| 研究生: |
鄭振甫 Cheng, Cheng-Fu |
|---|---|
| 論文名稱: |
觀察量子點組裝在切換電場下的發光響應以及其在FRET分子感測上的應用 Electric field induced photoluminescent switch of electrokinetic assembly of semiconductor quantum dots and its application in promoting FRET sensing |
| 指導教授: |
魏憲鴻
Wei, Hsien-Hung |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 150 |
| 中文關鍵詞: | 量子點 、交流電荷奈米捕捉技術 、螢光共振能量轉移 、DNA檢測 |
| 外文關鍵詞: | Quantum Dot, Fluorescence Resonance Energy Transfer, AC Electro-kinetics, DNA probing |
| 相關次數: | 點閱:92 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
螢光共振能量轉移(FRET)在生物分子鑑定和疾病診斷中得到了廣泛的應用,但其經常有訊號微弱,螢光分子生命週期短,效率低等問題。為了克服這些問題以擴大FRET的應用範圍,我們結合半導體量子點(QD)和交流電場,開發在交流電場下以量子點做為螢光供體的FRET手段以增益FRET感測。基於我們研究室最近發現,在交流電場下以量子點做為螢光供體經能量轉移後的FRET訊號其強度可以被放大且在電場下會發生瞬時變化,因此在本論文裡,我主要研究在交流電場下作用下QD的發光響應,並進行一系列實驗研究以了解這些響應背後的原因及其可能的應用。
在本論文的第三章,我首先使用供體QD和受體Alexa647-ssDNA在週期性開關電場下進行FRET。我發現在開啟/關閉電場後,FRET訊號增加/降低-與電場同相。然而,QD螢光放射與則和FRET訊號相反,顯示出反相響應,當電場開啟/關閉時強度降低/增加。但令我們意外的是,受體Alexa647-ssDNA螢光放射並沒有和FRET訊號同步,反而也顯示與QD相同的反相響應。在此強調,所有實驗都是在沒有任何QD或Alexa647-ssDNA的純水中進行的,所以這些在開關電場下的螢光響應勢必是來自於電極上“已鍵結的”QD和Alexa647-ssDNAs,這意味著在FRET過程中分子層面上發生一些特徵性的改變。
在第四章裡,為了檢驗供體和受體之間的“鍵結”是否導致了上述實驗現象,我在週期性開關電場下觀察“純”的QD和“未鍵結”的Alexa647-ssDNA的螢光放射響應。我發現“未鍵結的”Alexa647-ssDNA的響應與第三章中的“鍵結”的響應相反,這也代表了開關電場下螢光響應確實受到鍵結的影響。更重要的是,我發現QD響應可以與外加電場同相或反相,這取決於QDs在電極上的組裝方式。同相的響應發生在QD聚集較無向序性的電極中心附近。相反地,在電極的角落(邊緣)附近,QD聚集受到局部電場的作用,排列沿著電場方向,較有向序性,產生反相響應,也就是在電場開啟/關閉時,QD的螢光強度衰退/增加。另外我也證實了,QD整體在開關電場下的響應模式以反相為主導。
基於上述觀察結果,QDs可以在電極上開關電場下呈現不同的螢光響應,在第五章中,我改變了外加交流電場的電壓和頻率,觀察響應模式是否可以被改變。結果顯示,無論在哪個電極位置,響應均在20Vpp或500Hz時最明顯。然而,我發現只有在高低電壓交錯開關電場下,且只有吸附在電極角落的QD的響應才有明顯變化。另外,我也針對隨機分佈的QDs進行開關電場的實驗,發現螢光強度僅隨著時間單調遞減。在這種情況下,即使聚集的QD也不會有螢光強度增加/衰退的現象。這觀察結果強烈表明要觀察到開關電場下QD螢光強度衰退/增加的響應,QDs必須有向序性的組裝或依照特定的取向排列。
在第六章裡,我懷疑在三-五章中所看到開關電場下不尋常發光響應與QD和Alexa647-ssDNA的放射光譜的變化有關。因此,我觀察了開電場和關電場下已組裝QDs和Alexa647-ssDNA的放射光譜。實驗結果顯示,在施加電場前後,峰值波長和放射光譜波長範圍都幾乎不變。這意味著觀察到電場下螢光放射響應不是由於光譜偏移而是由於其他本質性的原因所造成。依循此思路,我想瞭解已組裝QDs的螢光放射生命週期是否可以透過外加的交流電場來改變。使用時間解析光激螢光(TRPL)技術,我發現開電場的螢光生命週期比沒有電場的生命週期短,這結果與第四章中發現開關電場下整體主導的反相響應一致。由於這電場對於組裝的QDs導致生命週期變化可以直接影響對應的FRET過程,使得這裡的FRET效率將不再由單一FRET分子對的分子性質決定,而是由交流電場效應和已組裝QDs的群聚行為決定。
In order to overcome problems so as to extend the applicability of FRET, we combine the use of semiconductor quantum dots (QDs) and AC electric fields to develop AC QD-based FRET for facilitating FRET probing. Our research group recently discovers that FRET signals emitted from QDs can be greatly amplified and undergo instantaneous changes under the actions of AC fields. And what I found after series of experiments is that (1) Both FRET signal and QD emission can change after AC switch. QD’s response is opposite to FRET’s. (2) Such QD switch can have different responses, depending on how QDs are assembled by electric fields and responses of assembled QDs can be changed by AC field. (3) FRET efficiency can be manipulated by joint effects of QD assembly and AC field.
Key words: Quantum Dot, Fluorescence Resonance Energy Transfer, AC Electro-kinetics, DNA probing
Becker, K., Lupton, J. M., Müller, J., Rogach, A. L., Talapin, D.V., Weller, H., & Feldmann, J. 2006 Electrical control of Förster energy transfer. Nature Materials, 5, 777–781.
Chen, R.-Y., Zhang, G.-F., Qin, C.-B., Gao, Y., Xiao, L.-T., & Jia, S.-T. 2017 Modification of single molecule fluorescence using external fields. Frontiers of Physics, 12, 128101.
Davis, J. J., Burgess, H., Zauner, G., Kuznetsova, S., Salverda, J., Aartsma, T., & Canters, G. W. 2006 Monitoring interfacial bioelectrochemistry using a FRET switch. Journal of Physical Chemistry B, 110, 20649–20654.
Empedocles, S. A. 2010 Quantum-Confined Stark Effect in single CdSe Quantum-Confined Stark Effect in single CdSe nanocrystallite quantum dots. Science, 278, 2114-2117.
Hilczer, M., & Tachiya, M. 2002 Electric field effects on fluorescence quenching due to electron transfer. II. linked donor-acceptor systems. Journal of Chemical Physics, 117, 1759–1767.
Hilczer, M., Traytak, S., & Tachiya, M. 2001 Electric field effects on fluorescence quenching due to electron transfer. Journal of Chemical Physics, 115, 11249–11253.
Holmberg, K. 1984 Low temperature acid catalyzed curing of melamine resin systems. Polymer Bulletin, 11, 81–84.
Hu, J., Wang, Z., Li, C., & Zhang, C. 2017 Advances in single quantum dot-based nanosensors. Chemical Communications.
Huang, H., Dorn, A., Bulovic, V., & Bawendi, M. G. 2007 Electrically driven light emission from single colloidal quantum dots at room temperature. Applied Physics Letters, 90, 1–4.
Jing, P., Zheng, J., Ikezawa, M., Liu, X., Lv, S., Kong, X., Masumoto, Y. 2009 Temperature-dependent photoluminescence of CdSe-Core CdS/CdZnS/ZnS- multishell quantum dots. Journal of Physical Chemistry C, 113, 13545–13550.
Kiba, T., Mizushima, Y., Igarashi, M., Huang, C. H., Samukawa, S., & Murayama, A. 2013 Temperature dependence of time-resolved photoluminescence in closely packed alignment of Si nanodisks with SiC barriers. Nanoscale Research Letters, 8, 1–7.
Lei, K. F., Wang, Y. H., Chen, H. Y., Sun, J. H., &Cheng, J. Y. 2015. Electrokinetic acceleration of DNA hybridization in microsystems. Talanta, 138, 149–154.
Medintz, I. & Hildebrandt, N. 2014 FRET-Forster Resonance Energy Transfer, Germany: Wiley-VCH, Germany.
Mehata, M. S. 2015 Enhancement of charge transfer and quenching of photoluminescence of capped CdS quantum dots. Scientific Reports, 5, 12056.
Mi, L., Wang, H., Zhang, Y., Yao, X., Chang, Y., Li, G., Jiang. 2017 Converting electrical conductivity types in surface atomic-ligand exchanged PbS quantum dots via gate voltage tuning. Journal of Alloys and Compounds, 699, 866–873.
Modarres, P., & Tabrizian, M. 2017 Alternating current dielectrophoresis of biomacromolecules: The interplay of electrokinetic effects. Sensors and Actuators, B: Chemical, 252, 391–408.
Nakabayashi, T., Kinjo, M., & Ohta, N. 2008 Electric field effects on fluorescence of the green fluorescent protein. Chemical Physics Letters, 457, 408–412.
Rosen, S., Schwartz, O., & Oron, D. 2010 Transient fluorescence of the off state in blinking CdSe/CdS/ZnS semiconductor nanocrystals is not governed by auger recombination. Physical Review Letters, 104, 1–4.
Rowland, C. E., Susumu, K., Stewart, M. H., Oh, E., Mäkinen, A. J., O’Shaughnessy, T. J., Delehanty, J. B. 2015 Electric field modulation of semiconductor quantum dot photoluminescence: Insights into the design of robust voltage-sensitive cellular imaging probes. Nano Letters, 15, 6848–6854.
Salari, A., & Thompson, M. 2018 Recent advances in AC electrokinetic sample enrichment techniques for biosensor development. Sensors and Actuators, B: Chemical, 255, 3601–3615.
Sato, K., & Naito, T. 1973 Studies on melamine resin. VII. Kinetics of the acid-catalyzed condensation of di- and trimethylolmelamine. Polymer Journal.
Wang, J. C., Ku, H. Y., Shieh, D.Bin, & Chuang, H. S. 2016 A bead-based fluorescence immunosensing technique enabled by the integration of Förrster resonance energy transfer and optoelectrokinetic concentration. Biomicrofluidics, 10, 014113.
Zhang, C.Y., Yeh, H.C., Kuroki, M.T. & Wang, T.H. 2005 Single-quantum-dot-based DNA nanosensor, Nature Material, 4, 826-831
Zhou, R., Chang, H. C., Protasenko, V., Kuno, M., Singh, A. K., Jena, D., & Xing, H. 2007 CdSe nanowires with illumination-enhanced conductivity: Induced dipoles, dielectrophoretic assembly, and field-sensitive emission. Journal of Applied Physics, 101, 073704.
連政偉,製備含量子點修飾之DNA分子梳並應用其發展具分子探測與檢測功能之一維FRET生物感測器,國立成功大學,碩士論文,2011。
陳信龍,膠體粒子交互作用與單一高分子鏈構形變化之偵測與診斷,國立成功大學,碩士論文,2011。
陳易靖,以電荷動力實現快速且高靈敏度的FRET分子感測,國立成功大學,碩士論文,2017。
梁紫涵,整合DNA拉伸及交流電荷動力作用製備快速且高靈敏度的FRET分子感測器,國立成功大學,碩士論文,2017。