T. Veres, “Surface Enhanced Raman Scattering on Long-range Ordered Noble-Metal Nanocrescent Arrays”, Nanotechnology, Vol. 19, 145305, 2008.
31. J. Fang, Y. Yi, B. Ding, and Xi. Song, “A Route to Increase the Enhancement Factor of Surface Enhanced Raman Scattering (SERS) via a High Density Ag Flower-Like Pattern”, Applied Physics Letters, Vol. 2, 131115, 2008.
32. B. Yan, A. Thubagere, W. R. Premasiri, Z. L. D. iegler, L. D. Negro and B. M. Reinhard, “Engineered SERS Substrates with Multiscale Signal Enhancement: Nanoparticle Cluster Arrays”, ACS Nano, Vol. 3, 1190-1202, 2009.
33. J. Henzie, J. E. Barton, C. L. Stender and T. W. Odom, “Large-Area Nanoscale Patterning: Chemistry Meets Fabrication”, Accounts of Chemical Research, Vol. 39, 249-257, 2006.
34. B. Cui, L. Clime, K. Li and T. Veres, “Fabrication of Large Area Nanoprism Arrays and Their Application for Surface Enhanced Raman Spectroscopy”, Nanotechnology, Vol. 19, 145302, 2008.
35. J. Biener, A. M. Hodge, J. R. Hayes, C. A. Volkert, L. A. Zepeda-Ruiz, A. V. Hamza and F. F. Abraham, “Size Effects on the Mechanical Behavior of Nanoporous Au”, Nano Letters, Vol. 6, 2379-2382, 2006.
36. Q. Min, M. J. L. Santos, E. M. Girotto, A. G. Brolo and R. Gordon, “Localized Raman Enhancement from a Double-Hole Nanostructure in a Metal Film”, Journal of Physical Chemistry C, Vol. 112, 15098-15101, 2008.
37. X. Zhou, Q. Wei, K. Sun and L. Wang, “Formation of Ultrafine Uniform Gold Nanoparticles by Sputtering and Redeposition”, Applied Physics Letters, Vol. 94, 133107-133103, 2009.
38. C. W. Chang and J. D. Liao, “Nano-Indentation at the Surface Contact Level: Applying a Harmonic Frequency for Measuring Contact Stiffness of Self-assembled Monolayers Adsorbed on Au”, Nanotechnology, Vol. 19, 31573, 2008.
39. Y. T. Yang, J. D. Liao, Y. L. Lee, C. W. Chang and H. J. Tsai, “Ultra-Thin Phospholipid Layers Physically Adsorbed upon Glass Characterized by Nano-indentation at the Surface Contact Level”, Nanotechnology, Vol. 20, 195702, 2009.
40. G. Keresztury, “Raman Spectroscopy: Theory, Handbook of Vibrational Spectroscopy”, John Wiley & Sons, Vol. 1, 71, 2001.
41. P. R. Griffiths, “Introduction of Vibrational Spectroscopy, Handbook of Vibrational Spectroscopy”, John Wiley & Sons, Vol. 1, 33, 2001.
42. 汪建民,「材料分析」,中國材料科學學會,73-82,1998。
43. 李冠卿,「表面強化拉曼散射」,物理雙月刊,5期4卷,185,1983。
44. 謝雲生,「雷射拉曼光譜簡介」,物理雙月刊,7期1卷,25,1985。
45. Skoog and H. Nieman, “Raman Spectroscopy, Principles of Instrumental Analysis 5/e”, Harcourt Brace & Company, 429-430, 1998.
46. J. R. Ferraro and K. Nakamoto, “Introduction Raman Spectroscopy”, Academic Press, 1-25, 1994.
47. L. Richard and McCreery, “Raman Spectroscopy for Chemical Analysis”, New York: Wiley Interscience, Vol. 157, 2000.
48. M. Fleischmann, P. J. Hendra and A. J. McQuillan, “Raman Spectra of Pyridine Adsorbed at a Silver Electrode”, Chemical Physics Letters, Vol. 26, 163-166, 1974.
49. D. L. Jeanmaire and R. P. V. Duyne, “Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode”, Journal of Electroanalytical Chemistry, Vol. 84, 1-20, 1977.
50. M. G. Albrecht and J. A. Creighton, “Anomalously Intense Raman Spectra of Pyridine at a Silver Electrode”, Journal of the American Chemical Society, Vol. 99, 5215-5217, 1977.
51. M. Moskovits, K. Kneipp and H. Kneipp, “Surface-Enhanced Raman Scattering: Physics and Applications”, Springer, 2-40, 2006.
52. M. R. Kagan and R. L. McCreery, “Quantitative Surface Raman Spectroscopy of Physisorbed Monolayers on Glassy Carbon”, Langmuir, Vol. 11, 4041-4047, 2002.
53. M. Moskovits, “Surface-Enhanced Spectroscopy”, Reviews of Modern Physics, Vol. 57, 783-826, 1985.
54. Q. Ye, J. Fang, and L. Sun, “Surface-Enhanced Raman Scattering from Functionalized Self-Assembled Monolayers. 2. Distance Dependence of Enhanced Raman Scattering from an Azobenzene Terminal Group”, The Journal of Physical Chemistry B, Vol. 101, 8221-8224, 1997.
55. A. Campion, J. E. Ivanecky, C. M. Child and M. Foster, “On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering”, Journal of the American Chemical Society, Vol. 117, 11807-11808, 2002.
56. Y. C. Liu and R. L. McCreery, “Raman Spectroscopic Determination of the Structure and Orientation of Organic Monolayers Chemisorbed on Carbon Electrode Surfaces”, Analytical Chemistry, Vol. 69, 2091-2097, 1997.
57. J. R. Lombardi, R. L. Birke, T. Lu and J. Xu, “Charge-Transfer Theory of Surface Enhanced Raman Spectroscopy: Herzberg-Teller Contributions”, The Journal of Chemical Physics, Vol. 84, 4174-4180, 1986.
58. 吳民耀,劉威志,「表面強化拉曼散射」,物理雙月刊,2期4卷,486-495,2006。
59. A. Otto, “In Light scattering in solids IV. Electronic Scattering, Spin Effects, SERS and Morphic Effects”, Sptinger-Verlag, 289, 1984.
60. R. Z. Tan, A. Agarwal, N. Balasubramanian, D. L. Kwong, Y. Jiang, E. Widjaja and M. Garland, “3D Arrays of SERS Substrate for Ultrasensitive Molecular Detection”, Sensors and Actuators A, Vol. 139, 36-41, 2007.
61. E. C. Le Ru, P. G. Etchegoin, J. Grand, N. Fe´lidj, J. Aubard, G.. Le´vi, A. Hohenau and J. R. Krenn, “Surface Enhanced Raman Spectroscopy on Nanolithography-Prepared Substrates”, Current Applied Physics, Vol. 8, 467-470, 2008.
62. S. W. Lee and Y. B. Shin, “Electron Beam Lithography-Assisted Fabrication of Au Nano-Dot Array as a Substrate of a Correlated AFM and Confocal Raman Spectroscopy”, Ultramicroscopy, Vol. 108, 1302-1306, 2008.
63. U. Huebner, R. Boucher, H. Schneidewind, D. Cialla and J. Popp, “Microfabricated SERS-Arrays with Sharp-Edged Metallic Nanostructures”, Microelectronic Engineering, Vol. 85, 1792-1794, 2008.
64. L. He, Y. Liu, M. Lin , J. Awika, D. R. Ledoux, H. Li and A. Mustapha, “A New Approach to Measure Melamine, Cyanuric Acid, and Melamine Cyanurate using Surface Enhanced Raman Spectroscopy Coupled with Gold Nanosubstrates”, Sensing and Instrumentation for Food Quality and Safety, Vol. 2, 66-71, 2008.
65. C. J. Orendorff, A. Gole, T. K. Sau and C. J. Murphy, “Surface-Enhanced Raman Spectroscopy of Self-Assembled Monolayers: Sandwich Architecture and Nanoparticle Shape Dependence”, Analytical Chemistry, Vol. 77, 3261-3266, 2005.
66. B. D. Lucas, J. S. Kim, C. Chin and L. J. Guo, “Nanoimprint Lithography Based Approach for the Fabrication of Large-Area, Uniformly Oriented Plasmonic Arrays”, Advanced Materials, Vol. 20, 1129-1134, 2008.
67. Q. Yu, P. Guan, D. Qin, G. Golden and P. M. Wallace, “Inverted Size-Dependence of Surface-Enhanced Raman Scattering on Gold Nanohole and Nanodisk Arrays”, Nano Letters, Vol. 8, 1923-1928, 2008.
68. Q. Liao, C. Mu, D. S. Xu, X. C. Ai, J. N. Yao and J. P. Zhang, “Gold Nanorod Arrays with Good Reproducibility for High-Performance Surface-Enhanced Raman Scattering”, Langmuir, Vol. 25, 4708-4714, 2009.
69. W. C. Liu, “High Sensitivity of Surface Plasmon of Weakly-Distorted Metallic Surface”, Optics Express, Vol. 13, 9766-9773, 2005.
70. J. Parsons, E. Hendry, C. P. Burrows, B. Auguié, J. R. Sambles and W. L. Barnes, “Localized Surface-Plasmon Resonances in Periodic Nondiffracting Metallic Nanoparticle and Nanohole arrays”, Physical Review B, Vol. 79, 073412, 2009.
71. L. Zeiri, B. V. Bronk, Y. Shabtai, J. Czégé and S. Efrima, “Silver Metal Induced Surface Enhanced Raman of Bacteria”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Vol. 208, 357-362, 2002.
72. M. Moskovits, K. Kneipp and H. Kneipp, “Surface-Enhanced Raman Scattering: Physics and Applications”, Springer, 197-198, 2006.
73. D. P. Pursell and H. L. Dai, “Photochemistry of Vinyl Chloride Physisorbed on Ag(111) Through Molecular Anion Formation Induced by Substrate Electron Attachment”, Journal of Physical Chemistry B, Vol. 110, 10374-10382, 2006.
74. K. Uetsuki, P. Verma, T. A. Yano, Y. Saito, T. Ichimura and S. Kawata, “Experimental Identification of Chemical Effects in Surface Enhanced Raman Scattering of 4-Aminothiophynol”, Journal of Physical Chemistry C, Vol. 114, 7515-7520, 2010.
75. T. Qiu, X. L. Wu, J. C. Shen, P. C. T. Ha and P. K. Chu, “Surface Enhanced Raman Characteristics of Ag Cap Aggregates on Silicon Nanowire Arrays”, Nanotechnology, Vol. 17, 5769-5772, 2006.
76. L. Y. Chen, J. S. Yu, T. Fujita and M. W. Chen, “Nanoporous Copper with Tunable Nanoporosity for SERS Applications”, Advanced Functional Materials, Vol. 19, 1-6, 2009.
77. Z. Lu, Y. Gu, J. Yang, Z. Li, W. Ruan, W. Xu, C. Zhao and B. Zhao “SERS-Active Ag Substrate from the Photo-Active Decomposition of Electrodeposited Divalent Silver Oxide”, Vibrational Spectroscopy, Vol. 47, 99-104, 2008.
78. M. Mandal, N. R. Jana, S. Kundu, S. K. Ghosh, M. Panigrahi and T. Pal, “Synthesis of Aucore-Agshell Type Bimetallic Nanoparticles for Single Molecule Detection in Solution by SERS Method”, Journal of Nanoparticle, Vol. 6, 53-61, 2004.
79. R. Sanc, M. Volkan, “Surface-Enhanced Raman Scattering (SERS) Studies on Silver Nanorod Substrates”, Sensors and Actuators B, Vol. 139, 150-155, 2009.
80. D. G. Yu, W. C. Lin, C. H. Lin, L. M. Chang and M. C. Yang, “An In Situ Reduction Method for Preparing Silver/poly(vinyl alcohol)nanocomposite as Surface-Enhanced Raman Scattering(SERS)-Active Substrates”, Materials Chemistry and Physics, Vol. 101, 93-98, 2007.
81. X. Lili and F. Yan, “Raman and Surface Raman Spectroscopy with Ultraviolet Excitation”, Spectrochimica Acta Part A, Vol. 61, 1991-1995, 2005.
82. Y. Fleger, Y. Mastai, M. Rosenbluh and D. H. Dressler, “Surface Enhanced Raman Spectroscopy of Aromatic Compounds on Silver Nanoclusters”, Surface Science, Vol. 603, 788-793, 2009.
83. M. M. Miranda, B. Pergolese and A. Bigotto “SERS Monitoring of Pd-catalysed Reduction Processes of Nitroarenes Adsorbed on Ag/Pd Colloidal Nanoparticles”, Chemical Physics Letters, Vol. 423, 35-38, 2006.
84. G. Grundmeier, M. Stratmann, “Adhesion and De-Adhesion Mechanisms at Polymer/metal Interfaces: Mechanistic Understanding Based on In Situ Studies of Buried Interfaces”, Annual Review of Materials Research, Vol. 35, 571-615, 2005.
85. P. L. Chazot and P. G. Strange, “Importance of Thiol Groups in Ligand Binding to D2 Dopamine Receptors from Brain and Anterior Pituitary Gland”, Biochemical Journal, Vol. 281, 377-380, 1992.
86. A. R. MacDairmid, M. C. Gallagher and J. T. Banks, “Structure of Dithiothreitol Monolayers on Au (111)”, Journal of Physical Chemistry B, Vol. 107, 9789-9792, 2003.
87. C. C. Lin, Y. M. Yang, Y. F. Chen, T. S. Yang and H. C. Chang, “A New Protein A Assay Based on Raman Reporter Labeled Immunogold Nanoparticles”, Biosensors and Bioelectronics, Vol. 24, 178-183, 2008.
88. D. C. Daniel, M. Thompson and N. W. Woodbury, “Fluorescence Intensity Fluctuations of Individual Labeled DNA Fragments and a DNA Binding Protein in Solution at the Single Molecule Level: A Comparison of Photobleaching, Diffusion, and Binding Dynamics”, Journal of Physical Chemistry B, Vol. 104, 1382-1390, 2000.
89. T. Vosgrone and A. J. Meixner, “Surface and Resonance Enhanced Micro-Raman Spectroscopy of Xanthene Dyes at the Single-Molecule Level”, Journal of Luminescence, Vol. 107, 13-20, 2004.
90. W. Plieth, H. Dietz, A. Anders, G. Sandmann, A. Meixner, M. Weber and H. Kneppe, “Electrochemical Preparation of Silver and Gold Nanoparticles: Characterization by Confocal and Surface Enhanced Raman Microscopy”, Surface Science, Vol. 597, 119-126, 2005.
91. S. J. Lee, Z. Guan, H. Xu and M. Moskovits, “Surface-Enhanced Raman Spectroscopy and Nanogeometry: The Plasmonic Origin of SERS”, Journal of Physical Chemistry C, Vol. 111, 17985-17988, 2007.
92. K. L. Wustholz, C. L. Brosseau, F. Casadio and R. P. V. Duyne, “Surface-Enhanced Raman Spectroscopy of Dyes: From Single Molecules to the Artists’ canvas”, Physical Chemistry Chemical Physics, Vol. 11, 7350-7359, 2009.
93. M. Everts, V. Saini, J. L. Leddon, R. J. Kok, M. Stoff-Khalili, M. A. Preuss, C. L. Millican, G. Perkins, J. M. Brown, H. Bagaria, D. E. Nikles, D. T. Johnson, V. P. Zharov and D. T. Curiel, “Covalently Linked Au Nanoparticles to a Viral Vector: Potential for Combined Photothermal and Gene Cancer Therapy”, Nano Letters, Vol. 6, 587-591, 2006.
94. S. Vaibhav, M. Dmitri, M. Sergei, P. Alex, P. Guy, E. Mark, T. Victoria, W. Hongju, P. Larisa, B. Anton, C. David and E. Mike, “An Adenoviral Platform for Selective Self-Assembly and Targeted Delivery of Nanoparticles”, Small, Vol. 4, 262-269, 2008.
95. Y. C. Cao, R. Jin and C. A. Mirkin, “Nanoparticles with Raman Spectroscopic Fingerprints for DNA and RNA Detection”, Science, Vol. 297, 1536-1540, 2002.
96. N. L. Rosi and C. A. Mirkin, “Nanostructures in Biodiagnostics”, Chemical Reviews, Vol. 105, 1547-1562, 2005.
97. J. D. Driskell, K. M. Kwarta, R. J. Lipert, M. D. Porter, J. D. Neill and J. F. Ridpath, “Low-Level Detection of Viral Pathogens by a Surface-Enhanced Raman Scattering Based Immunoassay”, Analytical Chemistry, Vol. 77, 6147-6154, 2005.
98. S. Shanmukh, L. Jones, Y. P. Zhao, J. Driskell, R. Tripp and R. Dluhy, “Identification and Classification of Respiratory Syncytial Virus (RSV) Strains by Surface-Enhanced Raman Spectroscopy and Multivariate Statistical Techniques”, Analytical and Bioanalytical Chemistry, Vol. 390, 1551-1555, 2008.
99. S. Lal, N. K.Grady, J. Kundu, C. S. Levin, J. B. Lassiter and N. J. Halas, “Tailoring Plasmonic Substrates for Surface Enhanced Spectroscopies”, Chemical Society Reviews, Vol. 37, 898-911, 2008.
100. A. Campion and P. Kambhampati, “Surface-Enhanced Raman Scattering”, Chemical Society Reviews, Vol. 27, 241-250, 1998.
101. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Maria, S. K. Gray, J. A. Rogers and R. G. Nuzzo, “Nanostructured Plasmonic Sensors”, Chemical Reviews, Vol. 108, 494-521, 2008.
102. Y. C. Lin, C. H. Yeh, H. H. Huang, T. C. Chang, H. P. Lin and Y. C. Lin, “Using an Electro-Microchip, a Nanogold Probe, and Silver Enhancement in an Immunoassay”, Biosensosrs and Bioelectronics, Vol. 24, 1661-1666, 2009.
103. J. F. Li, Y. F. Huamg, Y. Ding, Z. L. Yang, S. B. Li, X. S. Zhou, F. R. Fan, W. Zhang, Z. Y. Zhou, D. Y. Wu, B. Ren, Z. L. Wang and Z. Q. Tian, “Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy”, Nature, Vol. 464, 392-395, 2010.
104. B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang and X. Cheng, “Large-Area Silver-Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy”, Advanced Functional Materials, Vol. 18, 2348-2355, 2008.
105. J. G. Fan and Y. P. Zhao, “Gold-Coated Nanorod Arrays as High Sensitive Substrates for Surface-Enhanced Raman Spectroscopy”, Langmuir, Vol. 24, 14172-14175, 2008.
106. Z. Sun, Y. Li, Y. Wang, X. Chen, J. Zhang, K. Zhang, Z. Wang, C. Bao, J. Zeng, B. Zhao and B. Yang, “Three-Dimensional Colloidal Crystal-Assisted Lithography for Two-Dimensional Patterned Arrays”, Langmuir, Vol. 23, 10725-10731, 2007.
107. T. Qiu, X. L. Wu, J. C. Shen and P. K. Chu, “Silver Nanocrystal Superlattice Coating for Molecular Sensing by Surface-Enhanced Raman Spectroscopy”, Applied Physics Letters, Vol. 89, 131914, 2006.
108. Z. Li, W. M. Tong, W. F. Stikle, D. L. Neiman, R. S. Williams, L. L. Hunter, A. A. Talin, D. Li and S. R. J. Brueck, “Plasma-Induced Formation of Ag Nanodots for Ultra-High-Enhancement Surface-Enhanced Raman Scattering Substrates”, Langmuir, Vol. 23, 5135-5138, 2007.
109. Z. Niu and Y. Fang, “Surface-Enhanced Raman Scattering System of Sample Molecules in Silver-Modified Silver Film”, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, Vol. 66, 712-716, 2007.
110. Y. Liu, J. Fan, Y. P. Zhao, S. Shanmukh and R. A. Dluhy, “Angle Dependant Surface Enhanced Raman Scattering Obtained from a Ag Nanorod Array Substrate”, Applied Physics Letters, Vol. 89, 173134, 2006.
111. N. Ballav, A. Shaporenko, S. Krakert, A. Terfort and M. Zharnikov, “Tuning the Exchange Reaction Between a Self-Assembled Monolayer and Potential Substituents by Electron Irradiation”, Journal of Physical Chemistry C, Vol. 111, 7772-7782, 2007.
112. C. I. Brady, N. H. Mack, L. O. Brown and S. K. Doorn, “Self-Assembly Approach to Multiplexed Surface-Enhanced Raman Spectro-Encoder Beads”, Analytical Chemistry, Vol. 81, 7181-7188, 2009.
113. C. Vericat, M. E. Vela, G. A. Benitez, J. A. M. Gago, X. Torrelles and R. C. Salvarezza, “Surface Characterization of Sulfur and Alkanethiol Self-Assembled Monolayers on Au(111)”, Journal of Physics: Condensed Matters, Vol. 18, R867-R900, 2006.
114. Y. C. Lin and C. P. Jen, “Mechanism of Hydrodynamic Seperation of Biological Objects in Microchannel Devices”, Lab on a Chip, Vol. 2, 164-169, 2002.
115. Z. Movasaghi, S. Rehman and I. U. Rehman, “Raman Spectroscopy of Biological Tissues”, Applied Spectroscopy Reviews, Vol. 42, 493-541, 2007.
116. W. T. Cheng, M. T. Liu, H. N. Liu and S. Y. Liu, “Micro-Raman Spectroscopy Used to Identify and Grade Human Skin Pilomatrixoma”, Microscopy Research and Technique, Vol. 68, 75-79, 2005.
117. R. K. Dukor, “Vibrational Spectroscopy in the Detection of Cancer”, Biomedical Applications, Vol. 5, 3335-3359, 2002.
118. R. Malini, K. Venkatakrishma, J. Kurien, K. M. Pai, L. Rao, V. B. Kartha and C. M. Krishna, “Discrimination of Normal, Inflammatory, Premalignant, and Malignant Oral Tissue: A Raman Spectroscopy Study”, Biopolymers,Vol. 82, 179-193, 2006.
119. J. W. Chan, D. S. Taylor, T. Zwerdling, S. T. Lane, K. Ihara and T. Huser, “Micro-Raman Spectroscopy Detects Individual Neoplastic and Normal Hematopoietic Cells”, Biophysical Journal, Vol. 90, 648-656, 2006.